

LIF ATY
UNIVERSITY OF ALL FORNIA
DAVIS

State of California THE RESOURCES AGENCY

epartment of Water Resources

BULLETIN No. 130-63

HYDROLOGIC DATA: 1963

Volume IV: SAN JOAQUIN VALLEY

MAY 1965

UNIVERSITY OF CALIFORNIA DAVIS OCT 1 3 1965 LIBRARY

HUGO FISHER

Administrator
The Resources Agency

EDMUND G. BROWN
Governor
State of California

WILLIAM E. WARNE

Director

Department of Water Resources

State of California THE RESOURCES AGENCY

ERRATA SHEET

Bulletin No. 130-63, Hydrologic Data 1963 Volume IV San Joaquin Valley

Page vi	Delete Surface Water Quality Conditions28
Page C-33	6S/22E-23R01 M should read 16S/22E-23R01 M
Page C-39	8S/25E-12Q01 M should read 18S/25E-12Q01 M
Page C-42	9S/23E-14R01 M should read 19S/23E-14R01 M
Page C-43	Second state well number should read 20S/24E-16N01 M
Page C-61	Second state well number should read 28S/25E-34J01 M
Page C-73	Second state well number should read 28S/24E-28AO1 M
Page C-79	Second state well number should read 20S/15E-25D01 M
	Third state well number should read 20S/15E-32AOl M
Page E-5	Eighth paragraph should read listed in Table $\underline{12}$, instead of Table E-5

HUGO FISHER Administrator The Resources Agency

Governor State of California

EDMUND G. BROWN WILLIAM E. WARNE Director Department of Water Resources

State of California THE RESOURCES AGENCY

Department of Water Resources

BULLETIN No. 130-63

HYDROLOGIC DATA: 1963

Volume IV: SAN JOAQUIN VALLEY

MAY 1965

HUGO FISHER

Administrator

The Resources Agency

EDMUND G. BROWN
Governor
State of California

WILLIAM E. WARNE

Director

Department of Water Resources

ORGANIZATION OF BULLETIN NO. 130 SERIES

Volume I - NORTH COASTAL AREA

Volume II - NORTHEASTERN CALIFORNIA

Volume III - CENTRAL COASTAL AREA

Volume IV - SAN JOAQUIN VALLEY

Volume V - SOUTHERN CALIFORNIA

Each volume consists of the following:

TEXT and

Appendix A - CLIMATE

Appendix B - SURFACE WATER FLOW

Appendix C - GROUND WATER MEASUREMENTS

Appendix D - SURFACE WATER QUALITY

Appendix E - GROUND WATER QUALITY

TABLE OF CONTENTS

11100
AREA ORIENTATION MAP
LETTER OF TRANSMITTAL
ORGANIZATION, DEPARTMENT OF WATER RESOURCES x
CHAPTER I. INTRODUCTION
Location and General Features of the San Joaquin Valley
Scope of Report
Numbering System Designations
Region Designation
Climate Station Designation
Surface Water Gaging Station Designation
Ground Water Basin and Area Designation
Well Numbering System
CHAPTER II. CLIMATE
Introduction
Scope
Precipitation
Temperatures, Evaporation, and Wind Movement
remperatures, Evaporation, and wind movement
CHAPTER III. SURFACE WATER FLOW
Introduction
Scope
Hydrography
Hydrographic Activities of Other Agencies
Runoff and Water Supply
Runoff Comparisons
Lakes and Reservoirs
Streamflow Measurements
Recorders
Ratings
Use of Water for Irrigation
Criteria
Irrigation Diversions
Imported Water
·
CHAPTER IV. GROUND WATER MEASUREMENTS
Introduction
Scope
Basic Data
Processed Data
Related Information

TABLE OF CONTENTS (Continued)

	<u>PAGE</u>
Cooperativ	re Programs
Month	nly Program
Annua	al and Semiannual Programs
Ground Wat	ter Conditions
	CHAPTER V. SURFACE WATER QUALITY
Introduct	
Scope	
Sampling 1	
Station Sa	
	27 Lity Recorders
Surface Wa	ater Quality Conditions
	CHAPTER VI. GROUND WATER QUALITY
Introduct	ion
Scope	
Ground Was	ter Quality Conditions
Sampling 1	Program
	TABLES
TABLE	
1	Seasonal and Mean Precipitation at Selected Stations in the San Joaquin Valley 6
2	Cumulative Monthly Precipitation at Key Stations in the San Joaquin Valley, 1962-63
3	Average Temperatures, Total Evaporation, and Average Wind Movement at Selected Stations in the San Joaquin Valley
4	Annual Unimpaired Runoff
5	Monthly Unimpaired Runoff
6	Summary of Principal Reservoir Storage in the San Joaquin Valley 13
7	Summary of Diversion Points and Total Acre-Feet Diverted, October 1, 1962 - September 30, 1963
8	Summary of Ground Water Level Data Collected in the San Joaquin Valley, July 1, 1962 - June 30, 1963
9	Average Change in Ground Water Levels in Basins and Areas in the San Joaquin Valley, Spring 1962 - Spring 1963
10	Change in Average Ground Water Level from 1921 to 1951 and 1951 to 1963 in Nineteen Ground Water Areas in the San Joaquin Valley
11	Surface Water Quality Monitoring Stations by Drainage Basins
12	Wells Indicating Significant Deviation in Quality from Surrounding Area
13	Cooperating Agencies, Ground Water Quality Monitoring Program, San Joaquin Valley Area 33
	<u>APPENDIXES</u>
APPENDIX	
A	Climate
В	Surface Water Flow
С	Ground Water Measurements
D	Surface Water Quality
E	Ground Water Quality E-1

TABLE OF CONTENTS (Continued)

PLATES (Bound at end of volume)

PLATE

A-1	Location of Climatological Stations
A-2	Lines of Equal Precipitation
B-1	Location of Surface Water Measurement Stations
C-1	Location and Changes in Ground Water Basins and Areas in San Joaquin Valley - Unconfined Aquifer Spring 1962 - Spring 1963
C-2	Location and Changes in Ground Water Basins and Areas in San Joaquin Valley - Confined Aquifer Spring 1962 - Spring 1963
C-3	Location of Selected Observation Wells
C-4	Poso Soil Conservation District Cooperative Program Area
C-5	Kern County Cooperative Program Area
C-6	Map of 19 Historic Ground Water Areas in San Joaquin Valley and Profiles along Section A-A' showing Ground Water Levels in 1921, 1951, 1962, and 1963
C+7	Fluctuation of Average Water Level, 1921 to 1963 in 19 Historic Ground Water Areas in San Joaquin Valley
C-8	Fluctuation of Water Level in Selected Wells in San Joaquin Valley
C-9	Lines of Equal Elevation of Water in Wells - San Joaquin Valley - Spring 1963
D-1	Surface Water Quality and Recorder Stations
D-2	Weekly Mean Specific Conductance at Selected Stations
E-1	Ground Water Quality Basins and Areas
E-2	Lines of Equal Electrical Conductivity
E-3	Mineral Types of Ground Water

EPARTMENT OF WATER RESOURCES

O. BOX 388 CRAMENTO

March 15, 1965

Honorable Edmund G. Brown, Governor, and Members of the Legislature of the State of California

Gentlemen:

Bulletin No. 130-63, entitled "Hydrologic Data, Volume IV, San Joaquin Valley", presents data on hydrologic conditions in the San Joaquin Valley during the 1963 reporting year.

This bulletin is the first of a series which incorporates data on surface water, ground water, and climate previously published annually in Bulletins No. 23, 39, 65, 66, and 77. With the inauguration of the new series, publication of the earlier reports is discontinued.

Bulletin No. 130 will be published annually in five volumes, each volume to report hydrologic data for one of five specific reporting areas of the State. The area orientation map on page iii delineates these areas. Page ii outlines the organization of the bulletin, its volumes, and appendixes.

The collection and publication of data as contained in Bulletin No. 130 are authorized by Sections 225, 226, 229, 230, 232, 345, 12609, and 12616 of the California Water Code.

The basic data programs of the Department of Water Resources have been designed to supplement the activities of other agencies to satisfy specific needs of the State. Bulletin No. 130 presents to the public useful, comprehensive, accurate, timely hydrologic data, which are prerequisites for effective planning, design, construction, and operation of water facilities.

Collection of much of the data presented has been possible only because of the generous cooperation and assistance of other agencies and many individuals; these cooperators are shown in the tables where appropriate. Without this assistance Bulletin 130-63 would be a much less valuable tool.

Sincerely yours,

Mil Shame

State of California The Resources Agency Department of Water Resources

EDMUND G. EROWN, Governor
HUGO FISHER, Administrator, The Resources Agency of California
WILLIAM E. WARNE, Director, Department of Water Resources
ALFRED R. GOLZE', Chief Engineer
JOHN R. TEERINK, Assistant Chief Engineer

SAN JOAQUIN VALLEY BRANCH

Carl L. Stetson
Activities covered by this report were under the supervision of
Victor B. McIntyre
Collection, correlation, and computation of hydrographic data pertaining to surface water flows, ground water levels, and climatology were supervised by
Ground Water Group
Laurence O. Grossnickle
Surface Water and Climatology Group
Douglas F. Owens
Office Engineer
Harry R. Brenner
Modesto Field Office supervised by
Robert W. Grimshaw
Office and Field Personnel of the Hydraulic Unit
Walter W. Bourez Keithal B. Dick Water Resources Technician II Donald R. Henley Water Resources Technician II William A. Mancebo Water Resources Technician II Barney H. Perkins Water Resources Technician II Barney H. Perkins Junior Civil Engineer William J. Ghormley Stanley H. Adams Water Resources Technician I Berbert D. Parlier Water Resources Technician I Donald W. Colburn Water Resources Technician I Roger G. Neal Water Resources Technician I Renry W. Rogers Delineator Anthony D. Camoroda Drafting Aid II C. Collette Blair Intermediate Stenographer
The portions of the report covering water quality activities were prepared by
Kenneth T. Nagatani
Assisted by
James W. Windsor Water Resources Engineering Associate Gordon L. Dugan Assistant Civil Engineer Laurence A. Burch Assistant Civil Engineer Bruce A. Butterfield Assistant Civil Engineer Harry H. Tenney Engineering Aid II Alice A. Nishimura Intermediate Stenographer

Reviewed and Coordinated by Division of Resources Planning Data Coordination Section

CHAPTER I

INTRODUCTION

This is Volume IV in a series of basic data reports presented under a new format entitled "Bulletin 130-63, Hydrologic Data." The five volumes of the bulletin embrace the entire State of California, each volume being prepared by the area branch or district of the department responsible for the publication of basic data collected in its respective area. These areas are shown on the frontispiece map.

This report contains a record of hydrologic data collected and assembled by the San Joaquin Valley Branch of the Department of Water Resources. It brings together in a permanent and usable form the following types of hydrologic basic data collected during the respective time intervals as shown below:

Surface Water Flows

October 1, 1962 - September 30, 1963

Diversion Data

October 1, 1962 - September 30, 1963

Climate Data

July 1, 1962 - June 30, 1963

Ground Water Level Measurements

July 1, 1962 - June 30, 1963

Surface Water Quality

October 1, 1962 - September 30, 1963

Ground Water Quality

October 1, 1962 - September 30, 1963

Location and General Features of the San Joaquin Valley

The San Joaquin Valley includes approximately the southern two-thirds of the Great Central Valley of California. It is a broad structural trough surrounded on three sides by mountains: the Sierra Nevada on the east, the Coast Range on the west, and the Tehachapi and San Emigdio Mountains on the south. It is separated from the Sacramento Valley on the north by the combined deltas of the Sacramento and San Joaquin Rivers. The valley extends 250 miles southeasterly from Stockton to Grapevine at the foot of the Tehachapi Mountains; the width of the valley floor ranges from 25 miles near Bakersfield to 55 miles near Visalia and averages about 35 miles. The area of the valley floor is 10,000 square miles, excluding the rolling foothills that skirt the mountains.

East of the San Joaquin Valley the Sierra Nevada rises in a distance of 45 to 60 miles to altitudes of 14,000 feet or more; to the west the Coast Range rises to 6,000 feet; and on the south the valley is enclosed by the San Emigdio and Tehachapi Mountains which rise to altitudes of about 8,000 feet. Only at Carquinez Strait, a break in the Coast Range east of San Francisco Bay, does the Great Central Valley open to the sea.

The valley floor rises gently from sea level at the north end to 500 feet above sea level about 21 miles south of Bakersfield; alluvial fans along the valley borders rise to altitudes as high as 700 to 1,800 feet. The gentle northward gradient of the valley floor is interrupted by a low divide in the neighborhood of the Kings River, about 15 miles west of Hanford; the San Joaquin Valley is divided at that point into two separate drainage basins - the San Joaquin River Basin and the Tulare Basin.

Scope of Report

The areal scope of this volume of the report is depicted on Plates A-1, B-1, C-1, D-1, and E-1. The location of climatological stations for which data are presented is shown on Plate A-1 and the location of surface water gaging stations on Plate B-1. The basins, subbasins, or areas in the San Joaquin Valley for which ground water levels are reported are shown on Plate C-1. The locations of surface water sampling stations are shown on Plate D-1, and the basins, subbasins, or areas used to locate the ground water quality samples are shown on Plate E-1.

The following chapters present information on precipitation, evaporation, and temperature, surface runoff, diversions, reservoir storage, imported water supplies, ground water conditions, and quality of surface and ground water.

The tabulated basic data are presented in Appendixes A through E. These appendixes include all basic data collected pertaining to climate, surface water flow, ground water level measurements and water quality analyses of surface and ground water.

Numbering System Designations

In the paragraphs which follow, there are presented descriptions of the various numbering and coding systems used in this report. These systems are utilized to facilitate machine data processing.

Region Designation

The region designations used in this report pertain to geographic areas as defined in Section 13040 of the Water Code. The State is divided into nine regions and the San Joaquin Valley area encompasses that portion of the Central Valley region south of the north boundary of the Stanislaus River drainage area.

Climate Station Designation

The climatological station designations used herein and in Appendix A are based on the drainage basin and alpha number. Stations are also named and latitude and longitude locations are determined to the nearest minute.

Each main drainage basin is assigned a letter and each subbasin a number, as shown on Plate A-1 of this report.

The alpha order number is assigned each station to denote its order in alphabetical sequence for machine processing. The subnumbers are used to avoid duplication of the original four-digit system for machine processing. Only 21 columns are available for station name; therefore, some abbreviations are necessary.

Surface Water Gaging Station Designation

The index number for each gaging station is composed of a number which begins with an alphabetical letter designating the hydrographic area, followed by the first digit which indicates the main river basin. The second digit refers to a tributary of the main river basin. The hydrographic area and the river basins are outlined on Plate B-1. The remaining three digits are used to number stations in an upstream direction with the lowest number at or near the mouth. The digit 9, which is the third from the left, indicates that the station is a surface gravity diversion station. Each station is listed by name as well as by machine index number.

Ground Water Basin and Area Designation

With respect to the basin numbering system code, a decimal numbering system of the form 0-00.00 has been used. The number to the left of the dash refers to the geographic region described above. On the right of the dash, the first two digits refer to a hydrographic unit, generally designated as a basin, valley, or area. These are followed by decimals which designate a subbasin, area, or subarea within the basin. These basins, areas, or subareas are shown on Plates C-1 and C-2.

Well-numbering System

The state well-numbering system used in this report is based on township, range, and section subdivision of the Public Land Survey. It is the system used in all ground water investigations and for numbering all wells for which data are published or filed by the Department of Water Resources. In this report, the number of a well assigned in accordance with this system is referred to as the state well number.

Under this system, each section is divided into 40-acre tracts lettered as follows:

D	С	В	А
E	F	G	Н
М	L	К	J
И	Р	Q	R

Wells are numbered within each 40-acre tract according to the chronological sequence in which they have been assigned state well numbers. For example, a well which has the number 16S/15E-17Kl M would be in Township 16 South, Range 15 East, Section 17, M.D.B.&M., and would be further designated as the first well assigned a state well number in Tract K. In this volume, well numbers are referenced to the Mount Diablo Base and Meridian (M), or the San Bernardino Base and Meridian (S).

CHAPTER II

CLIMATE

Introduction

The climate of the San Joaquin Valley is characterized by hot summers and mild winters. Midday temperatures in midsummer are high, occasionally 110° F. with extremes as high as 120° F. having been recorded. The diurnal temperature variation also is extreme, especially in summer when frequently it is 40° F. or more.

Annual precipitation decreases from north to south and east to west across the valley. The average annual precipitation ranges from 5.38 inches at Buttonwillow in the southern part of the valley to 17.42 inches at Knights Ferry in Stanislaus County at the northern end of the valley. Precipitation figures are based on the 50-year mean period 1910-1960.

As moist air moves in from the Pacific Ocean and ascends the western slope of the Sierra Nevada, precipitation increases and reaches a maximum in the higher parts of the range. The mean annual precipitation exceeds 40 inches in much of the higher mountainous part of the Sierra Nevada tributary to the San Joaquin Valley and exceeds 60 inches in small isolated areas. During winter, snowfall is heavy in the Sierra Nevada at elevations above 3,000 to 4,000 feet.

Precipitation and runoff in the Central Valley vary not only from winter to summer, but from year to year.

Scope

The area covered by this report and its geographical relation to the Central Valley Drainage Basin are both shown on Plate A-1.

The Department of Water Resources gathers basic data relating to climatic phenomena in the San Joaquin Valley. This involves field measurements and office computations to determine the instantaneous, daily, monthly, seasonal, and annual temperatures, precipitation, and evaporation.

The field activities include the installation and maintenance of weather stations. The installed equipment obtains measurements of: (1) daily maximum and minimum temperatures; (2) precipitation—annual amounts from storage gages in remote areas, daily amounts from standard rain gages, and instantaneous amounts from recording rain gages; (3) evaporation in inches per day; and (4) wind movement in miles per day. In addition, similar data are obtained from many public and private agencies and individuals.

The department contributes to the cooperative program with the U. S. Weather Bureau by Providing services for the installation, maintenance, and operation of approximately 100 stations in the State, eight of which are located in the San Joaquin Valley. The U. S. Weather Bureau publishes these data in the official U. S. Weather Bureau publication, "Climatological Data."

The office activities consist of computation and compilation of approximately 150 monthly climatological station observations to provide a continuous and current record. This includes the computation of intensities from recording rain gages and preparation of hourly precipitation records for future use in development of rainfall intensity-duration-frequency relationships.

Precipitation

Precipitation during the 1962-63 season for the San Joaquin Valley area as a whole was normal. This is a continuation of two years of normal rainfall in the valley preceded by three years of below-normal precipitation.

This year's precipitation, measured from July 1, 1962, through June 30, 1963, varied from 109 percent of normal at Modesto on the north to 74 percent at Bakersfield on the south. The greatest deviations from normal were 131 percent at Mariposa and 65 percent at Maricopa.

The San Joaquin Valley area may be divided into three general parts: the west side, the valley floor, and the east side or Sierra Nevada. Table 1, "Seasonal and Mean Precipitation at Selected Stations in the San Joaquin Valley," shows the distribution of rainfall west to east across the valley. Averages of precipitation normals show for the west side stations 6.3 inches, for the valley floor 9.7 inches, and for the east side 16.6 inches.

The seasonal deviation from normal of the three general areas is 86 percent on the west side, 103 percent on the valley floor, and 109 percent on the east side.

TABLE 1

SEASONAL AND MEAN PRECIPITATION AT
SELECTED STATIONS IN THE SAN JOAQUIN VALLEY

Alpha	Station	County	50-Year Mean	1962-63 S In inches	eason Percen
Order Number	Station	County	1910-1960 In inches	In inches	of Mean
West Side					
B8 6675	Panoche	San Benito	7.51	8.20	109
CO 1867	Coalinga 1 SE	Fresno	6.80	7.04	104
C0 4536	Kettleman Sta.	Kings	6.21	5.69	92
CO 1244	Buttonwillow	Kern	5.38	3.86	72
C7 5338	Maricopa	Kern	5.54	3.60	65
Valley Floor					
BO 5297-01	Manteca No. 2	San Joaquin	11.65	12.32	106
BO 5738	Modesto	Stanislaus	11.56	12.59	109
во 9073	Turlock	Stanislaus	11.71	12.86	110
BO 5532	Merced Fire Sta. 2	Merced	11.89	12.31	104
BO 5233	Madera	Madera	10.11	9.62	95
C0 3257	Fresno WB A.P.	Fresno	9.65	11.59	120
CO 9367	Visalia	Tulare	9.39	9.08	97
CO 3747	Hanford	Kings	8.10	8.15	101
C0 9452	Wasco	Kern	6.32	7.15	113
CO 0442	Bakersfield A. P.	Kern	6.19	4.55	74
East Side					
BO 4590	Knights Ferry 2 SE	Stanislaus	17.42	20.31	117
B5 1588	Cathay Bull Run Rch.	Mariposa	19.72	24.50	124
B5 5346	Mariposa	Mariposa	28.94	37.80	131
B7 3261	Friant Gov't. Camp	Fresno	13.38	16.24	121
C2 6476	Orange Cove	Fresno	12.90	12.16E	94
C2 4890	Lemon Cove	Tulare	13.68	11.88	87
CO 7077	Porterville	Tulare	10.39	8.99	87

Three incidents of relative climatological importance occurred during the 1962-63 season:

The storm of October 8 through October 15, 1962, raised the valley precipitation to 89 percent of normal after a dry fall; for the period January 30 through February 2, a high intensity storm struck the valley again, raising the averages to 71 percent of normal after the November and December doldrums of fog and cold; the gradual and general cool rains of April, followed by above-normal precipitation in May and June, resulted in normal to above normal precipitation for the year.

The occurrences described above are shown in Table 2 "Cumulative Monthly Precipitation at Key Stations in the San Joaquin Valley."

TABLE 2

CUMULATIVE MONTHLY PRECIPITATION AT KEY STATIONS IN THE SAN JOAQUIN VALLEY

1962-63

	T				_	_	_	_		_			_		_	_	_			_
	Season		Percent	of Mean		0	0	17	09		27	13	12	48		62	69	70	74	
BAKERSFIELD	1962-63			n inches of		00.	00.	.02	.25		. 25	.25	.37	1.91		3.16	4.01	4.27	4.55	
BAK	50-Year	Mean	1910-60	n inches		.02	.03	.12	.42		. 94	1.87	2.98	4.01		5,10	5.79	6.11	6.19	
+	Season		Percent	f Mean I		0	0	25	986		34	17	27	52		67	96	95	16	
	1962-63 \$		Д	n inches		00.	00.	.02	.42		.42	.47	1.29	3,42		5.52	8.67	8.89	80.6	
>	50-Year	Mean	1910-60	inches of Mean In inches In inches of Mean In inches In		00.	.01	*08	.49		1.24	2,81	4.78	6.57		8.18	00.6	9.33	9.39	
	Season	_	Percent	of Mean I		0	0	0	118	_	53	40	68	18	-	06	121	121	120	
FRESNO	1962-63 Season	_		In inches		E	00.	H	.73		.76	1.24	3,40	5.41		7.51	11.17	11.56	11.59	
14	50-Year	Mean	1910-60	of Mean In inches In		*01	.02	.10	.62		1.43	3.08	5.01	6.64		8.34	9.22	9.54	9.65	
	Season		Percent	of Mean I		0	0	0	85		39	5.5	55	74		75	96	96	95	
MADERA	1962-63 \$	_	£34	inches In inches		00.	00.	00.	.47		.57	1.75	2.85	5.19		6.59	9.30	9.62	9.62	
Σ	50-Year	Mean	1910-60	In inches I		.01	.02	.10	.55		1.45	3,18	5,18	7.04		8,80	9.70	10,04	10.11	
	Season	_	Percent	Mean		200	100	17	06		43	72	73	06		91	104	104	104	
ERCED	1962-63 Season			In inches of		.02	.02	.02	55.		.75	2.73	4,53	7.48		9,41	11.79	12.25	12.31	
M	50-Year	Mean	1910-60	inches		.01	-02	. 12	.61		1.76	3,79	6.24	8,35		10.34	11.37	11.81	11.89	
_	Season		Percent	of Mean In		0	c	C	87	_	73	82	89	84		92	111	011	109	
MODESTO	1962-63 \$		D	n inches		00	0	E-	65.		1.23	3 23	4.22	06.9		9.29	12.26	12 5.B	12 59	1 1 2 4
Σ	50-Year	Mean	1910-60	In inches In inches of		.01	0.3		64.		4			8.17		11 01	11.02	11 46	11 56	Trend
		Month		-		THE	E	TOOOD TOO	OCTOBER		DEGMENE	000000000000000000000000000000000000000	TANTIADA	FEBRUARY		n O C W	A DOTT	Trust of the same	TIME	CONE

The San Joaquin Valley area normally receives 80 percent of the total seasonal precipitation by April 1. Also, by this date, maximum snowpack has been attained in the Sierras. On April 1, 1963, the valley floor had received rainfall in accumulated totals ranging from 92 percent of normal at Modesto on the north to 62 percent at Bakersfield on the south. Snowpack accumulation in the adjacent Sierras was only 35 percent of normal; however, the precipitation patterns of April, May, and June were far above normal: A new April high of 2.88 inches was established at Hanford superseding a long-term record of 2.67 inches recorded in 1926, and covering most of the Sierra watershed with excessive amounts. This resulted in normal to above normal precipitation, varying from 100 percent for the Tule River watershed to 130 percent for the Kings River watershed.

The distribution of rainfall on the entire area may be seen on Plate A-2, "Lines of Equal Precipitation, July 1, 1962, to June 30, 1963."

Temperatures, Evaporation, and Wind Movement

The distribution of temperatures, evaporation, and wind movement is presented in Table 3, "Average Temperatures, Total Evaporation and Average Wind Movement at Selected Stations in the San Joaquin Valley."

TABLE 3

AVERAGE TEMPERATURES, TOTAL EVAPORATION, AND AVERAGE WIND MOVEMENT AT SELECTED STATIONS IN THE SAN JOAQUIN VALLEY

Alpha		S	easona		Seasonal	Wind
Order	Station Name		Temp.	F°	Evaporation	Movement
Number		Max.	Min.	Mean	Total Inches	Av.Mi./Mo
CO 0332-02	Arvin-Frick	73.6	42.9	58.8	65.5	1943
CO 2013	Corcoran El Rico 1	76.2	45.6	60.9	77.3	1650
C6 2222	Cummings Valley	69.9	35.6	52.8	79.1	2312
B4 2473	Don Pedro Res.	75.1	47.4	61.3	79.6	М
C5 4304	Isabella Res.	74.9	46.2	60.6	79.7	2035
BO 5117	Los Banos	74.4	45.8	60.1	86.1	2524
Cl 6895	Pine Flat Dam	76.9	47.4	62.2	65.8	826
B6 7273	Raymond 9N	75.3	44.1	59.7	67.1	493
C3 8620	Success Dam	76.6	50.6	63.6	84.7	1489
C7 8755	Taft KTKR	75.2	48.9	62.1	93.1	970
C2 8868	Terminus Dam	75.4	52.0	63.7	М	1679*
CO 9145	U.S. Cotton Field Sta.	76.5	49.2	62.8	81.4	1560
30 9565	Westley	М	М	M	53.2	М

^{*} Last 10 months of record not complete

M = Missing

CHAPTER III

SURFACE WATER FLOW

Introduction

The variable flows of the streams entering the San Joaquin Valley on the east side result from the rainfall runoff occurring each winter and spring season, principally from December through April. The snowmelt runoff occurs during the spring and summer months from March through June. A combination of runoff from perennial tributaries and released stored water occurs during the summer and fall seasons. Flood flows in the valley floor channels are caused by runoff from rainfall and melting snow in the mountain areas in excess of mountain reservoir capacities, and by rainstorm runoff from the vast area of minor foothall watersheds and valley floor lands. In more recent years, flooding has become a lesser threat in the San Joaquin Valley as a result of additional reservoirs constructed on many of the tributary watersheds, including the Kern, Tule, Kaweah, Kings, San Joaquin, Merced, Tuolumne, and Stanislaus Rivers. With the completion of the Lower San Joaquin River Flood Control Project and eventual construction of additional dams and reservoirs, such as Buchanan on the Chowchilla River, Hidden on the Fresno River, and New Melones on the Stanislaus River, flooding will cease to be a problem in the San Joaquin Valley except in years of excessive precipitation.

Scope

The area covered by this report and its geographical relation to the Central Valley Drainage Basin is shown on Plate B-1.

Records of daily flows at 80 stream-gaging stations located on streams on the San Joaquin

Valley floor and on streams entering the valley are presented in Appendix B of this report. Measurements of

flows at 175 points of diversion from major streams on the valley floor, diversions and acreage irrigated by

east side irrigation districts, and deliveries from canals of the Central Valley Project are also included

in Appendix B.

Hydrography

The Department of Water Resources' hydrographic activities in the San Joaquin Valley area are divided into two major categories - field and office.

The field activities include:

- 1. Operation and maintenance of 46 stream-gaging stations.
- Measurement of streamflows passing the gaging stations at stages varied enough to establish a stage-discharge relationship.
- Measurement of the quantities of water diverted by major diverters from the San Joaquin, Merced,
 Tuolumne, Stanislaus, and Tule Rivers, and from Dry Creek near Modesto.
- Construction of new installations as needed to augment the base network of gaging stations
 operated by the U. S. Geological Survey.
- Cooperation with public and private agencies and with other branches within the department in the gathering of hydrographic data.

The office activities include:

- 1. Preparation of hydrographic data for computation by machine computation methods.
- Manual computation and compilation of the discharge of stations not adaptable to machine computation.
- Computation and compilation of quantities of water diverted for use in quantities per month for pumped diversions and quantities per day for gravity diversions.
- 4. Preparation of rating curves based on a series of discharge measurements on each stream.
- Computation of rating formulas for the curves written in machine language for machine computation purposes.

Hydrographic Activities of Other Agencies

The U. S. Geological Survey maintains and operates 159 streamflow stations in addition to the stations operated by the department in the San Joaquin Valley area. A number of these are operated under the Federal-State Cooperative Surface Water Measurement Program. The records are published annually in a report by the U. S. Department of the Interior, Geological Survey, entitled "Surface Water Records of California, Volume 2, Northern Great Basin and Central Valley."

The United States Bureau of Reclamation maintains and operates seven streamflow gaging stations which monitor natural inflow to the southern San Joaquin Valley. These stations are in addition to the Bureau's operation stations on project canals. Data from both types of stations appear in an annual report published by the Bureau of Reclamation entitled "Fresno Field Division Water Supply."

The U. S. Corps of Engineers, the City and County of San Francisco, and other local agencies maintain and operate stream-gaging stations within the San Joaquin Valley area. These data are published in this report. The specific degree of cooperation by these agencies with the Department of Water Resources is detailed in footnotes to tables contained in this report.

Runoff and Water Supply

The streams entering the valley on the east side produce the major runoff to the valley. Rainfall runoff occurs principally during the period December to April, while snowmelt is the source during the spring and summer seasons from March through June. During the summer and fall seasons, runoff is a combination of flows from perennial tributaries and releases from reservoir storage.

Runoff Comparisons

Runoff conditions from year to year for a particular stream are compared to the mean runoff for that stream over a long period of time. The mean runoff is a base or normal used to compare runoff with any other year. Flow conditions on all major streams entering the valley are affected by man-made impairments such as reservoirs and diversions; therefore, the runoff comparisons are made with computed natural runoff which allows for effects of impairments. These computed natural or unimpaired runoffs are considered to be the flows that would occur if no impairments were above the points of measurement. Runoff normals are computed for the 50-year period October 1907 through September 1957.

The annual unimpaired runoff in percent of average for the 50-year normal for the period 1923 through 1963 on the major streams tributary to the San Joaquin Valley is shown in Table 4. The monthly unimpaired runoff for 1963 in percent of average based on the same 50-year period is shown for the same streams in Table 5.

The water supply available during the 1963 season was above normal on all major tributaries with the exception of the Tule River which was 89 percent of normal.

TABLE 4

ANNUAL UNIMPAIRED RUNOFF (In percent of average)(a)

(In bereeff of average).											
Water Year	Stanislaus River below Melones P. H.	Tuolumne River near La Grange	Merced River at Exchequer	San Joaquin River below Friant	San Joaquin River near Vernalis (b)	Kings River Inflow to Pine Flat	Kaweah River near Three Rivers	Tule River Inflow to Success	Kern River Inflow to Isabella		
Average Annual Runoff (a)	1111	1803	943	1703	5560	1607	394	133	624		
1922-23	101	99	100	97	99	97	92				
1923-24	23	30	27	26	27	24	26				
1924-25	111	107	97	85	99	80	82				
1925-26	54	62	64	68	63	65	56				
1926-27	123	114	115	118	117	123	123				
1927-28	86	84	78	68	79	60	52				
1928-29	46	55	52	52	52	53	57				
1929-30	66	64	54	52	59	54	55	-	53		
1930-31	28	33	28	29	30	29	29	19	29		
1931-32	122	117	118	121	119	130	132	104	112		
1932-33	54	62	55	65	60	73	72	60	68		
1933-34	39	45	38	41	41	41	33	15	37		
1934-35	110	117	125	114	116	101	91	67	73		
1935-36	119	120	123	110	117	117	124	129	120		
1936-37	100	111	129	129	117	146	172	230	178		
1937-38	184	190	220	216	202	204	221	267	206		
1938-39	47	55	51	55	53	61	63	62	72		
1939-40	126	123	116	112	119	111	130	159	111		
1940-41	120	139	154	155	143	158	163	177	200		
1941-42	134	132	136	133	133	125	125	102	120		
1942-43	141	132	1.37	120	130	126	170	274	161		
1943-44	61	73	73	70	69	73	80	77	93		
1944-45	115	116	116	125	119	128	140	153	129		
1945-46	106	105	100	102	104	100	90	71	104		
1946-47	57	61	60	66	61	69	67	39	68		
1947-48	80	78	73	71	76	62	66	48	53		
1948-49	67	70	67	68	68	60	56	37	47		
1949-50	97	86	76	77	84	80	76	47	70		
1950-51	152	138	129	109	130	100	107	116	85		
1951-52	172	170	166	179	173	178	209	241	223		
1952-53	87	85	65	69	78	72	78	74	87		
1953-54	80	80	71	75	77	81	78	67	81		
1954-55	62	63	56	68	63	69	70	49	57		
1955-56	169	183	179	179	177	158	184	157	140		
1956-57	78	79	69	81	78	78	75	49	70		
1957-58	151	147	150	155	150	153	162	168	169		
1958-59	53	55	48	56	54	50	39	24	43		
1959-60	54	59	51	49	53	44	46	36	45		
1960-61	35	40	33	38	37	35	30	14	28		
1961-62	89	98	98	113	101	115	103	66	106		
1962-63	113	114	104	114	112	116	128	89	117		
	L	L									

⁽a) Average unimpaired runoff in thousands of acre-feet computed from the 50-year period October 1907 through September 1957.

⁽b) Figures were computed from summations of unimpaired runoff at foothill stations on major tributaries only and do not include runoff from minor tributaries and from valley floor.

TABLE 5

MONTHLY UNIMPAIRED RUNOFF

(In percent of average)(a)

Month		Stanislaus River below Melones P. H.	Tuolumne River near La Grange	Merced River at Exchequer	San Joaquin River below Friant	San Joaquin River near Vernalis (b)	Kings River Inflow to Pine Flat	Kaweah River near Three Rivers	Tule River Inflow to Success	Kern River Inflow to Isabella
October	Percent (c)	135	112	89	88	105	87	87	112	93
	Average	8	15	7	20	50	19	4	1	14
November	Percent	36	24	21	38	31	43	34	24	63
Movember	Average	23	39	18	28	108	26	8	4	18
December	Percent	35	31	16	19	26	18	15	14	42
	Average	47	78	40	58	223	48	17	9	26
Tabularu	Dawgant	63	62	68	113	76	120	152	76	98
January	Percent Average	68	108	60	74	310	63	22	13	27
	nverage	33	100			310	03		13	
February	Percent	245	249	222	226	237	241	316	146	303
	Average	84	135	79	92	390	80	28	20	33
				,						
March	Percent	88	64	61	74	71	70	71	36	85
	Average	122	180	99	136	537	115	40	27	49
April	Percent	100	92	88	79	89	79	96	109	76
	Average	206	286	149	244	885	219	63	24	88
May	Percent	130	120	109	108	116	106	122	114	90
	Average	294	447	245	430	1416	431	102	22	148
June	Percent	103	124	115	126	120	129	132	98	128
1	Average	189	372	182	392	1135	389	77	10	126
July	Percent	118	153	141	163	152	166	176	177	175
	Average	53	115	50	163	381	155	24	2	58
August	Percent	116	171	126	154	148	150	164	297	171
August	Average	12	19	10	46	87	44	6	1	24
						,				
September	Percent	200	127	48	159	145	136	186	300	187
	Average	5	9	4	20	38	19	3	0.3	14
1962-63 Water Year	Percent	112	114	104	114	112	116	120	80	117
water rear	Average	113	114	104 943	114	112 5560	116	128	133	117 624
	nver aye	1111	1603	943	1/03	2260	100/	394	133	024

⁽a) Average unimpaired runoff in thousands of acre-feet computed from the 50-year period October 1907 through September 1957

⁽b) Figures were computed from summations of unimpaired runoff at foothill stations on major tributaries only and do not include runoff from minor tributaries and from the valley floor.

⁽c) Percent figures are preliminary figures supplied by Water Supply and Snow Surveys, Division of Operations.

<u>Lakes and Reservoirs</u>

There are 59 principal reservoirs in the State, of which 25 are located in the San Joaquin Valley area. These 25 have a total storage capacity of 4,727,520 acre-feet. The storage capacity, water in storage on October 1, 1962, and storage on October 1, 1963, in the major reservoirs in the San Joaquin Valley area are shown in Table 6. The quantity of water in storage in these 25 reservoirs at the end of the 1962-63 season was about 49 percent of the total storage Capacity as compared to 36 percent at the end of the 1961-62 season.

TABLE 6 SUMMARY OF PRINCIPAL RESERVOIR STORAGE IN THE SAN JOAOUTN VALLEY

(In acre-feet)

Watershed	Reservoir	Total Capacity	In Storage Oct. 1, 1962	In Storage Oct. 1, 196
Stanislaus				
	Relief	15,560	5,788	4,400
	Strawberry	18,270	10,429	10,480
	Melones	112,600	11,360	11,060
	Donnels	64,500	48,276	49,576
	Beardsley	97,500	88,141	83,296
	Tulloch	68,400	16,648	33,948
<u> Tuolumne</u>				
	Lake Eleanor	26,100	17,976	18,520
	Lake Lloyd	268,000	183,058	182,450
	Hetch Hetchy	360,400	277,410	289,461
	Don Pedro	290,000	88,000	174,920
	Turlock Lake	49,000	7,950	11,440
Merced		200 000		62 860
	Lake McClure	289,000	37,674	63,750
San Joaquin	0	45 400	25 240	24,800
	Crane Valley	45,400	25,240	
	Lake Thomas A. Edison Florence Lake	125,000 64,600	106,570 16,690	101,360
				31,020 17,490
	Mammoth Pool	122,700	51,360 86,660	87,900
	Huntington Lake	89,800 35,000	18,780	8,600
	Redinger Lake			
	Shaver Lake Millerton Lake	135,400	79,640	103,830
	Millerton Lake	520,500	146,000	205,000
Kings	Wishon	128,300	45,200	90,060
	Pine Flat	1,001,500	247,400	467,200
	rine riat	1,001,500	247,400	407,200
Kaweah	Terminus	150,000	2,880	8,460
	Terminas	130,000	2,000	0,400
<u> Tule</u>	Success	80,000	7,100	12,350
Kern			05.100	21= 222
	Isabella	570,000	95,100	217,030
TOTAL		4,727,530	1,721,330	2,308,401

Streamflow Measurements

The records of many of the stream-gaging stations reported in Appendix B are maintained and operated by agencies cooperating with the Department of Water Resources. The methods used by all cooperating parties are standardized and the results obtained are equally good.

During the 1963 season 46 of the total of 80 gaging stations on streams for which records are reported herein were maintained, operated, rated, computed, and compiled by the Department of Water Resources.

Recorders

An automatic water stage recorder is in operation at each gaging station in the San Joaquin Valley area. The continuous record of water surface elevation at each station serves two major purposes in the preparation of the data in this report, and assists in the planning of flood control projects. First, the water surface elevation (gage height) is a factor in determining the quantity of flow of the stream in

second-feet passing a given station. Second, the actual surface elevation at two adjacent stations on a stream afford the means of obtaining the water surface elevation at pumping plants along the stream between the stations. This information assists in the determination of the pumping head in order that the rate of diversion by the pumping plants can be obtained.

Ratings

A streamflow rating is made for each stream-gaging station. This rating gives the flow in second-feet for each gage height at the station. Normally, the gage-height-flow relation or rating is more or less permanent where there is a fixed channel and a fixed flow regimen at the station. The rating varies, however, where the bed of the channel consists of loose, shifting sand, where heavy weed growth accumulates as the season progresses, or where there may be backwater effects due to ice or other downstream conditions. In these latter cases more frequent measurements of flow are made to obtain accurate records of flows passing the station.

Use of Water for Irrigation

The prevailing warm temperatures and a prolonged frost-free period during the summer season in the San Joaquin Valley favors the profitable production of a wide variety of marketable crops.

The major irrigated crops in the San Joaquin Valley include rice, alfalfa, orchard fruits, nuts, grapes, cotton, corn, grain, flax, pasture grasses, and a large variety of truck crops.

Criteria

The number of diversion points measured on the major streams in the San Joaquin Valley may vary from year to year. The criteria for selecting points to be measured were established in 1960. At that time it was determined that by measuring only those diversion points which had an average of two hundred acre-feet per season based on the previous three years of diversion record, 50 percent of the field work could be eliminated and still 95 percent of the total water diverted could be measured.

Changes in crop pattern and the available water supply are major factors that influence the amounts of water diverted for irrigation purposes.

Irrigation Diversions

Measurements and records of diversions in 1963 included all the major points of diversion on the valley floor along the San Joaquin River and tributaries; along the Stanislaus, Tuolumne, and Merced Rivers, and Dry Creek tributary to Tuolumne River; and along the Tule River.

This report contains records for a total of 170 points of diversion. Table 7 shows, by streams, the number of points of diversion and the acre-feet diverted.

TABLE 7

SUMMARY OF DIVERSION POINTS AND TOTAL ACRE-FEET DIVERTED

Oct. 1, 1962-Sept. 30, 1963

Stream	Number Of Points Measured	Total Acre-feet Diverted
San Joaquin River Vernalis to Fremont Ford Bridge Fremont Ford Bridge to Gravelly Ford (a) Gravelly Ford to Friant Dam	39 16 24	168,800 865,800 9,583
Tuolumne River	22	14,630
Stanislaus River	23	43,170
Merced River	34	56,750
Dry Creek (Tributary to the Tuolumne River)	3	1,368
Tule River TOTAL	7	52,470 1,212,571

(a) Records furnished by U. S. Bureau of Reclamation.

Waters diverted by Central Valley Project canals and east side irrigation districts are shown on Table B-95.

The monthly amount of water diverted at the individual points of diversion along all the streams covered in the San Joaquin Valley area is shown along with the total acre-feet diverted for the season in Appendix B, Tables B-86 through B-93 of this report. The monthly use in percentage of seasonal total is also shown. The location of each diversion point on a given stream is measured from the mouth of that stream, progressing upward by river-mile. References to left or right bank assume an orientation facing downstream.

All of the diversions are accomplished by pumping except for 18 by gravity. The records of diversion by gravity are obtained by means of canal ratings established by flow measurements. The records of pumping diversions are obtained in a few instances by means of canal rating but, in the main, are obtained by actual measurement of the pump discharge. Most of the pumps are electrically operated, making it possible to establish a relationship between water pumped and power input. Sufficient measurements are made to establish a rate of discharge for each pump, and the electric meters are read monthly to determine the power used.

The monthly amount of diversions in acre-feet by the large east side irrigation districts from the Stanislaus, Tuolumne, and Merced Rivers during the 1963 season is shown in Appendix B, Table B-94. The monthly amount of diversions in acre-feet by the Friant-Kern and Madera Canals from Friant Reservoir on the San Joaquin River is shown in Appendix B, Table B-95.

Fresno Slough and James Bypass normally convey excess flood flows from the Kings River into the San Joaquin River at a point above Mendota Dam, but during the irrigation season, San Joaquin River water is backed up through those channels by the Mendota Dam to afford irrigation supplies to the James and Tranquillity Irrigation Districts and to certain other diverters. The diversion data for these streams shown in Table B-87 were furnished by the U. S. Bureau of Reclamation.

Imported Water

Water is imported to the San Joaquin Valley from the Sacramento-San Joaquin Delta via the Delta-Mendota Canal. The amount of water diverted and its distribution for use are shown in Table B-95.

CHAPTER IV

GROUND WATER MEASUREMENTS

Introduction

The ground water resources of California have long been recognized as one of the major natural resources of the State. The ever-increasing rate of draft on the ground water basins makes the problems associated with the use and conservation of this resource numerous and complex, and the solution more urgent.

More than one-quarter of all the ground water pumped for irrigation in the United States is used in the San Joaquin Valley. Widespread pumping began about 1900 and, especially since 1940, has increased at an accelerated rate. In response to this heavy withdrawal, ground water levels in extensive areas of the valley have declined rapidly. The water level decline will continue as long as ground-water pumpage exceeds the natural and artificial recharge of the ground water basin.

Ground water occurs under confined and unconfined conditions in the San Joaquin Valley. In much of the western, central, and southeastern parts of the valley, three distinct ground water reservoirs are present. In downward succession there are (1) a body of unconfined and semiconfined fresh water in alluvial deposits of recent, Pleistocene, and possibly later Pliocene age overlying the Corcoran Clay Member of the Tulare Formation; (2) a body of fresh water confined beneath the Corcoran Clay Member which occurs in alluvial and lacustrine deposits of late Pliocene age or older; and (3) a body of saline connate water contained in marine sediments of middle Pliocene or older age which underlies the freshwater body throughout the area. (U. S. Geological Survey Water-Supply Paper 1618 Abstract.)

In much of the eastern part of the valley, especially in the area of the major streams, the Corcoran clay member is not present and ground water occurs as one fresh-water body to considerable depth. Ground water is replenished by infiltration of rainfall, by infiltration from streams, canals, and ditches, by underflow entering the valley from tributary streams and from canyons, and by infiltration of excess irrigation waters.

The ground-water storage capacity of the San Joaquin Valley to a depth of 200 feet has been estimated to be approximately 93 million acre-feet, equal to roughly 9 times the capacity of the present and proposed surface-water reservoirs in the valley.

All studies of ground-water problems and plans for solution of these problems have two factors in common: they must be founded upon records of water level measurements and quality analysis of water samples obtained over a period of years.

The Department of Water Resources began the collection of ground-water level data in 1930 in connection with special investigation of water resources of specific areas, and has gradually developed a continuous program of basic water level data collection. Through cooperative activities of the federal and local agencies, coordinated and augmented by the department, the program of annual, semiannual, and monthly measurements of ground-water levels has gradually expanded.

Scope

The area covered by this report and its geographical relation to the Central Valley Drainage Basin are shown on Plate B-1.

The areal scope of Appendix C of this volume is depicted on Plates C-1 through C-6. During the period July 1, 1962, to June 30, 1963, the San Joaquin Valley Branch of the Department of Water Resources obtained approximately 13,000 water level measurements on some 7,500 wells. The period of record for many of these wells ranges from one to over 40 years.

Basic Data

Because significant trends in water level fluctuations can be indicated by a representative sample, a selection was made of approximately 600 wells for which the records are presented in Appendix C of this volume. These wells, designated as selected wells, were chosen on the basis of a number of factors such as

areal distribution; length of water level record; frequency of measurements; conformity with respect to water level fluctuation in the ground water area; and availability of a log, mineral analysis, and/or production record. Table C-1 presents the water level measurements made from July 1, 1962, through June 30, 1963. This volume continues the records for those wells published in Bulletin 77-62 which fall within the boundary of the San Joaquin Valley area.

Processed Data

Hydrographs depicting average water level fluctuations in 19 selected ground water areas are presented on Plate C-7. Individual well hydrographs depicting graphically the fluctuation of water levels are shown on Plate C-8. These wells distributed among significant areas were selected insofar as possible to be representative of their respective areas.

A ground-water map showing lines of equal elevation of water in wells for spring of 1963 appears on Plate C-9. Where sufficient data are available, lines of equal elevation of water are shown for the unconfined or semiconfined aquifer, and the confined aquifer or pressure surface.

Maps showing the areas where the ground-water level changed five feet or more in the unconfined, semiconfined, and confined aquifers are presented in Plates C-1 and C-2.

Related Information

For some basins or areas, maps showing depth to ground water are also prepared. At appropriate times, commonly every five years, maps are prepared showing lines of equal change occurring in the water level in wells during the time intervals. These maps are available in the office of the San Joaquin Valley Branch of the Department of Water Resources, and will be presented in future reports.

Cooperative Programs

The Department of Water Resources has cooperative ground water programs with the U. S. Geological Survey, U. S. Bureau of Reclamation, Kern County, Kings County Water District, and the Poso Soil Conservation District.

Monthly Program

Approximately 350 selected wells are measured monthly and the resulting figures are published in a monthly summary report. These wells were selected as being representative of their respective areas. Most of the field work is done by cooperating agencies, while the department measures 36 of the 350 selected wells. The department compiles and publishes the collected field data in a monthly report. The water level measurements on the selected monthly wells are included in Appendix C of this volume.

Annual and Semiannual Programs

In Kern County approximately 1000 wells are measured semiannually under a cooperative agreement between the U. S. Bureau of Reclamation, the Kern County Surveyors office, and the Department of Water Resources, with approximately 500 additional water level measurements being made by the Kern County Land Company and made available to the department.

Maps of Kern County showing lines of equal depth to water and lines of equal elevation of water in wells are prepared for both spring and fall of each year.

In the Kings County Water District approximately 325 selected wells are measured semiannually by that agency and submitted to the department for use in preparation of ground water maps under a cooperative agreement. Ground water maps are prepared for both spring and fall showing lines of equal elevation of water in wells in the district.

In the Poso Soil Conservation District approximately 40 wells are measured by that agency and submitted to the department. Ground water maps are prepared for the district showing depth to water in wells in January and July.

Ground Water Conditions

Data are presented in this report for two zones or aquifers in nine of the 46 areas reported in Appendix C.

During the period July 1962 to June 1963, 28 areas in the San Joaquin Valley showed a rise in the unconfined and semiconfined aquifers. There was no change in one area, but in 13 other areas there was a decline. Six of the eleven areas for which the pressure surface is reported show a decline and five show a rise in the water level.

In the shallow zone the maximum declines occurred in the Vandalia Irrigation District and the Shafter-Wasco Irrigation District, where changes of 10.9 feet and 9.1 feet respectively are noted. The greatest rise in the shallow zone was 11.2 feet in the Lindsay-Strathmore Irrigation District. The maximum decline of 23.6 feet occurred in the Mendota-Huron area deep zone. The greatest rise in the deep zone was 23.5 feet in the Corcoran Irrigation District. In those areas for which water levels are based on a composite of shallow and deep zones, the main change was a decline of 6.8 feet in the Buena-Vista Water Storage District.

Table 8 presents a summary of ground water level data collected in the San Joaquin Valley by

TABLE 8

SUMMARY OF GROUND WATER LEVEL DATA
COLLECTED IN THE SAN JOAQUIN VALLEY
July 1, 1962 - June 30, 1963

			Number of Wells Meas		sured
Ground Water Basin or Area	Number	Measuring Agency	Monthly	Fall 1962	Spring 1963
San Joaquin Valley	5-22.00				
South San Joaquin Irrigation District	5-22.05	South San Joaquin Irrigation District San Joaquin County		88	89
Oakdale Irrigation District	5-22.06	Oakdale Irrigation District	6	136	136
Modesto Irrigation District	5-22.07	Modesto Irrigation District			173
Turlock Irrigation District	5-22.08	Turlock Irrigation District			200
Merced Irrigation District	5-22.09	Merced Irrigation District			226
El Nido Irrigation District	5-22.10	Merced Irrigation District			29
Delta-Mendota Area	5-22.11	U.S. Bureau of Reclamation Department of Water Resources San Luis Canal Company San Joaquin County Panoche Water District	112	538 259	531 240 6
Chowchilla Water District	5-22.12	Chowchilla Water District U.S. Bureau of Reclamation	8	137 18	137 24
Madera Irrigation District	5-22.13	Madera Irrigation District U.S. Bureau of Reclamation Chowchilla Water District	13	214 36 4	210 40 4
West Chowchilla-Madera Area	5-22.14	Chowchilla Water District U.S. Bureau of Reclamation Madera Irrigation District	7	9 76 2 5	9 76 25
Fresno Irrigation District	5-22.15	Fresno Irrigation District	9	119	111
		Consolidated Irrigation District U.S. Bureau of Reclamation Madera Irrigation District Department of Water Resources	9	5 87 1 41	3 87 1 43
City of Fresno	5-22.16	City of Fresno	2	62	66

TABLE 8 (Continued)

SUMMARY OF GROUND WATER LEVEL DATA COLLECTED IN THE SAN JOAQUIN VALLEY July 1, 1962 - June 30, 1963

			of Wel	umber ls Mea	sured
Ground Water Basin or Area	Number	Measuring Agency	Monthly	Fall 1962	Sprine 1963
San Joaquin Valley (continued)					
Fresno Slough Area	5-22.17	Fresno Irrigation District Consolidated Irrigation District	1	3	4
		U.S. Bureau of Reclamation Department of Water Resources U.S. Geological Survey	10	207 50	207 50
Consolidated Irrigation District	5-22.18	Consolidated Irrigation District	11	71	72
Alta Irrigation District	5-22.19	Alta Irrigation District U.S. Bureau of Reclamation Orange Cove Irrigation District	8	160 49 6	160 49 6
Lower Kings River Area	5-22.20	Kaweah Delta Water Conservation District Consolidated Irrigation District U.S. Bureau of Reclamation Department of Water Resources	: 7	6 6 17	6 7 17 155
Orange Cove Irrigation District	5-22.21	Orange Cove Irrigation District U.S. Bureau of Reclamation	4	113 31	114 30
Stone Corral Irrigation District	5-22.22	U.S. Bureau of Reclamation	2	31	31
Ivanhoe Irrigation District	5-22.23	Ivanhoe Irrigation District U.S. Bureau of Reclamation	2	42	42
Kaweah Delta Water Conservation District	5-22.24	Kaweah Delta Water Conservation District Tulare Irrigation District Lindmore Irrigation District U.S. Bureau of Reclamation Department of Water Resources	12	133 5 7 14 79	115 15 7 32 86
Tulare Irrigation District	5-22.25	U.S. Bureau of Reclamation Tulare Irrigation District	5	10 105	14 96
Exeter Irrigation District	5-22.26	Exeter Irrigation District U.S. Bureau of Reclamation	1 2	78 3	78 3
Lindsay-Strathmore Irrigation District	5-22,27	Lindsay-Strathmore Irrigation District Lindmore Irrigation District U.S. Bureau of Reclamation	2	21	21
Lindmore Irrigation District	5-22.28	Lindmore Irrigation District Porterville Irrigation District Exeter Irrigation District U.S. Bureau of Reclamation	4	170 4 2 17	170 4 2 18
Porterville Irrigation District	5-22.29	Porterville Irrigation District Lower Tule River Irrigation District U.S. Bureau of Reclamation	3	22 3 6	22 3 7
Lower Tule River Irrigation District	5-22.30	Lower Tule River Irrigation District Saucelito Irrigation District U.S. Bureau of Reclamation	5	175 5 13	174 2 17
Vandalia Irrigation District	5-22.31	Department of Water Resources U.S. Bureau of Reclamation	2		5
Saucelito Irrigation District	5-22.32	Saucelito Irrigation District U.S. Bureau of Reclamation	4	45	48
Pixley Irrigation District	5-22.33	Lower Tule River Irrigation District U.S. Geological Survey	3	1	2
		U.S. Bureau of Reclamation	7	81	81
Alpaugh-Allensworth Area	5-22.34	U.S. Bureau of Reclamation Delano-Earlimart Irrigation	6	35 63	30

TABLE 8 (Continued)

SUMMARY OF GROUND WATER LEVEL DATA COLLECTED IN THE SAN JOAQUIN VALLEY July 1, 1962 - June 30, 1963

			Number of Wells Meas		asured	
Ground Water Basin or Area	Number	Measuring Agency	Monthly	Fall 1962	Spring 1963	
San Joaquin Valley (continued)						
Delano-Earlimart Irrigation District	5-22.35	Delano-Earlimart Irrigation District U.S. Geological Survey U.S. Bureau of Reclamation	4 1	102 53	65 53	
Southern San Joaquin Municipal Utility District	5-22.36	Southern San Joaquin Municipal Utility District U.S. Geological Survey Delano-Earlimart Irrigation District	6	65 4	65 4	
		Kern County Land Company U.S. Bureau of Reclamation		8 7	8 8	
North Kern Water Storage District	5-22.37	Kern County Land Company Department of Water Resources U.S. Geological Survey	4	182 12	182	
Shafter-Wasco Irrigation District	5-22.38	Shafter-Wasco Irrigation Distric U.S. Bureau of Reclamation Kern County Land Company U.S. Geological Survey		74 6 30	74 6 30	
City of Bakersfield	5-22.39	California Water Service			32	
Kern River Delta Area	5-22.40	Shafter-Wasco Irrigation District Kern County Surveyor Buena Vista Water Storage Distri		6 125	6 104	
		U.S. Bureau of Reclamation Kern County Land Company		77 201	77 201	
Edison-Maricopa Area	5-22.41	Kern County Land Company U.S. Geological Survey Kern County Surveyor U.S. Bureau of Reclamation	12	32 36 195	32 33 206	
Buena Vista Water Storage District	5-22.42	Department of Water Resources Buena Vista Water Storage District Kern County Land Company U.S. Geological Survey Kern County Surveyor	28 6	6 23	94 6 18	
Semitropic Water Storage District	5-22.43	U.S. Bureau of Reclamation Kern County Surveyor U.S. Geological Survey Kern County Land Company Buena Vista Water Storage District	11	56 117 25	56 99 25	
Avenal-McKittrick Area	5-22.44	U.S. Geological Survey Department of Water Resources	2		189	
Tulare Lake-Lost Hills Area	5-22.45	Kern County Surveyor Department of Water Resources U.S. Geological Survey	4		12 190	
Corcoran Irrigation District	5-22.46	Kaweah Delta Water Conservation District Department of Water Resources	3	1	1	
Mendota-Huron Area	5-22.47	U.S. Geological Survey U.S. Bureau of Reclamation Department of Water Resources	14	44	48 650	
Poso Soil Conservation District	5-22.48	Poso Soil Conservation District San Luis Canal Company	25 11			
Terra Bella Irrigation District	5-22.50	U.S. Bureau of Reclamation	3	33	25	

Table 9 presents the average change in ground water levels, spring 1962 to spring 1963, and the wells showing the maximum and minimum depth to ground water in the spring of 1963, for each basin or area.

The average change in water level for each basin or area was determined where possible by planimetering ground water contour maps. In areas where insufficient data were available to define reliable contours, a numerical average was made from the actual well measurements.

TABLE 9

AVERAGE CHANGE IN GROUND WATER LEVELS IN BASINS AND AREAS IN THE SAN JOAQUIN VALLEY Spring 1962 - Spring 1963

Ground Water Basin or Ar	Ground Water Basin or Area		Average Change in Ground Water Level 1962 to 1963	Location and Recorded Maximum and Minimum Depth to Water in the Spring of 1963 (In feet)		
Name	Number	Analysis	(In feet)	Maximum	Minimum	
San Joaquin Valley	5-22.00					
South San Joaquin Irrigation District	5-22.05	1/	-0.3	02 S /08E-01M01 28.7	01S/07E-21R01 5.9	
Oakdale Irrigation District	5-22.06	1/	+3.2	02S/11E-28J01 143.8	02S/10E-10E01 6.6	
Modesto Irrigation District	5-22.07	1/	-0.5	03 S /10E-32G01 56.6	03S/07E-36C01 5.2	
Turlock Irrigation District	5-22.08	158	+2.0	06S/10E-26N01 14.9	05S/09E-07N01 2.8	
Merced Irrigation District	5-22.09	1/	+0.6	07S/13E-04D01 23.1	08S/13E-03N01 2.1	
El Nido Irrigation District	5-22.10	1/	+0.9	09S/13E-23H01 87.1	09S/14E-21C01 63.7	
Delta-Mendota Area	5-22.11	457	-1.2	12S/11E-36Q01 396.5	08S/10E-31C01 0.1	
Chowchilla Water District	5-22.12	1/	+3.9	09 S /16E-27A01 87.0	09 S /16E-33E01 38.5	
Madera Irrigation District	5-22.13	1/	+1.5	12S/18E-05C01 85.7	13S/17E-07J03 29.0	
West Chowchilla-Madera Area	5-22.14	1/	-1.5	10S/14E-08B01 77.2	10S/13E-35K01 5.2	
Fresno Irrigation District	5-22.15	1/	+0.9	12S/21E-19D01 94.9	14S/23E-04G01 12.6	
City of Fresno	5-22.16	1/	+0.3	14S/20E-02B01 85.6	14S/20E-15M01 61.4	
Fresno Slough Area	5-22.17	1/	-5.0	15S/16E-29P01 196.0	14S/16E-28N01 11.0	
Consolidated Irrigation District	5-22.18	1/	+0.5	16S/19E-14A01 74.7	17S/22E-01C01 19.8	
Alta Irrigation District	5-22.19	1/	+5.4	14S/23E-25N01 69.5	14S/23E-02E01 10.1	
Lower Kings River Area	5-22.20	1/	+1.6	20S/21E-04M01 172.1	19S/19E-25A01 4.5	
Orange Cove Irrigation District	5-22.21	1/	+6.5	15S/24E-26J01 75.2	14S/24E-27P01 2.0	
Stone Corral Irrigation District	5-22.22	1/	+9.4	17S/25E-12D01 49.2	16S/26E-32R01 0.8	
Ivanhoe Irrigation District	5-22.23	1/	+1.9	17S/25E-26C01 89.3	17S/26E-21D02 26.1	
Kaweah-Delta Water Conserva- tion District	5-22.24	1/	+3.2	20S/22E-10C01 121.2	18S/26E-14D01 5.5	
Tulare Irrigation District	5-22.25	1/	+5.4	20S/23E-18C01 120.9	19S/25E-17J01 59.2	

TABLE 9 (Continued)

AVERAGE CHANGE IN GROUND WATER LEVELS IN BASINS AND AREAS IN THE SAN JOAQUIN VALLEY Spring 1962 - Spring 1963

Ground Water Basin or Area		Number of Wells Considered in	Average Change in Ground Water Level 1962	Location and Recorded Maximum and Minimum Depth to Water in the Spring of 1963 (In feet)		
Name	Number	Analysis	to 1963 (In feet)	Maximum	Minimum	
an Joaquin Valley (continued)						
Exeter Irrigation District	5-22.26	<u>1</u> /	+9.9	19S/26E-13R01 106.0	18S/26E-24B0 20.9	
Lindsay-Strathmore Irrigation	5-22.27	1/	+11.2	19S/26E-36F01 93.9	20S/27E-15R0 3.1	
Lindmore Irrigation District	5-22.28	1/	+8.6	20S/26E-28R02 126.0	21S/27E-03K0 39.0	
Porterville Irrigation District	5-22.29	1/	+5.4	21S/27E-29H01 87.4	21S/27E-34J0 16.2	
Lower Tule River Irrigation District	5-22.30	1/	+2.4	22S/24E-14R01 160.0	21S/26E-09N0 27.0	
Vandalia Irrigation District	5-22.31	8	-10.9	22S/27E-13C01 158.9	22S/28E-18A0 120.2	
Saucelito Irrigation District	5-22.32					
Unconfined Aquifer		1/	+8.3	22S/26E-13R01 146.7	22S/26E-09B0 116.0	
Pressure Surface		1/	+10.6	22S/26E-32E01 201.5	22S/26E-05P 126.1	
Pixley Irrigation District	5-22.33					
Unconfined Aquifer		1/	-2.8	22S/25E-19A04 136.7	23 S /24E-16J 57.9	
Pressure Surface		1/	-6.7	22S/25E-36H01 211.2	23S/24E-29H 105.1	
Alpaugh-Allensworth Area	5-22.34					
Unconfined Aquifer		1/	-4.5	24S/25E-17P01 130.0	24S/23E-21B 47.2	
Pressure Surface		1/	+3.0	24S/24E-20R01 193.0	24S/23E-22A 117.0	
Delano-Earlimart Irrigation District	5-22.35					
Unconfined Aquifer		1/	-2.5	24S/26E-29R02 161.0	24S/25E-25P 65.0	
Pressure Surface		1/	+3.9	24S/26E-25H01 349.0	24S/25E-22F 125.0	
Southern San Joaquin Municipa Utility District	1 5-22.36					
Unconfined Aquifer		1/	+8.3	25S/26E-28H02 204.4	25S/24E-12E 64.0	
Pressure Surface		1/	+5.1	25S/26E-23Q01 350.0	25S/26E-18M 134.8	
North Kern Water Storage District	5-22.3	7				
Unconfined Aquifer		<u>1</u> /	+0.7	28S/26E-16L01 214.0	26S/25E-28 78.0	
Pressure Surface		1/	-15.2	27S/26E-20D01 302.0	26S/25E-09 157.8	
Shafter-Wasco Irrigation District	5-22.3			000 100- 00-	200/200 21	
Unconfined Aquifer		1/	-9.1	27S/25E-06N02 190.5	28S/26E-31 131.5	
Pressure Surface		1/	-14.8	27S/25E-20A01 210.5	26S/24E-33 171.5	

TABLE 9 (Continued)

AVERAGE CHANGE IN GROUND WATER LEVELS IN BASINS AND AREAS IN THE SAN JOAQUIN VALLEY Spring 1962 - Spring 1963

Ground Water Basin of Area		Number of Wells Considered in Analysis	Average Change in Ground Water Level 1962 to 1963	Location and Recorded Maximum and Minimum Depth to Water in the Spring of 1963 (In feet)		
Name	Number	Analysis	(In feet)	Maximum	Minimum	
San Joaquin Valley (continued)						
City of Bakersfield	5-22.39	27	-11.2	295/28E-17R01 300.0	29S/28E-19D01 95.0	
Kern River Delta Area	5-22.40	1/	-3.7	28S/24E-23D03 171.2	31S/28E-29B01 12.0	
Edison-Maricopa Area	5-22.41					
Pressure Surface		1/	-11.4	11N/20W-14B01 571.0	32S/25E-20G01 101.5	
Buena Vista Water Storage District	5-22.42	1/	-6.8	27S/22E-08R01 112.5	30S/23E-01C01 28.7	
Semitropic Water Storage District	5-22.43			•		
Unconfined Aquifer		1/	+0.6	25S/24E-08H01 147.0	28S/23E-03R01 29.0	
Pressure Surface		1/	-1.0	27S/23E-08G01 217.5	25S/23E-07A01 103.0	
Avenal-McKittrick Area	5-22.44	46	+0.9	26S/18E-16E01 244.2	24S/20E-14C01 15.9	
Tulare Lake-Lost Hills Area	5-22.45	21	+1.3	21S/20E-09M01 246.1	24S/20E-14C01 15.9	
Corcoran Irrigation District	5-22.46					
Unconfined Aquifer		1/	+8.9	21S/22E-02H01 95.4	21S/22E-08M01 13.0	
Pressure Surface		1/	+23.5	21S/21E-13A01 187.9	20S/22E-20A01 96.6	
Mendota-Huron Area	5-22.47					
Pressure Surface		1/	-23.6 <u>2</u> /	17S/15E-30M01 805.4	15S/16E-23P01 105.9	
Poso Soil Conservation Distri	ct 5-22.48	1/	-1.2	12S/14E-08P01 13.0	11S/12E-22N01 1.8	
San Luis Canal Company	5-22.49	1/	+0.6	10S/12E-08A01 15.2	10S/11E-16R01 1.0	
Terra Bella Irrigation Distri	lct 5-22.50	5	0.0	23S/27E-10H01 229.5	23S/27E-01A01 75.6	

 $[\]underline{1}$ / Averages were determined by planimetering ground water contour maps.

 $[\]underline{\rm 2/}$ Change determined from water level measurements made March 1962 and December 1962.

Table 10 presents the change in average ground water levels from 1921 to 1951 and 1951 to 1963 in nineteen historic ground water areas in the San Joaquin Valley.

TABLE 10 CHANGE IN AVERAGE GROUND WATER LEVEL FROM 1921 to 1951 and 1951 to 1963 IN NINETEEN GROUND WATER AREAS IN THE SAN JOAQUIN VALLEY

Name of Ground Water Area	Area in Square Miles		Net Change in Water Level 1921-511/ (In feet)	Net Change in Water Level 1951-63 ² / (In feet)
Madera	342.6	Madera Irrigation District, Chowchilla Water District	-24.1 <u>3</u> /	-14.5
Fresno	404.0	Fresno Irrigation District	-22.4	-16.9
Consolidated	243.0	Consolidated Irrigation District	-19.0	-10.5
Fresno, Consolidated and Outside	700.1	Fresno Irrigation District, Consolidated Irrigation District	-23.2	-15.1
Outside Only	53.1		-25.6	-28.6
Centerville Bottoms	18.1		+ 1.0	+ 3.0
Alta	190.9	Alta Irrigation District	-17.2 <u>3</u> /	- 5.1
Ivanhoe	17.4	Ivanhoe Irrigation District	- 55.9	+10.3
Outside Ivanhoe	76.6	Part of Alta Irrigation District, Stone Corral Irrigation District	-28.5	- 3.0
Mill Creek	128.2		-31.1	-16.4
Tulare	121.1	Tulare Irrigation District	-59.1	- 7.3
Elk Bayou	67.6		-47.8	-15.1
Lindsay-Exeter	136.4	Exeter Irrigation District, Lindsay- Strathmore Irrigation District, Lindmore Irrigation District	-77.7	+48.3
Tule River	156.6	Porterville Irrigation District, most of Lower Tule River Irrigation District, part of Saucelito Irrigation District	-62.5	+15.0
Lower Deer Creek	162.2	Part of Lower Tule River Irrigation District, most of Saucelito Irrigation District, part of Delano-Earlimart Irrigation District	-106.7	- 9.9 <u>4/</u> -10.8 <u>5/</u>
Middle Deer Creek	54.6	Terra Bella Irrigation District	-61.8	-13.2 <u>4/</u> -37.5 <u>5/</u>
Delano-Earlimart	140.0	Most of Delano-Earlimart Irrigation District, small part of South San Joaquin Municipal Utility District	-133.8	+ 1.4 <u>4/</u> - 7.8 <u>5/</u>
McFarland-Shafter	306.0	Southern San Joaquin Municipal Utility District, North Kern Water Storage District, Shafter-Wasco Irrigation District	-99.0	- 4.0 4/ -21.4 5/
Rosedale	78.9		-36.3	-60.4
Arvin-Edison	205.2	Arvin-Edison Water Storage District	-69.9 6/	-19.0 5/

^{1/ 1951} was the first year of substantial deliveries from the Friant-Kern Canal.
2/ Fall of 1951 to spring of 1963.
3/ Fall of 1929 to fall of 1951.
4/ Spring 1961 to spring 1963, unconfined aquifer.
5/ Spring 1961 to spring 1963, confined aquifer;
only one aquifer reported prior to 1961.
6/ Fall 1941 to fall 1951.

E4 te Tass Mate o ⊃ 6 b91

CHAPTER V

SURFACE WATER QUALITY

Introduction

The Department of Water Resources maintains a program of surveillance of the quality of water to detect any degradation of the surface waters of California due to contributions of wastes by agricultural, industrial, and municipal water users and to notify the proper control agencies of any such occurrences. The Surface Water Quality Monitoring Program was initiated to meet this surveillance need in April 1951 with the following objectives: (1) to determine the quality of the State's surface waters through a network of strategically located sampling stations representative of the major surface streams and lakes; (2) to detect changes in the quality of surface waters and notify control agencies of adverse changes; (3) to determine trends in surface water quality; and (4) to compile data into readily available form for distribution to cooperators and interested agencies.

Scope

The areal extent of activities discussed in this chapter and in Appendix D is shown on Plate D-1.

Data on the quality of surface waters are presented in graphs and tables in Appendix D for the 1963 water year (October 1, 1962, to September 30, 1963). These data represent the observed physical, chemical, bacteriological, and radiological characteristics of water collected at the surface water quality stations shown also on Plate D-1. The stations are listed alphabetically in Table D-1 and are listed in Table 11 by river units within the valley's two drainage basins, the San Joaquin River Basin and the Tulare Lake Basin.

Sampling Program

The Department of Water Resources has 29 surface water quality monitoring stations in the San Joaquin Valley area. Of these, 19 are sampled monthly, eight quarterly, and the remaining two semiannually. The variation in the sampling frequency is dependent upon past records, need, and the type of data required.

The U. S. Army Corps of Engineers and the City and County of San Francisco (Oakdale office) cooperate by the collection of samples obtained at nine and five stations, respectively.

Station Sampling

Sampling at each station consists of obtaining water samples for partial mineral and bacteriological analyses and field data including pH, temperature, gage height, and dissolved oxygen determination. The samples collected in May and September are subject to: (1) complete mineral analysis, (2) bacteriological analysis, (3) radiological analysis, and (4) determination of concentrations of phosphate, arsenic, and detergents (alkyl benzene sulfonate-ABS). A heavy metal sample is collected twice a year at ten selected stations for spectrographic analysis. The results of the spectrographic analyses for the ten stations are contained in Table D-32.

Conductivity Recorders

Conductivity recorders are installed at selected surface water stations to obtain continuous records of the specific electrical conductance of the waters. The recorder charts are removed, edited, and processed at the end of each month. The data are converted and tabulated into mean hourly and weekly electrical conductivity values. A plot of the mean weekly values versus time for each of these stations is shown on Plate D-2.

Information from these recorders is used to approximate concentrations of several water quality parameters, including concentrations of total dissolved solids (TDS), chlorides, sulfates, and total hardness. These approximations are possible because of the relationship between specific conductance and each of the above parameters.

TABLE 11

SURFACE WATER QUALITY MONITORING STATIONS BY DRAINAGE BASINS

SAN JOAQUIN RIVER BASIN	Station number
San Joaquin River Unit	Hamber .
San Joaquin River near Vernalis San Joaquin River at Maze Road Bridge San Joaquin River near Grayson San Joaquin River at Patterson Bridge San Joaquin River at Crows Landing Bridge San Joaquin River at Hills Ferry Bridge San Joaquin River at Fremont Ford Bridge San Joaquin River near Mendota San Joaquin River at Friant Dam Salt Slough at San Luis Ranch (near Los Banos)	27 26a 26 27a 26b 25b 25c 25 24 24c
Delta-Mendota Canal	
Delta-Mendota Canal near Tracy Delta-Mendota Canal near Mendota	93 92
Stanislaus River Unit	
Stanislaus River near Mouth Stanislaus River below Tulloch Dam	29 29a
Tuolumne River Unit	
Tuolumne River at Tuolumne City Tuolumne River at Hickman-Waterford Bridge Tuolumne River below Don Pedro Dam	31 30 31a
Merced River Unit	
Merced River near Stevinson Merced River below Exchequer Dam	32 32a
Chowchilla River Unit	
Chowchilla River near Raymond	113
Fresno River Unit	
Fresno River near Daulton	114
TULARE LAKE BASIN	
Kings River Unit	
Kings River below Peoples Weir Kings River below Pine Flat Dam Kings River below North Fork Big Creek above Pine Flat Dam	34 33b 33c 33d
Kaweah River Unit	
Kaweah River below Terminus Dam	35
Tule River Unit	
Tule River below Success Dam	91
Kern River Unit	
Kern River near Bakersfield Kern River below Isabella Dam Kern River near Kernville	36 36a 36b

CHAPTER VI

GROUND WATER QUALITY

Introduction

Water development to meet the needs of California's phenomenal growth is one of the major problems facing the State. Although the use of ground water has been, and is, one of the major factors contributing to the economy of the State, insufficient data are available regarding the mineral quality of such ground water supplies. The present widespread dependence upon ground water requires constant vigilance, coupled with remedial action where necessary, to assure that the quality of ground water remains suitable for all intended uses. In view of this need, a statewide program of observation and study of ground water quality was initiated by the Department of Water Resources in 1953.

Scope

The areal scope of the activities discussed in this chapter and in Appendix E of this volume is shown on Plate E-1. Approximately 415 wells were sampled throughout the San Joaquin Valley, Panoche Valley, Tehachapi Valley and Cummings Valley. Panoche Valley was added to the monitoring program in 1960 as part of the continuing study of ground water basins of California. Tehachapi and Cummings Valleys were added in 1963 subsequent to a report by the Department of Water Resources on "A Water Supply for the Tehachapi Institution for Men," August 1961, which established the need for ground water quality data in the area. The location of the monitored wells for 1963 are shown on Plate C-3. "Location of Selected Wells."

Ground Water Quality Conditions

Adequate monitoring of the quality of a ground water basin requires the establishment of norms from which deviations can be determined. Considerable information has been gathered during the early years of this program and through other programs where ground water quality data were collected to assist in establishing the norms. Individual wells for the monitoring program were selected by an evaluation of well drillers' logs, water analyses, and water level data to best represent the quality of the ground water in the surrounding area. The number of wells needed to satisfy this objective was mainly determined by the complexity of the ground water basin in a given area. The analyses of samples collected from selected wells in the San Joaquin Valley for the 1963 water year are contained in this report. Included are tables of complete and partial mineral analyses, heavy metal and radiological determinations. The type of analysis made on a sample from a well is based mainly on the history of the data on that well.

Data collected during the 1963 water year were used to determine the quality of the main body of ground water in the San Joaquin Valley area. Plates E-2 and E-3 show the areal distribution of ground water quality characteristics in the San Joaquin Valley area. Plate E-2, "Lines of Equal Electrical Conductivity in Ground Water," depicts the variation in the concentration of dissolved minerals in ground water, as measured by electrical conductivity. Plate E-3, "Mineral Types of Ground Water," shows the areal variation of the chemical character of ground water in the San Joaquin Valley. The chemical character classification is determined by the predominant cation and anion. Wells that deviate from the norm for the reporting period are listed on Table 12.

Samples of various wells throughout the valley, especially on the west side, indicate increasing electrical conductivity (EC). This could be caused by many factors: pollution by highly mineralized waste discharges, heavy pumping in the deep zones causing connate waters to be drawn up, and/or heavy pumping in the shallow zones causing a drawdown of percolating irrigation and drainage waters containing high salts. On the other hand, importation of good quality water often reduces the concentration of salts by dilution in shallow aquifers and by reduction of ground water withdrawal.

High concentrations of nitrates occur in various places throughout the valley, both naturally and as a result of pollution. Pollution abatement in this regard is important; however, the differentiation between natural nitrates and nitrates resulting from pollution is difficult. Lithium, a relatively rare constituent of ground water, usually appears in very small quantities. In concentrations greater than

WELLS INDICATING SIGNIFICANT DEVIATION IN QUALITY FROM SURROUNDING AREA

WELL NUMBER USE	DEVIATION	STATUS
	Merced Irrigation Distric	et
7S/15E - 30E1-M Irrigation	$EC^{1} = 676$ Area EC = 300-400	Investigation underway
	Delta Mendota Area	
9S/9E - 2Ll-M Irrigation & stock	EC increasing from 964 in 1961 to 2050 in 1963	Investigation underway
	Madera Irrigation Distric	et
13S/17E - 5P1-M Irrigation	Radioactivity ² = 61.6 ± 5.6	6 ³ Investigation underwa
	Fresno Irrigation Distric	et
13S/17E - 22B1-M Irrigation	$NO_3^4 = 25 \text{ ppm}^5$ Area $NO_3 = < 10.0 \text{ ppm}$	Current investigation o
13S/19E - 24Q1-M Irrigation	1955 EC = 2763 1963 EC = 990	This well was previousl polluted and was includ in an investigation on pollutant in 1955. The subsequent pollution abatement is the reason for EC reduction
13S/19E - 32Ml-M Domestic	EC increasing from 486 in 1952 to 832 in 1963	Current investigation on this area underway
	Fresno Slough Area	
16S/17E - 10G-M Irrigation	Radioactivity = 68.5 ± 5.8	Possible result of rad active waste discharge Investigation underway

^{1 -} EC = Electrical Conductivity in micromhos

^{2 -} Radioactivity in picocuries per liter

 $^{^3}$ - \pm X is statistical deviation (0.9 confidence level)

^{4 -} NO₃ = Nitrates

^{5 -} ppm = parts per million

^{6 -} value not exact due to interference in determination

^{7 -} ABS = Alkyl-Benzene-Sulfonate (Detergents)

WELLS INDICATING SIGNIFICANT DEVIATION IN QUALITY FROM SURROUNDING AREA

WELL NUMBER USE	DEVIATION	STATUS
	Alta Irrigation Distric	t
17S/23E - 8H1-M Domestic	$NO_3 = 40 \text{ ppm}$ Area $NO_3 = < 10 \text{ ppm}$	Current investigation on this area underway
	Lower Kings River Area	
20S/21E - 12A1-M Domestic	EC increasing steadily from 826 in 1958 to 1400 in 1963	Investigation underway
	Edison-Maricopa Area	
32S/29E - 35M2-M Irrigation	NO ₃ = 159 ppm Area NO ₃ =<10 ppm	Investigation of this area to be conducted during 1964-65
Semi	tropic Water Storage Di	strict
28s/23E - 25PlM Irrigation	EC increasing steadily from 267 in 1956 to 537 in 1963	Investigation underway
	Avenal-McKittrick Area	
26S/18E - 1A-M Irrigation	Lithium ⁶ = <3.8 ppm	Resampling to determine a more exact value
T	ulare Lake-Lost Hills A	rea
23S/21E - 18D1-M Artesian - Irrigation	Total analysis high EC = 11,700	Previous investigation of this well. Presently monitored as a result of that study.
24S/22E - 35N1-M Irrigation & stock	Arsenic = 0.25 ppm Copper = 1.00 ppm	Investigation underway
1 - EC = Electrical C	onductivity in micromho	s

- 2 Radioactivity in picocuries per liter
 3 ± X is statistical deviation (0.9 confidence level)
- 4 NO3 = Nitrates
- 5 ppm = parts per million
- 6 value not exact due to interference in determination
- 7 ABS = Alkyl-Benzene-Sulfonate (Detergents)

WELLS INDICATING SIGNIFICANT DEVIATION IN QUALITY FROM SURROUNDING AREA

WELL NUMBER USE	DEVIATION	STATUS
13S/14E - 34M1-M Domestic & irrigation	Mendota Huron Area EC decreasing steadily from 5350 in 1951 to 4670 in 1963	y Investigation underway
3S/12E - 26P1-M	Stanislaus Plains EC = 4300 Area EC = 200 to 300	Natural gas well - previous investigation on local gas wells resulted with this well being monitored
18S/26E - 10N1-M Irrigation	North Tulare Plains NO ₃ = 78 ppm Area NO ₃ =< 10 ppm	Investigation underway
21S/27E - 27F1-M	South Tulare Plains ABS ⁷ = 0.44 ppm	Investigation underway
26s/27e - 9g1-m	Kern Plains Lithium = 0.2 ppm	Investigation undersay

4 - NO3 = Nitrates

^{1 -} EC = Electrical Conductivity in micromhos

^{2 -} Radioactivity in picocuries per liter

 $^{^3}$ - \pm X is statistical deviation (0.9 confidence level)

^{5 -} ppm = parts per million

^{6 -} value not exact due to interference in determination

^{7 -} ABS = Alkyl-Benzene-Sulfonate (Detergents)

0.1 part per million, however, lithium has been found to be detrimental to citrus and other fruit trees in much the same manner as boron. Arsenic and copper, although generally rare, also are found in some ground waters of the valley and can be significant in small concentrations.

Detergents (ABS: alkyl benzene sulfonate) have been determined to be an indicator of pollution and therefore should not occur in ground water. For this reason ABS determinations are made on samples from wells in the vicinity of sewage or industrial waste discharges. Although no critical values of radioactivity have been reached in the valley, certain wells have had higher than normal values. These could be naturally occurring conditions or pollution from radioactive sources.

Sampling Program

Samples from the monitored areas are collected from early spring, when pumping begins, through the fall, when pumping generally slows down. Most of the samples collected are obtained by cooperating agencies, the remainder being obtained by the department. Table 13 lists the agency, the corresponding area, and the number of wells sampled by that agency.

TABLE 13

COOPERATING AGENCIES
GROUND WATER QUALITY MONITORING PROGRAM
SAN JOAQUIN VALLEY AREA

Agency	Area	No. of Samples
Stanislaus County Farm Advisor	Stanislaus County	15
Turlock Irrigation District	Turlock Irrigation District	21
Merced Irrigation District	Merced Irrigation District	15
Central California Irrigation District	Central California Irrigation District	27
Fresno Irrigation District	Fresno Irrigation District	6
Kings County Farm Advisor	Kings County	28
Tulare County Farm Advisor	Tulare County	23
Kern County Farm Advisor	Kern County	60
Buena Vista Water Storage District	Buena Vista Water Storage District	10
U. S. Geological Survey	Portions of Fresno and Kings Counties	59

APPENDIX A
CLIMATE

TABLE OF CONTENTS

		PAGE
INTRO	DDUCTION	A- 5
	ANATION OF TABLES Precipitation Station Index Monthly Precipitation Monthly Temperatures Monthly Summary of Evaporation Station Data Reference Notes	A- 5 A- 5 A- 5
	LIST OF TABLES	
TABLE	3	
A-1	Precipitation Station Index	A-13
A-2	Monthly Precipitation	A-17
A-3	Monthly Temperatures	A-20
A-4	Monthly Summary of Evaporation Station Data	A-2
DIAME	<u>LIST OF PLATES</u> (Bound at end of volume)	
PLATE		
A-1	Location of Climatological Stations	
A-2	Lines of Equal Precipitation	

INTRODUCTION

This appendix presents the climatological data for the period July 1, 1962, to June 30, 1963. The data consists of precipitation station descriptions, monthly precipitation quantities, monthly temperature summaries and monthly evaporation totals.

EXPLANATION OF TABLES

Precipitation Station Index

Table A-1 shows the precipitation station index. The climatological station designations used are based on the drainage basin and alpha number. Stations are also named and latitude and longitude are shown to the nearest minute. The county, elevation above sea level, the year the record began and the name of the current observer of record is also shown.

Each main drainage basin is assigned a letter and each subbasin a number as shown on Plate A-I of this report.

The alpha order number is assigned each station to denote its order in alphabetical sequence for machine processing. The subnumbers are used to avoid duplication of the original four-digit system for machine processing. Only 21 columns are available for the station name making some abbreviations necessary.

Each station is generally named after and referenced to the nearest post office (Livingston 5W - a point 5 miles west of the post office in the town of Livingston), or named for a geographic location (Chiquito Creek). Occasionally the observer's name is incorporated in the station name (Hornitos Giles Ranch).

Monthly Precipitation

Table A-2 shows the monthly and seasonal total rainfall for some 395 weather stations within and near the San Joaquin Valley area. This table summarizes all of the available precipitation observations from July 1962 through June 1963. Daily records are available in department office files.

Monthly Temperatures

Table A-3 shows a temperature summary for a monthly period at 60 weather stations throughout the San Joaquin Valley area.

The individual observations were obtained using the observations, techniques, types of thermometers, and exposure conditions recommended by the U. S. Weather Bureau. The Fahrenheit scale is used in all references to temperature.

Terms used in connection with the temperature data are explained in the following:

Term	<u>Definition</u>	Abbreviation
Maximum	The highest temperature of record for the month	Max.
Minimum	The lowest temperature of record for the month.	Min.
Average maximum	The arithmetic average of daily maximum temperatures for indicated $\ensuremath{period}\xspace$	Avg. max.
Average minimum	The arithmetic average of daily minimum temperatures for indicated period. $ \label{eq:continuous} % \begin{subarray}{ll} \end{subarray} % \begin$	Avg. min.
Average temperature	The average of the daily maximum and minimum for each day; the daily averages are averaged to make the monthly averages.	Avg.

Monthly Summary of Evaporation Station Data

Table A-4 shows the monthly net evaporation at 12 stations throughout the San Joaquin Valley area.

Observations of the amount of water evaporating from an open pan are made in the manner recommended by the U. S. Weather Bureau. The standard Weather Bureau pan is 47.5 inches in diameter and

10 inches deep. It contains clean water to a depth of 7 to 8 inches. The pan is placed on a lumber frame to insulate it from significant conductive heat exchange with the ground. The evaporation is measured by the actual difference in the pan water surface elevation over a 24-hour period with the appropriate adjustments for rainfall.

Terms used in connection with evaporation data are explained below:

Term	<u>Definition</u>	Abbreviation
Evaporation	The net amount of water evaporated from the pan for the period given. $ \\$	Evap.
Precipitation	The total amount of rainfall in inches which occurred during the period. $% \left\{ 1\right\} =\left\{ 1\right\} =\left$	Precip.
Wind	The total movement of air over the pan, in miles, for the period.	Wind
Average maximum	See explanation in temperature data table.	
Average minimum	See explanation in temperature data table.	

Reference Notes

- A list of the reference notes used in the climatological portion of this report follows:
 - CD Record published in "Climatological Data" by U. S. Weather Bureau.
 - WB All or part of record published by U. S. Weather Bureau.
 - HPD Record published in "Hourly Precipitation Data" by U. S. Weather Bureau.
 - HPD CD $\,$ Published in both "CD" and "HPD" from separate gages. Record from "CD" reproduced in this report.
 - CD(P) Precipitation data published in "CD". Other data published by DWR.
 - R CD Published in both "CD" and "HPD" from recording rain gage. Record from "CD" reproduced in this report.
 - R Recording raim gage. Hourly precipitation distribution not necessarily available at DWR.
 - (R) Hourly precipitation record also available for this station.
 - S Storage gage. Data published in "Storage Gage Precipitation Data" by U. S. Weather Bureau.
 - Ss Storage gage using standard rain gage. Data published by DWR.
 - T Trace.
 - AS After storm only. Small amounts may not be recorded.
 - b Preliminary data subject to revision.
 - E Wholly or partially estimated.
 - No record.
 - M All or part of record missing.
 - RB Beginning of record.
 - RE End of record.
 - * Amount included in following measurement; time distribution unknown.
 - V Includes total for previous month.
 - D Water equivalent of snowfall wholly or partly estimated using a ratio of 1 inch water equivalent to every 10 inches of new snowfall.
 - SCE Data obtained from Southern California Edison Company.

Additional criteria are:

Dimensional units used in this report are: Temperature in degrees Fahrenheit, precipitation and evaporation in inches, and wind movement in miles (per month).

Evaporation, wind movement and temperature data in this report are not published by the U. S. Weather Bureau.

All temperature data represent air temperatures.

TABLE A-1
PRECIPITATION STATION INDEX

9.5	Alpha				T	L	ot.	Lo	ng.	Record	
Orainage Basin	Order Number	Station Name		County	Elev	Deg.	Min.	Deg.	Min.	Began	Observer
C0 B6 C0 C7 D6	0009 0049 0204 0215 0239	Academy Ahwahnee 2 NNW Angiola Annette Apache Camp	WB WB	Fresno Madera Tulare Kern Ventura	545 2790 205 2140 4965	36 37 35 35 35	53 24 59 39 52	119 119 119 120 119	32 44 29 10 20	1958 1959 1899 1951 1940	Edwin W. Simpson Mrs. Eleanor P. Crooks Angiola Elev. & Whse. Ernest Still Kern Co. Road Camp
C7 C7 C0 C0 C2	0314 0315 0332 0332-02 0343	Arroyo Hondo Arroyo Leona Arvin Arvin-Frick Ash Mountain	WB	Fresno Fresno Kern Kern Tulare	1650 1480 445 437 1708	36 36 35 35 36	26 24 12 14 29	120 120 118 118 118	34 32 49 52 50	1951 1947 1936 1959 1925	Closed June 30, 1962 Closed June 30, 1962 Kern Co. Fstry. & F.D. Dept. Water Resources US Natl. Park Service
B0 C2 B7 B7 C0	0374 0379 0381 0396-02	Atwater Craig Atwell Auberry Auberry Valley Avenal-Walden	S WB	Merced Tulare Fresno Fresno Kings	150 6400 2005 1300 810	37 36 37 37 36	21 28 05 02 00	120 119 119 119 120	37 40 29 34 08	1961 1949 1915 1954 1957	H. J. Craig Corps of Engineers Pete E. Dubose Mrs. George Marshall L. F. Walden
C7 C7 C7 C2 B5	0399 0399-01 0399-02 0422 0425	Avenal Orchard Ranch Avenal 8 SW Avenal 6 SSW Badger Badger Pass	WB S	Kings Kings Kings Tulare Mariposa	712 1424 1565 3030 7300	35 35 35 36 37	48 58 56 38 40	120 120 120 119 119	05 13 10 01 40	1919 1957 1953 1940 1941	E. R. Orchard J. A. Sagaser Leslie Sagaser Lucille E. Weddle US Natl. Park Service
B5 C0 C0 C1	0430 0440 0442 0449 0534	Bagby Bakersfield l W Bakersfield WE Airport Balch Power House Barton Flat	WB WB S	Mariposa Kern Kern Fresno Fresno	824 400 495 1720 3760	37 35 35 36 36	37 23 25 55 49	120 119 119 119 118	08 02 03 05 53	1958 1913 1933 1921 1961	Chris Mills Kern County Land Co. US Weather Bureau PG&E Company Corps of Engineers
B5 B3 C2 B4 C0	0570 0573 0596 0617 0631	Bear Valley Trabucco Beardsley Dam Beartrap Meadow Beehive Meadow Bellevue	s s	Mariposa Tuolumne Tulare Tuolumne Kern	2000 3416 6800 6500 369	37 38 36 38 35	34 12 41 00 20	120 120 118 119 119	07 05 52 47 07	1952 1958 1959 1947 1961	Harold Trabucco Oakdale Irrig. Dist. Corps of Engineers Hetch Hetcy Wtr. Sup. Kern County Land Co.
V2 B0 B7 B7 B7	0684 0688-02 0755 0755-01 0755-02	Benton Insp. Sta Berenda 2 N Big Creek PH No. 1 Big Creek PH No. 2 Big Creek PH No. 3		Mono Madera Fresno Fresno Fresno	5460 270 4928 3000 1400	37 37 37 37 37	50 04 12 12 09	118 120 119 119 119	29 08 15 18 23	1959 1959 1915 1913 1922	John M. Patterson Dept. Water Resources So. Calif. Edison Co. So. Calif. Edison Co. So. Calif. Edison Co.
B7 V2 V2 V2 C1	0755-05 0767 0776 0819 0821	Big Creek PH No. 8 Big Pine Creek Big Pine PH No. 3 Bishop Creek Intake 2 Bishop Pass Snow Course	S WB S	Fresno Inyo Inyo Inyo Fresno	2260 10000 4680 8154 11040	37 37 37 37 37	12 08 08 15 06	119 118 118 118 118	20 28 19 35 34	1921 1948 1925	So. Calif. Edison Co. Dept. Water Resources LA Dept Water & Power Calif. Elec. Power Co. Corps of Engineers
V2 C6 C0 C1 C1	0824 0825-01 0875 1069-01	Bishop Union Carbide Bitter Creek Blackwells Corner Blasingame Bretz Mill	WB Ss WB	Inyo Kern Kern Fresno Fresno	9390 1250 644 1050 3250	37 35 35 36 37	22 00 37 58 02	118 119 119 119	43 20 52 27 14	1957 1961 1944 1961 1960	Union Carbide Co. B. J. Snedden Dean Sams Calif. Div. Forestry US Forest Service
D1 C0 C0 C0 C6	1170 1174 1175 1199-01	Buena Vista Buena Vista Ranch Buena Vista Ranch M & L Buena Vista Ranch M & L Burgess Corrals	WB Ss	San Benito Kern Kern Kern Kern	1640 310 286 290 1600	36 35 35 35 34	46 20 12 14 58	121 119 119 119 119	11 17 18 18	1932 1914 1955 1962 1960	Mrs. Lola F. Galli Kern County Land Co. Miller & Lux Inc. J. G. Boswell Co. B. J. Snedden
C0 B2 B3 C4 C3	1244 1277 1280 1300 1425	Buttonwillow Calaveras Big Trees Calaveras Ranger Sta Calif. Hot Springs RS Camp Nelson	WB WB WB	Kern Calaveras Calaveras Tulare Tulare	268 4696 3343 2950 4825	35 38 38 35 36	24 17 12 53 08	119 120 120 118 118	28 19 22 41 37	1940 1929 1944 1907 1959	Buena Vista W.S. Dist. Calif. Div Beaches & Pks US Forest Service US Forest Service John F. Lewis
C0 V7 C0 C0	1479 1488 1490 1557 1580	Canfield Ranch Cantil Cantua Ranch Caruthers 4 E Castle AFB	WB	Kern Kern Fresno Fresno Merced	334 2010 295 265 170	35 35 36 36 37	17 18 30 33 22	119 117 120 119 120	10 58 19 46 34	1952 1955 1955 1960 1951	Kern County Land Co. Postmaster Giffen Ranch R. L. Kincade US Air Force
B8 B5 B5 B5 B6	1583 1588 1588-01 1588-03 1590	Castle Rock Rad. Lab. Cathay Bull Run Ranch Cathay Meyer Ranch Cathay 3 NNW Cathay Sawyer Ranch	WB	San Joaquin Mariposa Mariposa Mariposa Mariposa	625 1425 2250 1250 1275	37 37 37 37 37	38 24 29 29 26	121 120 120 120 120	32 03 04 07 06	1956 1940 1957 1957 1957	Lawrence Rad. Lab. Wm. H. Alison Horace Meyer William Pierce W. H. Sawyer

TABLE A-1
PRECIPITATION STATION INDEX (Continued)

oge u	Alpha					L	.at.	Lo	ang.	Record	
Oroinoge Basin	Order Number	Station Name		County	Elev.	Deg	Min.	Deg.	Min.	Began	Observer
B6 B6 B4 B7 D3	1591 1611 1697 1737 1743	Cathay Stonehouse Cedar Point Ranch Cherry Valley Dam Chiquito Creek Cholame Hatch Ranch	WB WB S WB	Mariposa Mariposa Tuolumne Madera San Luis Obpo	1210 3230 4765 7290 1975	37 37 37 37 37 35	25 28 58 30 41	120 119 119 119 120	05 44 55 23 12	1951 1957 1955 1961 1925	S. S. Spurgin Closed July 1, 1962 Hetch Hetchy Wtr. Sup. Dept. Water Resources Everett C. Hatch
C7 Z2 C0 B7 C0	1743-02 1754 1844 1864	Cholame Twisselman Chuchupate Ranger Sta. Citrus Clover Meadows G.S. Coalinga	WB S WB	San Luis Obpo Ventura Kern Madera Fresno	1675 5260 660 7002 671	35 34 35 37 36	34 48 02 32 09	120 119 118 119 120	07 01 58 17 21	1951 1941 1945 1942	H. A. Twisselman US Forest Service Kern County Land Co. Dept. Water Resources Coalinga Fire Dept.
C7	1864-02 1867 1869 1878	Coalinga C.D.F. Coalinga Roberts Ranch Coalinga 1 SE Coalinga 14 WNW Coarsegold	WB WB	Fresno Fresno Fresno Madera	690 1350 663 1640 2363	36 36 36 36 37	08 02 08 14 16	120 120 120 120 120	22 27 21 34 42	1961 1953 1911 1949 1952	Calif Div of Forestry R. J. Roberts Union Oil Company Mrs. Charles Howell Mrs. Dorothy McAlliste
C0 B4 B3 C0	1885 1904 2003 2012 2013	Coit Ranch Hdqtrs. Cold Springs Copperopolis Corcoran Irrig. Dist. Corcoran El Rico l	WB	Fresno Tuolumne Calaveras Kings Kings	278 5680 970 200 198	36 38 37 36 36	42 10 59 06 03	120 120 120 119 119	28 03 * 38 34 39	1954 1961 1954 1912 1958	Coit Ranch John D. Morrison Corps of Engineers S. S. Whitehead J. G. Boswell Co.
C0 V2 V2 B5 B5	2013-05 2069 2071 2072 2072-05	Corcoran El Rico 33 Cottonwood Creek Cottonwood Gates Coulterville FFS Coulterville 5 B	s	Kings Inyo Inyo Mariposa Mariposa	190 10600 3710 1870 3010	35 36 36 37 37	58 29 25 43 43	119 118 118 120 120	42 11 02 12 06	1951 1947 - 1959 1959	J. G. Boswell Co. Dept Water Resources LA Dept Water & Power Calif Div of Forestry Norman Jaenecke
C5 B7 V2 C6 D6	2114 2122 2181 2222 2236	Crabtree Meadow Crane Valley PH Crowley Lake Cummings Valley Cuyama	S WB	Tulare Madera Mono Kern Santa Barbara	10720 3500 6870 3825 2240	36 37 37 35 34	34 17 35 07 56	118 119 118 118 119	20 32 42 35 37	1950 1903 1920 1931 1944	Corps of Engineers PG&E Company LA Dept Water & Power Dept Water Resources John S. Rowell
D6 B6 C0 B8 B0	2248 2288 2346 2369 2375	Cuyama Ranch Daulton Delano Del Puerto Road Camp Delta Ranch	WB WB WB	San Luis Obpo Madera Kern Stanislaus Merced	2170 410 323 1125 90	34 37 35 37 37	59 07 47 25 07	119 119 119 121 120	40 59 15 23 45	1948 1946 1876 1958 1948	Corps of Engineers M. M. Greenman Delano Fire Dept. Stanislaus County Pasquale Bisignani
B0 C0 C0 C0	2389 2408 2436 2440-01 2464	Denair Devils Den SLF Di Giorgio Dinuba Alta ID Domengine Ranch	WB	Stanislaus Kern Kern Tulare Fresno	124 500 483 334 1000	37 35 35 36 36	32 46 15 33 20	120 119 118 119 120	48 58 51 23 22	1917 1959 1937 1944 1959	W. F. Moore South Lake Farms Di Giorgio Fruit Corp. Alta Irrigation Dist. V. Ciesielski
C7 B4 C5 B5 B4	2464-01 2473 2492 2539 2609	Domengine Spring Don Pedro Reservoir Doublebunk Meadow Dudley's Early Intake PH	S WB	Fresno Tuolumne Tulare Mariposa Tuolumne	1700 700 6200 3000 2356	36 37 35 37 37	20 43 57 45 53	120 120 118 120 119	24 24 36 06 57	1958 1940 1955 1909 1925	V. Ciesielski Hetch Hetchy Wtr Sup Corps of Engineers W. D. McLean Hetch Hetchy Wtr Sup
C1 C0 V0 C7 B0	2653 2756 2785 2820	East Vidette Meadow Eighth Standard Ranch Ellery Lake El Rancho Cantua El Solyo Ranch	S WB	Kern	10400 338 9600 1020 50	36 35 37 36 37	44 06 56 25 37	118 119 119 120 121	23 02 14 20 14	1955 1963 1924 1938 1953	Corps of Engineers Kern County Land Co. Calif Elec Power Co. Lyle Christie John K. Ohm
B0 B0 B5 C0 B0	2860 2909 2920 2922 2968	Escalon Swanson Eugene Exchequer Reservoir Exeter Fauver Ranch Fancher Ranch Camp 3	WB WB	San Joaquin Stanislaus Mariposa Tulare Merced	125 173 484 439 225	37 37 37 36 37	47 55 35 21 19	121 120 120 119 120	51	1944 1923 1935 1938 1959	Clark Swanson Corps of Engineers Merced Irrigation Dist Charles O. Coulter Calif. Packing Corp.
C7 B0 C0 C0 B7	3005 3063 3083 3084 3093	Fellows Firebaugh 9 W Five Points 5 SSW Five Points Diener Florence Lake		Kern Fresno Fresno Fresno Fresno	1340 185 285 263 7344	35 36 36 36 37	11 51. 21 22 16	119 120 120 120 118	09 06	1956 1934 1942 1933 1940	Kern Co. Fire Dept. Thomas & Thomas Ranch Raymond Thomas Ranch Frank C. Diener So Calif Edison Co.
B7 V0 E5	3257 3261 3369 3387 3397	Fresno WB Airport Friant Government Camp Gem Lake Gerber Ranch Giant Forest	WB WB WB	Fresno Fresno Mono Santa Clara Tulare	326 410 8970 2140 6412	36 36 37 37 36	46 59 45 22 34	119 119 119 121 118	43 08 29	1899 1896 1924 1912 1921	US Weather Bureau US Bur. Reclamation Calif Elec Power Co. Mrs. Hilda Draghi US Natl Park Service

TABLE A-1
PRECIPITATION STATION INDEX (Continued)

o ge	Alpha					L	at.	Lo	ng.	Record	
Drainage Basin	Order Number	Station Name		County	Elev.	Deg.	Min.	Deg.	Min.	Began	Observer
D1 C0 C4 C4 C0	3422 3428-01 3463 3465 3512	Gilroy 14 ENE Gin Yard Glennville Glennville Fulton RS Gosford Feed Mill	WB WB	Santa Clara Kern Kern Kern Kern	1350 295 3140 3500 360	37 35 35 35 35	06 09 43 44 19	121 119 118 118 119	20 14 42 40 05	1940 1960 1951 1940 1953	Seth E. Auser Miller & Lux Inc. Kern Co Fstry & FD US Forest Service Kern County Land Co.
B4 C1 C1 B5 B4	3529 3548 3551 3612-03 3669	Grace Meadow Granite Basin Grant Grove Green Valley Ranch Groveland 2	S S WB	Tuolumne Fresno Tulare Mariposa Tuolumne	8900 10000 6580 3170 2825	38 36 36 37 37	09 52 44 46 50	119 118 118 120 120	36 36 58 09 14	1947 1949 1924 1957 1940	Hetch Hetchy Wtr Sup Corps of Engineers US Natl Park Service Mrs. D. Davidson Duane J. Cox
B4 B0 B0 B0 B0	3672 3690-02 3690-04 3694	Groveland Ranger Sta Gustine 5 SW Gustine Snyder Gustine 7 SSW Gustine Avoset	WB	Tuolumne Merced Merced Merced Merced	3135 145 150 156 98	37 37 37 37 37	49 13 12 10 15	120 121 121 121 121	06 03 03 02 00	1940 1927 1954 1959 1928	USForest Service W. P. Jorgensen Harry M. Snyder Mrs. George E. Butts Foremost Co.
V7 C0 C1 D1	3710 3747 3811-11 3925 3928	Haiwee Hanford Haslett Basin Hernandez 2 NW Hernandez 7 SE	WB WB WB	Inyo Kings Fresno San Benito San Benito	3810 242 2400 2160 2765	36 36 36 36 36	08 20 58 25 18	117 119 119 120 120	57 40 13 55 42	1923 1899 1960 1940 1940	LA Dept Water & Power Calif Div of Forestry US Forest Service Max D. Ley Mrs. Clorene Akers
B4 B6 B2 B0 C2	3939 3948 3952 3981 4012	Hetch Hetchy Hidden Valley Highland Lakes Hilmar Hockett Meadows	WB S	Tuolumne Mariposa Alpine Merced Tulare	3870 1880 8700 90 8500	37 37 38 37 36	57 26 30 25 22	119 119 119 120 118	47 56 48 51 39	1910 1949 1960 1948 1959	Hetch Hetchy Wtr Sup Howard Brady Dept Water Resources Hilmar Fire Dept Corps of Engineers
C0 C0 C0 B5 B5	4061-01 4061-02 4061-03 4102-01	Homeland Dist. Sec 9 Homeland Dist. Sec 17 Homeland Dist. Sec 34 Hornitos Hornitos Erickson Ranch		Kings Kings Kings Mariposa Mariposa	190 206 195 850 1150	35 35 35 37 37	57 50 53 30 30	119 119 119 120 120	36 37 34 14 09	1952 1952 1951 1960 1955	J. G. Boswell Co. J. G. Boswell Co. J. G. Boswell Co. Corps of Engineers Louie Erickson
B5 C3 B4 B3 B7	4103 4120 4148 4170 4176	Hornitos Giles Ranch Hossack Huckleberry Lake Hunters Dam Huntington Lake	S S WB WB	Calaveras	1050 7100 7800 3220 7020	37 36 38 38 37	28 11 06 12 14	120 118 119 120 119	14 37 45 22 13	1939 1959 1959 1950 1915	Arthur Giles Corps of Engineers Hetch Hetchy Wtr Sup PG&E Company So. Calif Edison Co.
C7 V2 B5 V7 C5	4204 4235 4246 4278 4303	Idria Independence Onion Vly Indian Gulch Inyokern I s abella Dam	WB WB	San Benito Inyo Mariposa Kern Kern	2650 9175 1000 2440 2660	36 36 37 35 35	25 46 26 39 39	120 118 120 117 118	40 20 12 49 29	1918 1948 1952 1937 1949	New Idria Mine & Chem LA Dept Water & Power Frank N. Solari Kern County Fire Dept Corps of Engineers
B5 C5 B7 C2 C6	4369 4389 4442 4452 4463	Jerseydale GS Johnsondale Kaiser Meadows Kaweah PH 3 Keene	WB S	Mariposa Tulare Fresno Tulare Kern	3605 4680 9110 1370 2575	37 35 37 36 35	33 58 18 29	119 118 119 118 118	50 32 06 50 34	1958 1954 1946 1913 1948	US Forest Service US Forest Service So. Calif Edison Co. So. Calif Edison Co. Kern Co. Fire Dept.
B8 C0 C5 C5	4508 4510-02 4513 4518 4519	Kerlinger Kerman 2 ESE Kern Canyon Kern River Intake No. 3 Kern R. Intake 3 SCE	WB WB	San Joaquin Fresno Tulare Tulare Tulare	172 225 700 3650 3642	37 36 35 35 35	41 43 26 57 57	121 120 118 118 118	26 01 48 29 29	1947 1960 1916 1952 1921	Pac. Coast Aggregates Dept Water Resources PG&E Company Mrs. Lila Lofberg So. Calif Edison Co.
C5 C5 C5 C0	4520 4523 4527~01 4534 4535	Kern River PH No. 1 Kern River PH No. 3 Kernville RS Kettleman City 1 SSW Kettleman Hills	WB WB	Kern Kern Kern Kings Kings	970 2703 2600 310 1255	35 35 35 36 36	28 47 45 00 02	118 118 118 119 120	47 26 25 58 06	1904 1946 1953 1930 1931	So. Calif Edison Co. So. Calif Edison Co. Velma Aravjo Standard Oil Co Calif Standard Oil Co Calif.
C0 B0 B3 B4 V2	4536 4590 4664 4679 4705	Kettleman Station Knights Ferry 2 SE Lake Alpine Lake Eleanor Lake Sabrina	WB WB S S	Kings Stanislaus Alpine Tuolumne Inyo	508 315 7500 4662 9065	36 37 38 37 37	04 48 28 58 13	120 120 120 119 118	05 39 01 53 37	1933 1905 1948 1909 1948	PG&E Company Raymond Willms Dept Water Resources Hetch Hetchy Wtr Sup Calif Elec Power Co
D3 C6 B5 B0 B0	4767 4863 4883 4884 4884-05	La Panza Ranch Lebec LeGrand Preston Ranch LeGrand LeGrand 5 N	WB WB	San Luis Obpo Kern Mariposa Merced Merced	1550 3585 984 255 280	35 34 37 37 37	23 50 20 14 19	120 118 120 120 120	10 52 02 15 15	1948 1940 1950 1899 1945	Abe E. Zimmerman Kern Co Fire Dept Ray Preston Merced Co Fire Dept James Massengale

TABLE A-1
PRECIPITATION STATION INDEX (Continued)

8.5	Alpha				T	Ι.	at.	Lo	ng.		
Drainage Basin	Order Number	Station Name		County	Elev.	Deg	. Min.	Deg.	Min.	Record Begon	
C2 B0 C0 B0 C7	4890 4953-02 4957 4999-03 5008	Lemon Cove Linden Fire Station Lindsay Livingston 5 W Loca Mariana	WB WB	San Joaquin	513 90 395 112 1700	36 38 36 37 36	23 01 11 22 21	119 121 119 120 120	02 05 04 48 25	1899 1948 1913 1952 1951	Kaweah Lemon Co. E. J. Murphy Frank DeChaine E&J Gallo Winery Rch Closed July 1, 1962
B7 V2 B8 B4 B3	5040 5067 5074 5077 5078	Logan Meadow Lone Pine Cottonwood PH Lone Tree Canyon Long Barn Long Barn Exp. Sta	WB	Madera Inyo San Joaquin Tuolumne Tuolumne	3400 3790 420 4963 5200	37 36 37 38 38	20 27 37 06 11	119 118 121 120 120	19 03 23 08 01	1947 1940 1933 1960 1940	So. Calif Edison Co. LA Dept Water & Power Edward C. Gerlach Closed June, 1962 US Forest Service
C6 V2 B0 B0 B0	5098 5111-09 5116 5117 5118	Loraine LA Aqueduct Intake Los Banos 5 S Los Banos Field Sta Los Banos	WB WB	Kern Inyo Merced Merced Merced	2720 3841 175 160 125	35 36 36 37 37	18 58 59 01 03	118 118 120 120 120	26 12 51 54 51	1941 1919 1948 1956 1873	Charles W. Poole LA Dept Water & Power H. G. Fawcett US Bur. Reclamation Roger C. Rice
B8 C0 C1 B4 B6	5119 5151 5155-51 5160 5202	Los Banos Arburua Rch Lost Hills Lower Big Creek Lower Kibbey Ridge Lushmeadows Ranch	WB WB	Merced Kern Fresno Tuolumne Mariposa	860 285 1100 6500 3215	36 35 36 38 37	53 37 55 01 29	120 119 119 119 119	56 41 15 53 50	1932 1912 1960 1948 1959	Arburua Ranch Kern Co. Fstry & FD US Forest Service Hetch Hetchy Wtr Sup F. L. Raby
B0 C0 V2 B0 B0	5233 5257 5284 5297-01 5297-02	Magunden Mammoth Pass		Madera Kern Mono San Joaquin San Joaquin	268 440 9500 46 42	36 35 37 37 37	58 22 37 48 48	120 118 119 121 121	04 55 02 12 13	1899 1927 1947 1930 1935	Calif Div of Forestry So. Calif Edison Co. LA Dept Water & Power Spreckles Sugar Co. Southern Pacific Co.
C7 C7 B5 B5 B6	5338 5338-01 5346 5346-01 5346-04	Maricopa FS Mariposa Mariposa Reynolds Mariposa 8 ESE	WB WB	Kern Kern Mariposa Mariposa Mariposa	685 885 2011 2000 2780	35 35 37 37 37	05 04 29 29 27	119 119 119 119 119	23 24 58 58 50	1911 1958 1909 1958 1952	Signal Oil & Gas Co. Kern Co. Fire Dept. Mrs. Gabrielle Wilson E. F. Reynolds D. A. Boyce
B5 B5 C7 B4 B0	5348 5352 5372-01 5400	Mariposa Circle 9 Rch Mariposa RS Martinez Spring Mather Mather Mattos Ranch	WB	Mariposa Mariposa Fresno Tuolumne Merced	3536 2100 1875 4515 170	37 37 36 37 36	33 30 20 53 59	119 119 120 119 120	51 59 25 51 51	1957 1943 1959 1930 1961	Dorothy D. Sevedge Calif Div of Forestry V. Ciesielski City of San Francisco Roger C. Rice
B0 B5 C7 B7 B3	5460 5480-01 5496 5511		WB	Stanislaus Mariposa Kern Fresno Tuolumne	35 2990 1051 4480 900	37 37 35 37 37	37 43 18 05 57	121 120 119 119 120	13 06 37 26 31	1958 1959 1956 1948 1955	Dept Water Resources James R. Alvis Kern Co. Fire Dept Radio Station KRFM Oakdale Irrig. Dist.
B0 C0 B0 C0 C0	5526 5526-04 5528 5529 5530	Mendota 1 NNW Mendota Murietta Ranch Mendota Dam Mendota Halfway Pump Mendota VDL Farms	WB	Fresno Fresno Fresno Fresno Fresno	172 261 166 450 230	36 36 36 36 36	46 39 47 28 45	120 120 120 120 120	23 27 22 24 28	1941 1958 1873 1956 1948	Henry E. Schreiner Closed July, 1962 Frank F. Moitoza Tidewater Oil Co. Vista Del Llano Farms
B0 B0 B0 B0	5532 5532-01 5532-03 5534 5535	Merced Fire Station 2 Merced SP Merced 5 SE Merced Fancher Ranch Merced 2		Merced Merced Merced Merced Merced	169 170 198 212 168	37 37 37 37 37	18 18 16 18 19	120 120 120 120 120	29 29 23 21 29	1872 1872 1959 1920 1938	City of Merced Southern Pacific Co. Dept Water Resources Calif Packing Corp Merced Irrig Dist
B8 C3 B7 C2 C2	5550 5669 5680 5708	Mercey Hot Springs Milo 5 NE Minarets RS Mineral King Miramonte Honor Camp	WB	Fresno Tulare Madera Tulare Fresno	1165 3400 5180 7975 3005	36 36 37 36 36	42 17 25 26 40	120 118 119 118 119	52 46 21 35 05	1932 1957 1962 1956 1957	Horace C. Swatzel Mrs. Ethel Walker US Forest Service Corps of Engineers Calif Div of Forestry
C1 B4 B0 B0 B0	5723 5735 5738 5740 5741	Mitchell Meadow Moccasin Modesto Modesto KTRB Modesto 2	WB	Fresno Tuolumne Stanislaus Stanislaus Stanislaus	9700 950 91 93 92	36 37 37 37 37	45 49 39 40 38	118 120 121 120 121	43 18 00 59	1957 1935 1926 1959 1942	Corps of Engineers Hetch Hetchy Wtr Sup Modesto Irrig Dist Clifford Price City of Modesto
V8 V8 C5 C0 C1	5756 5758 5777 5893	Mojave 2 ESE Mojave 2 ESE Monache Meadows Moody Ranch Mountain Rest FFS	WB WB S	Kern Kern Tulare Kern Fresno	2735 2680 8000 405 4100	35 35 36 35 37	06	118 118 118 118 119	10 09 10 58 22	1947 1963 1950 1963 1960	Kern Co Fire Dept KDOL Radio Station Corps of Engineers Kern County Land Co. US Forest Service

TABLE A-1
PRECIPITATION STATION INDEX (Continued)

in 00 e	Alpha			_		Lot.		Lo	ng. Record		
Droinage Bosin	Order Number	Statian Name		County	Elex	De g.	Min.	Deg.	Min.	Began	Observer
V8 B0 B0 C0	6122 6168 6168-01 6230-50 6252	Neenach Newman 2 NW Newman 1 SE North Belridge North Fork Ranger Sta	WB	Los Angeles Stanislaus Merced Kern Madera	2890 108 80 630 2630	34 37 37 35 37	43 21 18 33 14	118 121 121 119 119	35 03 00 47 30	1931 1899 1960 1953 1904	LA Dept Water & Power Richard A. Smith Dept Water Resources Belridge Oil Co. US Forest Service
B0 B0 B6 C4 C0	6303 6305 6391 6393	Oakdale Oakdale Woodward Dam Oakhurst Oildale Smoot Ranch Oilfields FFS	WB	Stanislaus Stanislaus Madera Kern Fresno	155 215 2347 805 950	37 37 37 35 36	46 52 20 31 15	120 120 119 118 120	51 52 39 54 19	1880 1918 1961 1949 1952	A. L. Gilbert Co. S San Joaquin I.D. Basil E. Judd Closed July, 1962 Gene Martin
C7 C5 C2 B0 B5	6395 6476 6490 6552	Oilfields Joaquin Ridge Onyx Orange Cove Orestimba Ostrander Lake	S WB S	Fresno Kern Fresno Stanislaus Mariposa	3620 2750 431 110 8600	36 35 36 37 37	18 42 37 22 38	120 118 119 121 119	24 13 18 04 33	1949 1962 1931 1896 1947	US Weather Bureau Corps of Engineers Orange Cove Citrus Asn Central Cal Irr Dist US Natl Park Service
B8 C0 B8 B8 B0	6583 6651 6675 6676 6677	Pacheco Pass Paloma Ranch Panoche Panoche 2 W Panoche Creek	WB WB	Merced Kern San Benito San Benito Fresno	880 290 1265 1320 370	37 35 36 36 36	04 11 36 37 41	121 119 120 120 120	11 50 53 35	1949 1957 1922 1957 1963	US Bur. Reclamation Miller & Lux Inc. Miss Lily Berg Malcolm Strohn Employee Enter Inc
C0 B0 B4 D3 D3	6678 6679-05 6688 6703 6706	Panoche Junction Panoche Water Dist Paradise Meadow Parkfield Parkfield 7 NNW	WB S WB WB	Fresno Fresno Tuolumne Monterey Monterey	420 183 7700 1482 3590	36 36 38 35 36	32 53 03 53 00	120 120 119 120 120	27 44 40 26 28	1938 1949 1948 1938 1948	Closed Oct, 1962 Panoche Water Dist Hetch Hetchy Wtr Sup Herbert H. Durham Raulston P. Morrison
B0 C6 C2 B8 C1	6746-01 6754 6767 6847 6857	Patterson Pattiway Pear Lake Pfeiffer Ranch Piedra	WB S	Stanislaus Kern Tulare Merced Fresno	100 3868 9700 1650 580	37 34 36 36 36	28 56 36 53 48	121 119 118 121 119	07 23 40 08 23	1912 1915 1956 1954 1917	Yancey Lumber Co. Hudson Ranch Corps of Engineers Frances S. Pfeiffer Mrs. Ida H. Akers
B3 C1 C1 B7 C0	6893 6895 6902	Pinecrest Strawberry Pine Flat Dam Pinehurst Placer GS Pond 1 N		Tuolumne Fresno Fresno Madera Kern	5620 615 4050 3670 268	38 36 36 37 35	11 50 42 22 44	119 119 119 119 119	59 19 01 22 19	1922 1949 1954 1962 1962	PG&E Company Corps of Engineers US Forest Service US Forest Service Dept Water Resources
C0 C0 C5 C4 C0	7077 7079 7093 7096 7098-11	Porterville Porterville 3 W Portuguese Meadow Posey 3 E Poso Ranch	s	Tulare Tulare Tulare Tulare Kern	393 413 7000 4920 370	36 36 35 35 35	04 05 48 48 37	119 119 118 118 119	01 04 34 38 16	1893 1958 1953 1954 1913	John H. Daybell Porterville Irr Dist Corps of Engineers Panorama Height Lodge Kern County Land Co.
B0 B4 D2 C5 C1	7099-11 7145 7150 7179 7259	Poso Canal Co Hdq Priest Priest Valley Quaking Aspen Rattlesnake Creek	S	Fresno Tuolumne Monterey Tulare Fresno	125 2245 2300 7200 9900	36 37 36 36 36	59 49 11 07 59	120 120 120 118 118	30 16 42 32 43	1928 1898 1955 1961	Central Cal Irr Dist Hetch Hetchy Wtr Sup Nelson H. Palmer Corps of Engineers Corps of Engineers
C7 B6 B6 B6 B6	7254-01 7270-01 7272-01 7273 7276	Rattlesnake Springs Raymond 3 SSW Raymond 10 N Raymond 9 N Raymond 12 NNE	WB	Fresno Madera Mariposa Mariposa Mariposa	1400 635 1640 1210 1600	36 37 37 37 37	22 11 22 21 23	120 119 119 119 119	28 56 54 53 50	1951 1940 1957 1962 1954	Closed June 30, 1962 Sam Wood Fred Bunning Richard W. Schall L. E. Schatz
C0 C0 B0 C0 V2	7288 7460 7510	Rector Reedley MVFD Ripon Riverdale Rock Creek	s	Tulare Fresno San Joaquin Fresno Inyo	344 345 65 220 9670	36 36 37 36 37	18 37 45 26 27	119 119 121 119 118	15 27 07 52 44	1888 1962 1963 1917 1947	So Calif Edison Co. Mid-Valley Fire Dist Mr. Arthur N. Clemens Mid-Valley Fire Dist Dept Water Resources
B6 C0 B7 C5 B4	7528 7555 7560 7579 7623	Rocky Village Rosedale Rose Marie Meadow Round Meadow Saches Springs	S S		570 380 10000 9000 7900	37 35 37 35 38	22 26 19 58 06	120 119 118 118 119	10 08 52 21 51	1957 1914 1953 1947 1948	W. R. Down Kern County Land Co. So Calif Edison Co. Corps of Engineers Hetch Hetchy Wtr Sup
C7 D1 Z2 C0 D1	7687-02 7719 7735 7753 7755	Salt Creek San Benito Sandberg WB San Emigdio Ranch San Felipe Highway Sta		Fresno San Benito Los Angeles Kern Santa Clara	575 1355 4517 1450 365	36 36 34 35 37	25 31 45 00 01	120 121 118 119 121	24 05 44 12 20	1951 1936 1933 1901 1943	Closed July 1, 1962 John M. Shields US Weather Bureau Kern County Land Co. Div of Highways

o de	Alpho					L	ot.	Lo	ng.	Record	
Drainage Basin	Order Number	Station Name		County	Elev	Deg	Min.	Deg.	Min.	Begon	Observer
C0 C0 C0 C0 B7	7800-02 7800-03 7816	Sanger 1 NE Sanger RS San Joaquin San Joaquin MVFD San Joaquin Exp Range	WB	Fresno Fresno Fresno Madera	375 375 174 174 1100	36 36 36 36 37	44 44 36 36 06	119 119 120 120 119	33 33 11 11 44	1959 1958 1919 1962 1934	G. I. Minter Calif Div of Forestry James Irrig Dist Mid-Valley Fire Dist US Forest Service
B0 B8 B0 D7 D7	7836-01 7846 7855 8259-02 8259-04	San Juan Hdqrs M&L San Luis Dam San Luis Canal Co Hdq Simmler R. W. Cooper Simmler Maint Sta	WB	Merced Merced Merced San Luis Obpo San Luis Obpo	105 260 106 2040 2030	37 37 37 35 35	05 03 03 24 21	120 121 120 120 119	39 04 40 06 59	1947 1963 1944 1936 1946	Miller & Lux Inc. US Bur. Reclamation San Luis Canal Co. R.W. Cooper Div of Highways
D2 C6 B5 C1	8276 8304 8318 8323-01 8326	Slack Canyon Smith Flat Snow Flat Soaproot Saddle Soda Lake	WB Ss S	Monterey Kern Mariposa Fresno San Luis Obpo	1730 3800 8700 3830 1960	36 34 37 37 35	05 54 50 02 15	120 119 119 119 119	40 21 30 15 55	1955 1960 1947 1960 1925	Calif Div of Forestry Mr. B. J. Snedden Dept Water Resources US Forest Service Dewey Werling
B4 G9 C0 B0 B5	8353 8355 8375-50 8378 8380	Sonora Sonora Junction South Belridge South Dos Palos So Entrance Yosemite NP	WB WB	Tuolumne Mono Kern Merced Mariposa	1830 6886 575 116 5120	37 38 35 36 37	59 21 27 58 30	120 119 119 120 119	23 27 43 39 38	1887 1959 1938 1938 1941	PG&E Company Div of Highways Belridge Oil Co. Southern Pacific Co. US Natl Park Service
V2 C0 B3 C3	8406 8407-11 8450 8455 8460	South Lake South Lake Farms Hdq. Spring Gap Forebay Springville 7 ENE Springville RS	S WB WB	Inyo Kings Tuolumne Tulare Tulare	9580 190 3000 2470 1050	37 35 38 36 36	11 56 11 10 08	118 119 120 118 118	34 39 06 42 48	1948 1959 1921 1953 1924	Calif Elec Power Co South Lake Farms PG&E Company Elmer A. Sutton USForest Service
C3 C2 B3 C1 C0	8463 8499 8510 8520	Springville Tule Headwrks Squaw Valley Stanislaus Pover House State Lakes Stevenson Dist Sec 33	WB WB S	Tulare Fresno Tuolumne Fresno Tulare	4070 1750 1130 10300 212	36 36 38 36 36	12 45 08 56 03	118 119 120 118 119	39 13 22 35 30	1907 1961 - 1955 1951	PG&E Company Edgar Young PG&E Company Corps of Engineers J. G. Boswell Co.
C3 C1 C7 C7 C6	8620 8643 8752 8755 8826	Success Dam Summit Meadow Taft Taft KTKR Radio Tehachapi	S WB WB	Tulare Fresno Kern Kern Kern	590 6240 1025 1030 3975	36 37 35 35 35	03 05 09 09 08	118 119 119 119 118	55 13 28 28 27	1959 1960 1940 1954 1876	Corps of Engineers Dept Water Resources Kern Co Fstry & FD Jerry Mann Mrs. Anita Cowan
C6 C6 C2 C7 C2	8832 8839 8868 8912	Tehachapi RS Tejon Rancho Terminus Dam Thirty-Two Corral Three Rivers 6 SE	WB WB	Kern Kern Tulare Fresno Tulare	3975 1425 965 1700 2200	35 35 36 36 36	08 02 25 19 22	118 118 119 120 118	27 45 00 22 51	1940 1895 1959 1959 1940	Kern Co Fire Dept. Tejon Ranch Co. Corps of Engineers V. Ciesielski Glenn Baker
C2 C2 B0 B8 C0	8914 8917 8997 8999 9006	Three Rivers Edison PH 2 Three Rivers Edison PH 1 Tracy 2 SSE Tracy Carbona Tranquillity Glotz	WB WB WB WB	Tulare Tulare San Joaquin San Joaquin Fresno	950 1140 105 140 165	36 36 37 37 36	28 28 43 42 37	118 118 121 121 120	53 52 25 25 14	1909 1940 1951 1934 1953	So Calif Edison Co So Calif Edison Co Aage R. Tugel Banta Carbona Irr Co Ted Gromala
C0 C1 C0 C0	9025 9051 9051-04 9052	Traver 4 ESE Trimmer RS Tulare Tulare Dist Sec 27 Tulefield	WB	Tulare Fresno Tulare Kings Kern	285 736 293 179 295	36 36 36 36 35	26 54 13 04 09	119 119 119 119 119	24 17 20 48 01	1962 1948 1919 1953 1948	Dept Water Resources US Forest Service So Calif Edison Co J. G. Boswell Co. Kern County Land Co
C3 C3 C5 B3 B4	9059 9060 9061 9062 9063	Tule River Intake Tule River PH Tunnel RS Tulloch Dam Tuolumne Meadows	s	Tulare Tulare Tulare Calaveras Tuolumne	2450 1240 8950 515 8600	36 36 36 37 37	10 08 22 53 53	118 118 118 120 119	42 47 17 36 20	1910 1910 1945 1958 1947	So Calif Edison Co So Calif Edison Co Dept Water Resources Oakdale Irrig Dist Dept Water Resources
B0 B0 B0 C0 B7	9073 9073-01 9073-02 9145	Turlock Turlock 5 SW Turlock 8 WSW US Cotton Field Sta Upper Chiquito	WB	Stanislaus Stanislaus Stanislaus Kern Madera	104 76 60 367 6800	37 37 37 35 35	29 28 27 32 30	120 120 120 119 119	51 55 58 17 24	1893 1958 1958 1922 1962	Carl A. Pearson Chatom Co. Ltd. Herbert Ellis US Dept. Agriculture US Forest Service
D1 B8 B7 B0 C0	9189 9238-01 9301 9302-01 9304	Upper Tres Pinos Valley View Mine Vermilion Valley Vernalis 3 SE Vestal	WB S	San Benito San Benito Fresno Stanislaus Tulare	2050 1575 7520 69 500	36 36 37 37 35	38 38 22 37 50	121 120 118 121 119	02 56 59 13 05	1940 1960 1947 1958 1920	Eldon Fancher Closed June, 1962 So Calif Edison Co See Maze Bridge 2 S So Calif Edison Co

TABLE A-1
PRECIPITATION STATION INDEX (Continued)

Oromoge Bosin	Alpha Order	Station Name		Elev	Lo	ıt.	Lo	ng.	Record	Observer		
Droug Bo	Number	Station Name	County	FIRK	Dag.	Min.	Deg.	Min.	Began	Cusarver		
co	9367	Visalia WE	Tulare	354	36	20	119	18	1903	Tulare Co. C of C		
CO	9369	Visalia 4 E	Tulare	357	36	20	119	13	1959	J. V. Pimentel		
CO	9452	Wasco WE	Kern	333	35	36	119	20	1899	Kern Co Fstry & FD		
B5	9482	Wawona RS WE	Mariposa	3965	37	32	119	40	1934	US Natl Park Service		
C5	9512	Weldon 1 WSW WE	Kern	2680	35	40	118	18	1940	Vernon J. Blount		
CO	9535	West Camp SLF	Kings	290	35	51	119	53	1959	South Lake Farms		
В6		Westfall RS	Madera	4795	37	27	119	39	1958	US Forest Service		
CO.	9560	Westhaven WE	Fresno	285	36	13	119	59	1925	Boston Ranch Co		
BO	9565	Westley	Stanislaus	85	37	33	121	12	1928	W. Stanislaus Irr Dist		
C5	9602	Wet Meadow	Tulare	9200	36	22	118	32	1959	Corps of Engineers		
CO		Wilbur Ditch	Kings	210	35	56	119	45	1961	South Lake Farms		
Cl	9749	Wishon Res	Fresno	6600	37	01	118	58	1957	PG&E Co		
C5	9754	Wofford Heights WE	Kern	2700	35	43	118	27	1894	James H. Jorgensen		
Cl	9773	Woodchuck Meadow S	Fresno	9200	37	02	118	54	1955	Corps of Engineers		
C4	9805	Woody	Kern	1630	35	42	118	51	1953	Kern Co Fstry & FD		
B5	9855	Yosemite Natl Park WE	Mariposa	3985	37	45	119	35	1904	US Natl Park Service		
1												

(In anches)

	4114	1				In inche	-					, =			
Drainoge Bosin	Alpha Order Number	Station Name	Seasonal Total	July	Aug.	Sept.	Oct	Nov	Dec.	Jon.	Feb.	Mor	Apr.	Моу	June
CO 86 CO C7	0009 0049 0204	Academy Ahwahnee 2 NNW Angiola CD	14.39 29.77 6.27 8.04	.00	.00 .00	.04 .07 .08	.93 1.82 .09	.00 .40 .00	.34 1.35 .03	3.85 6.46 .60 1.62	2.42 7.70 1.45 2.38	2.69 4.66 1.40 2.00	3.51 5.94 1.75	.58 1.18 .17	.00 .11 .70
D6	0215 0239 0332 0332-02	Annette Apache Camp HPO Arvin Arvin Frick	5.65	.00	.00	.00	.44 .13	.00 .00	.00 .00	.07	1.36	2.00 1.65 1.27 1.32 4.89 1.87	1.23 1.97 1.13	.15 .29 1.13	.00 .02 .30 .04
CO C2 80 C2	0343 0374 0379	Arvin Frick Ash Mountain Atwater Craig Atwell S Auberry CD	4.52 29.61 14.19 42.02	.06 T	.00 .00	.06 .21 T	.28 .91 .41	.15 .28 July 24,	.01 2.06 1962 to	.25 6.37 1.31 July 2 7.27	1.11 7.33 4.53 6. 1963	4.60	.93 8.54 3.34	1.07	.07
B7 B7 C0 C7	0381 0396-02 0399 0399-01	Auberry CO Auberry Valley Avenal-Walden Avenal Orchard Ranch Avenal 8 SW	24.15 22.82 6.33 5.88 11.91	.15 .00 .00 .00	.00	.03 T .00	1.27 1.50 .12 .10	.05 .00 .00	.80 .23 .12 .45	4.85 1.13 1.22 3.11	4.70 2.76 1.70 3.55	4.50 .64 .68 1.91	5.42 .58 1.32 1.46	.90 .86 .68	.10 .01 .06
C7 C2 85 B5 C0	0399-02 0422 0425 0430	Avenal 6 SSW Badger HPO Badger Pass S Bagby Bakersfield 1 W	9.25 23.46 43.75 25.76 4.61	.00	.00	.00 .13	1.19 2.50	.00 .13 pril 22, .57	.35 .00 1962 to 3.08	1.97 8.68 April 4.55	3.48 2.98 8, 1963 3.25 1.19	1.18 3.65 5.39 1.39	1.15 5.99 6.17 1.17	.74	.03 .08 T
C0 C1 C1	0442 0449 0534 0570	Bakersfield W8 Airport R CD Balch Power House HPD CD	4.55	.00	.00	.02 .11	.12	T	T .05	.12	1.54 5.82 1.963	1.25	.85 7.20	.26 .26 .65	.28
B5 B3	0573	Bear Valley Trubucco Beardsley Dam	26,23 25.81 40.54	.00	.00	.15 .35	2.65 2.98	July 23, .75 1.05	3.64 2.66	July 2 4.56 5.91	3.04 8.37	2.88 6.08	6.99 8.24	1.15 3.70	.00
C2 B4 C0 V2 B0	0617 0631 0684 0688-02	Beehive Meadow S Bellevue Benton Insp Sta Berenda 2 N	52.31 53.94 4.70 8.56 11.87	.00 .38	.00	.04 .52 .02	Septe .25 .01 .60	mber 12 .00 .01 .13	1962 to 1962 to .00 .00 2.07	Septem .02 4.06 1.37	1.38 .52 2.54	963 -1.01 1.01 1.82	.89 .32 2.80	.56 .87 0.52	.55 .86 T
87 87 87 87 V2	0755 0755-01 0755-02 0755-05 0767	819 Creek PM No. 1 SCE b 819 Creek PH No. 2 SCE b 819 Creek PH Mo. 3 SCE b 819 Creek PH Mo. 8 SCE b 819 Pine Creek S	38.29 31.63 27.40 31.51 24.62	.03 .10 .07 .10	.00 .00 .00	.42 .52 .40 .16	1.54 1.30 1.38 1.20 Oct	.32 .22 .19 .20 ober 29,	.25 .31 .31 .34 1962 to	12.03 9.82 6.79 10.33 Octobe	5.29 4.71 4.21 5.26 23, 19	5.97 5.73 5.28 5.27	8.08 6.87 7.33 6.89	3.63 1.76 1.30 1.57	.73 .29 .14 .19
V2 V2 C1 V2 C6	0776 0819 0821 0824 0825-01	Big Pine PH Mo. 3 Bishop Creek Intake 2 R CD Bishop Pass Snow Course S Bishop Union Carbide CD Bitter Creek Ss	11.54 21.90 28.30 19.71 5.05	.00 .28	.00	.54 .90	.00 .05 Sept .58	.00 .08 ember 24 .16 ptember	.00 .00 . 1962 .03 15, 196		4.12 2.30 r 1, 194 V11.00 30, 194	1.51 2.85 3 2.60	.77 2.35 2.01	.33 1.19 .65	.82 3.25 1.27
C0 C1 C1 D1 C0	0875 1069-01 1170 1174	Blackwells Corner CD Blasingame 8retz Mill Buena Vista HPO Buena Vista Ranch	3.42 20.07 37.988 M 3.82	.00 .05 .00 .00	.00 .00 .00	.00 .17 .00 .00	.00 1.17 2.06 .89 .14	.00	.03 .37 .00	.27 4.14 15.67 2.34 T	1.38 4.43 8.13 1.69 1.18	.27 4.11 5.02 2.60 1.04	.77 4.75 6.50E 2.64 .60	.11 .80 .60E .54	.59 T .00 .18
CD CD C6 C0 82	1175 1199-01 1244 1277	Buena Vista Ranch M & L Buena Vista Ranch M & L 2 Burgess Corrals Ss Buttonwillow CD Calaveras Big Trees CD	3.80 4.02 5.85 3.86 61.96	.00 .00	.00	.00	.08 .14 Se T 7.36	.00 .00 ptember .00 1.34	.00 .00 15, 196: T 3.82	.00 .00 to Jun .01 11.39	1.14 1.11 30, 196 1.33 11.27	.64 1.14 3 .71 8.61	1.77 1.35 .74 13.04	.00 .00	.17 .28 .51 1.05
83 C4 C3 C0 V7	1280 1300 1425 1479 1488	Calaveras Ranger Sta HPD Calif Hot Springs RS HPD Camp Nelson Canfield Ranch Cantil CD	M M 28.70 3.88 1.79	.00	.00 .00 .00	.10 - .00 T	5.68 - .00 .18 .05	1.09 .13 .00 .00	3.04 .04 .00 .00	14.64 4.38 8.00 T	4.84 5.38 9.26 1.00	8.44 4.01 4.64 1.02	9.59 5.14 5.17 .80	2.78 - .88 .45	1.26 .64 .75 .43 .13
C0 C0 B0 B8 B5	1490 1557 1580 1583 1588	Cantua Ranch Caruthers 4 E Castle AFB Castle Rock Rad Lab (R) Cathay Bull Run Ranch HPD CD	8.51E 8.48E 14.14 10.04 24.50	.00E .00 T	.00£ .00 .00	.00E .13 .00 T	.01 .28 .40 .91 2.00	.008 .04E .27 .25	2.35 .32 2.89 1.54 2.94	.60 .86 2.37 1.09 3.06	3.35 2.52 3.03 2.58 4.51	.35 1.37 1.87 1.44 4.35	1.68 2.57 2.82 1.89 6.33	.17 .25 .44 .34	.008 .14 .05 .00
B5 B5 B6 B6 B4	1588-01 1588-03 1590 1591 1697	Cathay Meyer Ranch Cathay 3 NNW Cathay Sawyer Ranch Cathay Stonehouse Cherry Valley Dam CO	31.68£ 24.87 25.32 23.24 52.34	.00£ .00 .03 .00	.008 .00 .01 .00	.00E .00 .03 .00	2.50 2.22 2.00 2.12 2.73	.47 .45 .39 .33	3.15 3.25 2.72 2.92 3.34	4.70 4.33 3.54 3.90 10.26	6.00 3.78 4.45 4.18 12.73	5.35 4.52 4.27 3.70 6.90	7.62 5.22 5.36 5.14 9.83	1.70 1.10 2.50 .93 3.56	.19 .00 .02 .02
87 03 C7 Z2 C0	1737 1743 1743-02 1754	Chiquito Creek S Cholame Hatch Ranch HPO Cholame Twisselman Chuchupate Ranger Sta HPD Citrus	46.02 8.05 8.56 M M	.00	.00	.00	.28 .27 .10	July 25, .00 .00 .00	1962 to .20 .09	July 10 1.16 .46 .64	2.50 2.90 2.35	1.59 2.04 2.19	1.44 1.85 1.68 RB	.65 .75 .04	.23 .20 .11
87 C0 C0 C7 C0	1844 1864 1864-02 1867	Clover Meadows GS S Coalinga CDF Coalinga CDF Coalinga Roberts Ranch Coalinga 1 SE HPO	45.84 8.27 6.24 15.17 7.04	.00	.00	.00	.04 .05 .47	July 25, T .00 .00	1962 to 1.36 .00 2.85 1.23	July 1 1.85 1.80 2.73 1.54	. 1963 2.35 2.49 3.76 1.90	.70 .68 2.67	1.25 .67 2.02	.64 .49 .63	.08 .06 .04
C7 B6 C0 B4 83	1869 1878 1885 1904 2003	Coalinga 14 WNW CD Coarsegold Coit Ranch Hdqtrs Cold Springs Copperopolis R	15.29 28.16 8.04 47.018 28.55	.00 .12 .00 .30E	.00 .03 .00 .158	.00 .22 T .25£	.41 1.77 .00 3.82 3.30	.00 .24 .00 .95	2.78 1.19 2.16 3.79 2.76	3.80 5.38 .06 7.72 5.80	3.46 6.45 3.31 7.12 3.16	2.35 4.88 .84 5.82 4.45	2.00 7.03 1.39 11.07 6.71	.36 .80 .10 4.22	.13 .05 .18 1.80
CO CO CO V2 V2	2012 2013 2013-05 2069 2071	Corcoran Irrig Dist HPO CD Corcoran El Rico 1 Corcoran El Rico 33 Cottonwood Creek S Cottonwood Gates	6.54 6.53 7.36 20.49 10.34	.00	.00	.00 .00 .17	.05 .06 .08 Oct	.00 .00 .00 pber 25,	.04 .09 .06 1962 to	.48 .36 .24 Octobe: 4.80	2.22 2.24 2.41 17. 196 3.40	1.20 1.04 .99	1.80 2.22 1.89	.48 .21 .83	.27 .31 .69
85 85 C5 87 V2	2072 2072-05 2114 2122 2181	Coulterville FFS Coulterville 5 E Crabtree Meadow S Crane Valley PH R Crowley Lake	29.128 39.07 28.30 43.26 17.08	.23 .23 .24	.00 .00	.04 .12	2.12 2.82 Septe 2.10 .29	.61 .73 mber 17, .29	2.52 3.56 1962 to .74	3.65 11.34 Septem 14.32 7.26	6.59 5.26 er 21, 1 8.82 4.28	5.248 5.28 963 6.77 2.21	6.05 7.58 7.83 1.11	1.99 1.99 1.61	.08 .16
C6 06 06 86 C0	2222 2236 2248 2288 2346	Cummings Valle; Duyama CD Cuyama Ranch HPO Daulton Delano CD	8.34 M 3.86 14.18 6.41	.00	.00	.00 .00 .00 T	.33 .12 .00 .85	.01 .00 .00	.00 .00 .00 1.50	.00 M .22 2.70	2.71 2.12 1.39 1.50 1.48	1.87 .97 .93 2.57 1.36	2.30 .91 .65 4.24 1.37	.40 .09 .57 .67	.72 .18 .10 .00
B8 B0 B0 C0	2369 2375 2389 2408 2436	Oel Puerto Rd Camp (R)CD(P) Oelta Ranch Denair CD Devils Oen SLF DiGlorgio	15.21 9.47M 13.31 5.56 4.31	.00	.00	T .00 .00 .00	1.21 .22 .22 .09	.16 .17 .30 .00	1.85 1.81 1.36 .05	3.06 1.08 1.58 .30	2.98 2.65M 3.46 2.50	2.29 1.37 2.62 .48 1.09	3.09 1.70 2.92 1.25 1.06	.45 .29 .65 .35	.12 .18 .20 .54
co co	2436	Devils Den SLF DiGiorgio	5.56	.00	.00	.00	.09	T T	.05	.17	.97	1.09	1.25		.73

TABLE A-2 HONTHLY PRECIPITATION (Continued)

(In inches)

ramoge	Alpha Order	Station Name	Sectional									10.			
Dramoge	Order Number	Station Name	Total	July	Aug.	Sept.	Oct	Nov	Dec.	Jan	Feb	Mor.	Apr.	May	June
C0 C7 C7 B4 C5	2440-01 2464 2464-01 2473 2492	Dinuba Alta Irrig Dist Domengine Ranch Oomengine Spring Don Pedro Reservoir Doublebunk Meadow S	12.05 9.00 13.25E 21.52 36.90	.00 .00 .00E	.00 .00 .00E	.26 .00 .00E .05	.46 .12 .00E 1.68	.04 .00 .00E .49 July 25,	.17 2.53 3.25 3.37 1962 to	2.84 1.75 3.97 July 1	2.09 1.94 5.83 3.17 , 1963	2.29 1.09 1.77 3.34	3.29 1.22 2.00 4.22	. 27 . 28 . 40 . 94	.34 .07 .00E .13
85 84 C1 C0 V0	2539 2609 2653 2756	Oudley's CD Early Intake PH East Vidette Meadow S Eighth Standard Ranch Ellery Lake CD	39.95 37.12 23.82 M 30.27	.37	.02	.06 .14	3.18 2.84 ,	.70 .64 ugust 10	3.28 2.50 , 1962 t RB .80	9.30 6.09 o August .05 9.60	6.36 6.68 24, 196 1.49 2.61	6.93 6.22 3 1.18 4.15	7.58 7.63 1.33 4.43	1.95 2.68 .51 2.52	.24 1.41 .02 1.95
C7 B0 B0 B0 85	2785 2820 2860 2909 2920	El Rancho Cantua El Solyo Ranch Escalon Swanson Eugene (R) Exchequer Reservoir CD	7.34E 10.97 13.55E 16.71 20.13	.00 .00 .00E .02	.00 .00 .00E .00	.00 .00 .02 .02	.00 .47 1.24 1.52 1.39	.00 .35 .60 .55	2.60 1.86 2.20 2.14 2.86	1.70 1.44 .68 .95 2.36	1.32 2.82 3.12 3.53 3.58	1.47 1.75 1.99 3.70 4.14	.25E 1.82 3.37 3.84 4.06	.00E .30 .32 .44	.00E .16 .01 .00
C0 B0 C7 B0 C0	2922 2968 3005 3063 3083	Exeter Fauver Ranch HPD Fancher Ranch Camp 3 Fellows Firebaugh 9 W Five Points 5 SSW CD	10.03 12.74 4.90 11.39E 5.85E	.00 .00 .00 T	.00 .00 .00	.18 .00 .00 .00	.37 .86 .07 T	.00 .14 .00 1.27	.00 2.02 .00 .93 1.20	2.34 1.45 .01 1.28	1.87 3.16 .98 4.26 1.64	2.07 1.91 1.16 2.00E	2.91 2.80 .88 1.50E 1.20E	.16 .40 1.30 .00	.13 .00 .50 .15
C0 B7 C0 B7 V0	3084 3093 3257 3261 3369	Five Points Diener Florence Lake HPD SCE b Fresno WB Airport RCD Friant Government Camp CD Gem Lake CD	4.97 36.89 11.59 16.24 21.81	.00 1.13 T .00	.00 .00 .00	.00 .80 T .18	.20 1.39 .73 1.22	.00 .30 .03 .08	.75 .14 .48 .72	.47 12.09 2.16 2.41 5.55	1.69 3.76 2.01 3.26 1.20	.37 6.21 2.10 3.28 3.46	1.12 6.06 3.66 4.47 3.85	.37 4.01 .39 .58 2.00	T 1.00 .03 .04 1.80
E5 C2 D1 C0 C4	3387 3397 3422 3428-01 3463	Gerber Ranch CD Glant Forest HPO CD Gliroy 14 ENE CD Gin Yard Glennville CD	24.09E 46.58 24.99 3.32 11.48	.00 .05 .00	.00 .00 T .00	.48 T .00	3.87 1.73 2.55 .20	.22 .33 .26 .00	1.78 .08 1.85 .00	4.64 11.33 4.80 .00	5.47 12.73 5.93 1.24 3.22	3.17 6.62 3.69 .47 2.97	4.10 10.36 5.36 1.34 2.95	.71 2.07 .41 .00	.13E .80 .14 .07
C4 C0 B4 C1 C1	3465 3512 3529 3548 3551	Glennville Fulton RS HPD Gosford Feed Mill Grace Headow S Granite Basin S Grant Grove HPD CD	M 3.74 42.64 47.84 41.07	.00 .00	.00	.00	.69 .13 Septe	.00 .00 mber 18, ugust 6,	.00 .00 1962 to 1962 to	* T	V6.49 1.01 er 16, 1 21, 1963 10.11	- .81 963	.81	.56	.42
B5 B4 B4 B0 B0	3612-03 3669 3672 3690-02 3690-04	Green Valley Ranch Groveland 2 HPD Groveland RS CD Gustine 5 SW Gustine Snyder	39.48 H 42.77 15.43 16.07	.28 .30 .20 .00	.00 .00 .00	.07 .07 .00	3.46 3.81 2.38 .22 .20	.85 .80 .80 .20	3.22 3.53 3.61 1.40 1.47	6.08 - 8.23 2.65 3.98	8.98 - 10.96 4.71 4.15	5.68 - 5.92 1.73 1.82	8.23 - 8.05 4.17 3.99	2.13 2.25 1.98 .27	.57 .35 .57 .08
80 80 V7 C0 C1	3694 3710 3747 3811-11	Gustine 7 SSW Gustine Avoaet Haiwee CD Hanford CD Haslett Basin	14.15 14.22 6.81 8.15 33.64E	.00 .00 .00	.00	.00 .00 .54 .01	.19 .10 T .10 2.04E	.12 .10 .00	1.48 1.46 .09 .19	4.14 3.72 .97 1.19 11.80E	2.64 3.08 2.78 1.68 8.23	1.78 2.08 1.44 1.37 4.77	3.58 3.44 .04 2.88 6.25E	.18 .17 T .56	.04 .07 .95 .17
D1 84 86 B2	3925 3928 3939 3948 3952	Hernandez 2NW CD Hernandez 7 SE HPD Hetch Hetchy Hıdden Valley Hıghland Lakes S	17.23 19.09 40.08 35.17 35.79	.00 .00 .20	.00 .00 .24	.02 .00 .74 .09	1.10 .97 2.20 2.75	.00 .00 1.04 .58 July 10,	2.17 2.70 1.66 3.22 1962 to	3.12 4.46 6.51 7.31 July 23	3.10 3.98 7.36 6.93 , 1963	3.73 2.87 6.07 5.41	2.95 3.30 8.13 7.79	.73 .52 3.16	.31 .29 2.77 .12
B0 C2 C0 C0	3981 4012 4061-01 4061-02 4061-03	Hilmar Hockett Headows Homeland Dist Sec 9 Homeland Dist Sec 17 Homeland Dist Sec 34	H 42.23 6.59 5.41 4.56	.00	.00	- .02 .00	.16 .06 .05	.27	1.67 1962 to .04 .03	1.46 August 2 .53 .33	7, 1963 1.98 2.81 1.64	- 1.09 .00 .73	1.84 1.40 1.12	- .23 .30 .23	- .80 .49
B5 85 B5 C3 B4	4102-01 4103 4120 4148	Hornitos Erickson Ranch Hornitos Giles Ranch Hosack S Huckleberry Lake S	18.136 24.17E 20.14 45.93 62.80	.00 .15 .05	.00 .00E	.00 .10 .05	1.50 2.00 1.64 0	.23 .51 .35 ctober 1	2.34 2.97 2.68 0, 1962 1962 to	2.97 2.42 3.59 to July Septemb	2.81 5.76 2.83 10, 1963 er 20, 1	3.40 4.55 3.57	4.00 5.07 4.54	.83 .64 .78	.05E .00E .06
B3 87 C7 V2 B5	4170 4176 4204 4235 4246	Hunters Dam CD P Huntington Lake HPD SCE b Idria CD (R) Independence Onion Vly HPD Indian Gulch	52.45 42.51 14.61 M 20.77E	.14 .10 .00 .28	.00 .00 .05	.13 1.02 .00 .84	5.59 2.10 .60 .68 1.50	1.10 .75 .03 .10	3.17 .27 2.31 .14 2.96	10.12 10.83 2.91 -	9.96 5.63 2.65 - 4.78	8.06 8.23 2.61 3.67 3.67	10.00 9.73 2.73 3.83 4.65	2.88 3.05 .40 2.91	1.30 .80 .37 2.77
V7 C5 85 C5 B7	4278 4303 4369 4389 4442	Inyokern CD Isabella Dam (R) Jerseydale GS Johnsondale CD Kaiser Meadowa S	1.84 8.62 52.04 27.00£ 48.87	.00 .00 .28	.00 .00 .02	.00 .00 .38	T .03 3.30 .41	.00 .00 .93 T	.02 .03 2.14 .00E	.15 1.52 11.39 7.31 June 25	.73 3.06 11.76 10.63	.84 2.06 6.76 3.95	.06 1.07 11.46 3.43	.13 3.04 .76	.04 .72 .58 .46
C2 C6 B8 C0 C5	4452 4463 4508 4510-02 4513	Kaweah PH No. 3 b Keene Kerlinger CD Kerman 2 ESE Kern Canyon	27.31 9.56 7.52 8.71 6.54	.04 .00 .00 .00	.00	.22 T T	.82 .71 .58 .21	.07 .00 .31 .02	.05 .00 1.33 .89	7.94 .12 .44 1.23	4.33 2.44 2.02 3.15 V2.44	4.56 2.36 1.14 2.20 1.48	8.16 2.83 1.59 .69 1.57	1.D3 .45 .11 .32 .49	.09 .65 .00 .00
C5 C5 C5 C5	4518 4519 4520 4523 4527-01	Kern River Intake Ho. 3 CD Kern R. Intake 3 SCE b Kern River PH No. 1 CD Kern River PH Ho. 3 CD Kernville RS	19.85 20.14 9.96E 12.68 9.26	.00 .00 .00	.00 .00 .00	.03 .01 T	.11 .12 .41 .04	.00	.00 .00 .00	4.59 9.31 .52 4.83 3.30	8.65 4.09 2.79 2.39 1.99	3.00 2.95 2.00E 3.02 2.12	2.47 2.57 2.08 1.88 1.52	.48 .44 1.73 .17	.52 .65 .43 .33
C0 C0 B0 B3	4534 4535 4536 4590 4664	Kettleman City 1 SSW CD Kettleman Hills Kettleman Station CD Knights Ferry 2 SE CD Lake Alpine S	6.61 5.41 5.69 20.31 69.34	.01 .00 .00	.00	.00 .00 .00	.05 .08 .05	.00 .00 .00 .78 July 10,	.04 .19 .16 2.33 1962 to	.51 1.01 1.02 1.19 July 23	2.83 1.76 1.93 5.46 . 1963	.58 .58 .66 3.00	1.54 1.00 1.27 5.26	.76 .75 .58	.29 .04 .02 .23
B4 V2 D3 C6 85	4679 4705 4767 4863 4883	Lake Eleanor S Lake Sabrina S La Panza Ranch HPD Lebec CD Le Grand Preston Ranch R	41.48 21.61 7.23 8.92E 18.92E	.22 .42 .00 .00	.45 .00 .00 .00	.18 1.40 .00 .00	2.02 .40 .25 .20	.97 .18 .00 .00	2.44 .05 .14 .00E	12.80 7.45 1.14 .04 3.50	3.60 1.80 2.15 2.68 3.05	5.70 3.33 1.53 3.00 3.39	8.60 2.50 1.53 2.67 4.36	3.00 1.20 .34 .04	1.50 2.88 .15 .29 .00E
80 C2 B0 C0	4884 4884-05 4890 4953-02 4957	Le Grand CD Le Grand 5 N Lemon Cove CD Linden Fire Sta Lindsay CD	15.25 13.45 11.88 18.03 9.79	.00 .00 T .08	.00 .00 .01	.00 .03 .11 .08	1.00 1.01 .48 2.03 .43	.07 .13 .00 .43	2.92 2.30 .05 1.96	1.94 1.82 2.74 1.43 1.55	2.63 2.27 2.15 4.05 2.24	2.55 2.37 2.47 3.44 2.30	3.49 3.03 3.64 4.14 2.60	.65 .49 .18 .38	.00 .00 .06 .00
B0 B7 V2 88 B3	4999-03 5040 5067 5074 5078	Livingston 5 W Logan Meadow S Lone Pine Cottonwood PH HPD Lone Tree Canyon CD Long Barn Exp Sta HPD	15.47 39.83 7.84 8.87E 48.79	.00	.00	.00 .15 .00	.11 Se .00 .62 3.61	.35 ptember : .00 .24 1.06	1.68 25, 1962 .03 1.50E 3.17	1.92 to July 4.46 .94 9.26	5.05 1, 1963 1.09 2.03 4.57	2.15 .82 1.20 9.11	3.39 .25 1.99 9.72	.18 .00 .30 4.85	.64 1.04 .05 2.61
L															

Dronoge	Alpho	Station Name		Seasonal										-1		
Draw	Number			Tatal	July	Aug.	5ep1.	Oct.	Nov.	Dec	Jan.	Feb.	Mar	Apr.	May	June
C6 V2 B0 B0 B0	5098 511-09 5116 5117 5118	Loraine LA Aqueduct Intake Los Banos 5 5 Los Banos Field Sta Los Banos	RPD CD	10.25 9.34 9.55 9.70 10.34	.00	.00	.00 .37 .00 .00	.71 .00 .12 .14	.00 .00 .11 .12	.00 .00 1.59 1.67 1.55	.56 1.01 1.22 2.13 1.55	3.55 6.23 3.22 2.42 3.48	2.36 .42 1.44 1.28 1.33	2.19 .25 1.60 1.69 1.83	.40 .42 .10 .22	6.4
B8 C0 C1 B4 B6	5119 5151 5155-51 5160 5202	Los Banos Arburua Ranch Lost Hills Lower Big Creek Lower Kibbey Ridge Lushmeadows Ranch	CD HP0 AS S	8.15 M 27.71E 61.30 37,39E	.00	.00	.00 .00	2.05 Sep 3.20	.10 .00 .00 tember 2	.02 .00 6 1962	1.38 .31 8.00 to Septe 8.10		.86 4.20 1963 3.12	1	.16 .85 .51	.00
80 C0 V2 B0 B0	5233 5257 5284 5297-01 5297-02	Madera Magunden Mammoth Pass Manteca Ro. 2 Manteca SP	CD b	9.62 4.33 65.95 12.32 12.32	.00	.00	.00 .00	.47 .16 No 1.07	.10 .00 ovember .27 .32	1.18 .00 5. 1962 1.73 1.70	1.10 .14 to Octob 1.15 1.05	2.34 1.17 e: 10.1 3.15 3.18	1.40 1.42 963 2.28 2.29	.90	.32 .29	
C7 C7 B5 B5 B6	5338 5338-01 5346 5346-01 5346-04	Maricopa Maricopa FS Mariposa Mariposa Reynolds Mariposa 8 ESE	CD	3.60 2.81E 37.80 38.91 37.03	.00 .008 .09 .10	.00 .008 T	.00 .00 .06 .00	.43 .34 2.79 2.23 3.25	.00 .00 .67 .71	E .00	T .01 7.48 8.65 5.19	.70 1.14 9.05 10.12 8.18	.48 .89 4.58 4.03 5.51		.96 .00 1.57 1.60	.06 .00E .18 .32
B5 85 C7 84 B0	5348 5352 5372-01 5400	Mariposa Circle 9 Ranch Mariposa RS Martinez Spring Mather Mattos Ranch	(R)	50.47 35.98 11.06E 31.80 10.23	.22 .00 .008 .33	.02 .02 .008 .25	.19 .00 .00 .00	3.30 2.82 .00 2.33	.93 .44 .00 .73	E 2.25	11.39 7.89 * 6.63 1.26	5 75	6.17 5.44 1.50 4.48 1.66	11.14 8.09 1.28 6.08 1.87	3.04 1.27 .28 2.24	.17 .35 .002 1.65
B0 B5 C7 B7 83	5460 5480-01 5496 5511	Maze Bridge McDiermid Sta McKittrick &S Meadow Lake Melones Oam	CD	10.74 40.22 4.30 31.34 33.00	.00 .20 .00 .05	.00 .00 .00	T .11 .00 .09	.45 2.82 .15 1.75 2.32	.32 .68 .00 .12	1.91 3.55 .00 .73 2.98	1.31 8.78 .05 6.49 2.86	B. 25	1.81 6.39 .94 5.69 6.27	1.73 7.18 .44 7.91 6.99	2.13 2.13 .95 1.33	.53
B0 B0 C0 C0 B0	5526 5528 5529 5530 5532	Mendota 1 NNW Mendota Dam Mendota Halfway Pump Mendota VDL Farms Merced Fire Station 2	CD	9.86 8.23 6.67 9.96 12.318	.00 .00 .00 .00	.00 .00 .00	T T .00	.29 .26 T .25	.02 .04 .00 .00	1.88		3.58 2.50 2.03 3.79 2.95	1.23 1.18 .76 .68	1.66 1.47 1.05 1.31 2.38	.27 .26 .15 .15	
B0 B0 B0 B0 B8	5532-01 5532-03 5534 5535 5550	Merced SP Merced 5 SE Merced Fancher Ranch Merced 2 Mercey Hot Springs	HPD CD	12.77 12.41 12.27 12.37 M	.00 .00 .00 .02	.00	.00 .00 .00	.54 .79 .82 .49	.22 .13 .14 .19	2.01 2.21 1.90 1.92 1.54	1.33 1.87 1.21 1.79 1.40	3.52 2.64 2.93 2.96 1.85	1.82 1.73 1.97 1.76	2.90 2.66 2.78 2.76	.36 .45	.06 .02 .07
C3 87 C2 C2 C1	5669 5680 5708 5723	Milo 5 NE Minarets RS Mineral King Miramonte Honor Camp Mitchell Meadow	HPD S S	31.50 M 40.21 25.81 35.94	.01 .13£	.00	.34 1.00	.76 1.60 1.30	.28 .26 July 2 .13 August	.13 4. 1962 .13 12. 1962	11.45 o July 8.20 to July	5.05 - 26, 1963 3.95 23, 1963	4.60	7.27 - 6.93	1.04	.63
B4 B0 B0 B0 V8	5735 5738 5740 5741 5756	Modesto Modesto KTRB Modesto 2 Mojave HPI	CD HPD	31.57 12.59 12.47 12.36 2.11	.03 .00 T	.00 .00 .00	.14 T .00 .02	2.65 .59 .66 .40	.68 .64 .56 .64	3.31 2.00 2.28 2.18 T	2.90 .99 .64 .99	7.18 2.68 3.02 2.38 .83	6.20 2.39 2.28 2.51 .80	5.72 2.97 2.67 2.97 .27	2.08 .32 .33 .24	.68 .01 .03 .03
V8 C5 C0 C1 V8	5758 5777 5893 6122	Mojave 2 ESE Monache Meadows Moody Ranch Mountain Rest FS Neenach	CD S	M 20.05 M 35.65 5.65	.03 .00	.00	.17	Sept 2.03 .02	ember 2:	.42	Septer 11.40	7.23 1.92	1963 5.08 2.32	RB RB 8.04 .88	.00 .55 1.17	.25 .02 .49
B0 B0 C0 B7 80	6168 6168-01 6230-50 6252 6303	Newman 2 NW Newman 1 5E North Belridge North Fork Ranger Sta Oakdale	CD	13.89 14.81 4.19 34.88 16.62	.00 .00 .00 .34	.00 .00 .00	.00 .00 .00 .02	.13 .79 .09 1.94 1.10	.13 .00 .33	1.54 2.21 .02 .69 2.34	3.18 3.22 .18 8.81	3.63 3.46 1.70 8.39 4.12	1.95 1.96 .20 5.61 2.89	3.13 2.90 .75 7.02 4.26	.05 .14 .91 1.47	.15 .08 .34 .07
B0 B6 C0 C7 C5	6305 6393 6395	Oakdale Woodward Oam Oakhurst Oilfields FFS Oilfields Joaquin Ridge Onyx	CD S	14.11 30.65 7.13 12.698 6.67	T .06 .00 .00	.00 .02 .00 Lober 3,	.04 .22 .00 1962 to	1.35 1.60 .10 Februar	.64 .24 .00 28, 1	1.44 1.20 1.25	.70 7.79 1.95	2.82 7.10 1.88 R 1.91	2.87 4.88 .72 1.65 1.73	3.78 6.35 .90 1.02E	.35 1.09 .33 .28	.12 .10 .00 .08E
C2 B0 B5 B8 C0	6476 6490 6552 6583 6651	Orange Cove Orestimba Ostrander Lake Pacheco Pass Paloma Ranch	S HPD	12.16E 13.18 54.05 16.10 4.00	.00	.00	.17 .00	.63 .14 .83	.04 .13 July 19 .10	.03 1.44 1962 to 1.27	2.99 2.00 Septemb 6.18 .00	2.20E 4.21 er 3, 19 2.32 1.06	2.29 1.83 63 2.24 1.32	3.39 3.04 2.66 1.41	.29 .10	.13 .29 .18
B8 B0 B0 B0 B4	6675 6676 6677 6679-05 6688	Panoche Panoche 2 W Panoche Creek Panoche Water Oistrict Paradise Meadow	CD CD	8.20 8.20 M 7.59 56.74	.00	.00	T .30	.14 .00 .15 Septe	.01 .04 .10 mber 16	1.62 1.55 1.32 1962 to	1.70 1.85 RB .91 Septemb	1.80 2.02 2.84 2.86 er 14, 1	1.59 1.04 .86 .96	1.40 1.11 1.06	.33 .00 .18	.34 .00 .23 .09
D3 D3 B0 C6 C2	6703 6706 6746-01 6754 6767	Parkfield Parkfield 7 NNW Patterson Pattiway Pear Lake	CD HPD CD	16.44 16.61 12.548 6.69 44.91	.00 .00 .00s	.00 .00 .008	.00 .00 .000	.67 .82 .41 .39	.00 .00 .22 .04 gust 13,	1.60 2.77 1.79 T 1962 to	2.19 4.25 2.18 T August	5.91 3.48 3.49 2.29 26, 1963	3.09 2.14 1.75 1.11	2.51 2.50 2.44 1.85	.47 .63 .17	T .02 .09 .36
B8 C1 83 C1 C1	6847 6857 6893 6895 6902	Pfeiffer Ranch Piedra Pinecrest Strawberry Pine Flat Dam Pinehurst	CD (R)	19.57E 16.14 52.02 18.83 26.67	.008 .05 .10 .01	.00E .00 .10 T	T .04 .10 .06	1.31 .85 3.79 1.32 1.45	.23 .05 .98 .05	1.85 .11 3.26 .19	3.03 3.54 10.84 4.06 7.85	3.66 3.99 6.28 4.57 5.01	3.74 2.79 8.11 3.49 4.05	4.91 4.28 10.38 4.53 5.69	.58 .37 5.11 .47	.26 .07 2.97 .08 .45
B7 C0 C0 C0	7077 7079 7093	Placer GS Pond 1 N Porterville Porterville 3 W Portuguese Meadow	CD	M 6.78 8.99 8.10 42,22	.07 .00 .00	.06 .00 .00	.70 .10 .07	1.55 -14 -30 -30	.30 T .00 .00 July 26	.74M .06 T T	.33 .66 .45 o July 8	1.53 2.42 2.21 , 1963	1.42 2.21 2.15	4.69 1.55 2.70 2.41	2.00 .69 .17 .12	.58 .96 .46
C4 C0 80 B4 D2	7096 7098-11 7099-11 7145 7150	Posey 3 E Poso Ranch Poso Canal Co. Hdq. Priest Priest Valley	CD	28.74 7.93 B.63 31.38E 22.09	.00 .00 .00 .07	.00 .00 .00	.22 .06 .00 .00	.93 .10 .38 2.59 1.43	.00 .00 .08 .75	.03 .00 1.22 3.38 2.99	3.97 .21 .72 3.72 4.42	8.77 2.11 2.85 7.02E 4.54	4.34 1.56 1.66 5.56 4.36	7.69 1.75 1.46 5.92 3.59	1.30 1.19 .26 2.12	1.49 .95 T .24
C5 C1 B6 B6 B6	7179 7259 7270-01 7272-01 7273	Quaking Aspen Rattlesnake Creek Raymond 3 SSW Raymond 10 N Raymond 9 N CD	S S (P)	46.36 45.51 16.44 27.76 26.67	.10 .10 .20	.00	.00	.90 2.01 1.95	July 25, aly 10, .00 .40	1962 to 1962 to 1.80 2.20 2.02	July 10 August 7 1.20 5.30 6.26	. 1963 . 1963 4.00 6.13 3.89	2.65 4.71 5.15	5.19 5.98 6.06	.60 .93 .81	.00

TABLE A-2 MONTHLY PRECIPITATION (Continued) (In inches)

						(In inche	S /									
inoge osin	Alpho Order	Station Name		Seasonal Tatal	Total						Jon. Feb. Mor Apr. May June						
8 6	Number				July	Aug	Sept	Oct	Nov.	Dec.							
86 C0 B0 C0	7276 7288 7460	Raymond 12 NNE Rector Reedley MVFD Ripon Riverdale	ъ	26.58 9.33 10.89 H 6.98	.22 T	.00	.02 .05 .08	1.80 .34 .42	.42 .00 .02	1.26 .22 .18	8.15 1.73 1.78	2.81 1.53 2.68	4.52 1.99 2.05	6.23 3.07 3.34 RB 1.88	1.10 .18 .17 .00	.05 .22 .17 .04	
V2 86 C0 87 C5	7510 7528 7555 7560 7579	Rock Creek Rocky Village Rosedale Rose Marie Meadow Round Meadow	8 88	25.81 22.70 4.89 43.81 37.42	.01	.00	.03	0ct 1.60 .22	ober 15, .30 .00 July 3, July 26	1962 to 3.04 .00 1962 to	November 4.00 .12 July 1 o July 9	2.85 1.06 , 1963	3 3.74 1.03	6.20 1.51	.91	.02	
B4 D1 Z2 C0 D1	7623 7719 7735 7753 7755	Sandberg WB San Emigdio Ranch	S HPD RCD CD HPD	58.03 14.48 5.56 7.82 21.20	.00 .00 .00	.00	.00 .00 T	Septe .56 .10 .55	mber 25, .00 .00 .00	1962 to 2.25 T .00 1.68	3.28 .07 .02 6.16	er 20, 1.89 2.25 2.29 2.89	963 3.42 1.58 1.72 3.29	2.39 1.00 2.20 4.75	.35 .02 1.04 .37	.34 .54 T	
C0 C0 C0 E7	7800-02 7800-03 7816	Sanger 1 NE Sanger RS San Joaquin San Joaquin MVFD San Joaquin Exp Range	HPD	13.15 10.78 6.31E 5.86 19.74	.04 .00 .00E .00	.00 .00 .00E .00	.06 .12 .00E .00	.72 .00 .00E .15	.01 .00 .00E .00	.38 .35 1.37 .53 1.25	2.60 2.51 .79 .50 4.67	2.89 2.10 1.77 2.28 2.85	2.46 2.03 .76 .90 4.04	3.66 3.34 1.53 1.38 4.56	.20 .23 .09 .12	.13 .10 .00E .00	
80 88 80 D7 D7	7836-01 7846 7855 8259-02 8259-04	San Juan Hdqrs M & L San Luis Dam San Luis Canal Co Hdq Simmler R. W. Cooper Simmler Haint. Sta	CD	9.56 M 10.35 8.26 6.81	.00	.00 .00 .00	.00 .00	.40 .41 .32 .28	.12 .14 .00	1.32 1.13 .13 .15	.75 RB .96 .65	3.27 3.28 3.80 2.85 2.53	1.28 1.80 1.38 1.81 1.51	1.65 2.58 1.51 1.74 1.48	.52 .32 .76 .48	.25 .12 .26 .28	
D2 C6 85 C1 D7	8276 8304 8318 8323-01 8326	Slack Canyon Smith Flat Snow Flat Soaproot Saddle Soda Lake	HPD Ss S	18.29 3.85 55.42 37.27E 6.76	.00	.00	.00	.87 Se 2.20 .27	.03 ptember June 25, .00	2.86 15, 1962 1962 to .00 T	3.75 to June July 16 16.50 1.20	4.33 30, 19 , 1963 6.98E 1.91	2.86 4.49 1.35	2.81 6.50s 1.24	.66 .60£	.00	
B4 G9 C0 B0 B5	8353 8355 8375-50 8378 8380	Sonora Sonora Junction South Belridge South Dos Palos So Entrance Yosemite NP	CD HPD CD	33.31 M 3.39 9.26 55.13	.06 .19 .00 .00	.00 .48 .00 .00	.01 .60 .00	2.94 1.53 .11 .27 2.69	.93 .18 .00 .08	2.97 .61 T 1.56 2.18	3.99 - .07 1.08 17.72	7.75 - 1.33 3.06 9.93	5.97 2.47 .30 1.23 6.91	6.79 1.00 .70 1.45 10.72	1.43 2.76 .38 .22 2.99	.47 1.34 .50 .31 .88	
V2 C0 B3 C3	8406 8407-11 8450 8455 8460	South Lake South Lake Farms Hdq Spring Gap Forebay Springville 7 ENE Springville RS	R CD	25.74 6.59 49.41 30.23 16.05	.00 .50 .00	.00 .18 .00	.00 .17 .12 .28	.06 4.33 1.06 .53	June 30, .00 * .20 T	1962 to .09 V4.38 .05 .04	June 30 .46 11.20 4.13 3.41	, 1963 2.06 4.28 10.16 3.43	.98 8.40 4.67 3.18	1.95 10.61 8.24 4.57	.39 4.15 1.26 .31	.60 1.21 .34 .30	
C3 C2 B3 C1 C0	8463 8499 8510 8520	Squaw Valley	HPD (P) S	M 21.40 36.70 37.88 6.81	.00 .00 .10	.00	.32 .18 .30	1.09 1.45 4.07	.16 .05 .95 ugust 7,	.06 .16 2.53 1962 to	- 6.73 5.74 August	3.37 5.90 22, 196 1.97	5.88 3.87 7.23	8.93 5.29 7.41 1.93	1.49 .30 2.19	.65 .00 .28	
C3 C1 C7 C7 C6	8620 8643 8752 8755 8826	Summit Meadow	(R) S HPD CD	9.98 51.31 M 4.58 5.45	.11 .00 T	.00	.07 .00 T	.29 .27 .10	.00 June 27, .00 .00	.00 1962 to .00 T	.81 July 1: .04 .01	2.83 . 1963 - .86 1.29	2.33 1.06 .99 1.49	2.92 .64 .83 1.46	1.36 1.14	.39 .57 .65	
C6 C6 C2 C7 C2	8832 8839 8868 8912	Tejon Rancho Terminus Dam Thirty-Two Corral	HPD CD R HPD	5.97 9.11 13.36 11.57£ 19.82	.00 .00 T .00E	.00 .00 .00 .00s	.03 T .14 .00E	.24 .88 .53 .00E	.00 T T .008	.00 T .04 2.50	.27 .05 2.05	1.78 2.41 3.21 V5.40 2.33	1.43 1.92 2.95 1.75 3.52	1.46 2.62 4.09 1.45 6.42	.06 .81 .27 .47	.70 .42 .08 .00£	
C2 C2 B0 B8 C0	8914 8917 8997 8999 9006		CD HPD HPD CD	23.92 22.86 7.96 8.80 7.32	.01 .00 .00	.00 .00 .00	.17 .22 .00 .00	.78 .77 .55 .65	.03 .08 .33 .34	.03 .04 1.15 1.29 2.16	7.93 8.12 .99 1.07	3.44 2.47 1.42 1.82 1.91	3.80 3.89 1.36 1.41 1.12	6.91 6.41 2.01 2.11 1.21	.77 .76 .15 .11	.05 .09 .00 T	
C0 C1 C0 C0	9025 9051 9051-04 9052	Traver 4 ESE Trimmer RS Tulare Tulare Dist Sec 27 Tulefield	b CD	9.53 24.48 8.83 5.92 4.53	.00 .02 .00 .00	.00 .00 .00	.30 .11 .23 .00	.43 2.03 .33 .08	.01 T .00	.21 .08 .10 .06	.95 7.28 1.32 .38	2.27 6.76 1.54 2.07 1.33	2.08 1.78 2.09 .79 1.31	3.00 5.92 2.90 1.71 1.05	.10 .50 .14 .71	.18 .00 .18 .12	
C3 C3 C5 83 84	9059 9060 9061 9062 9063	Tule River Intake Tule River PH Tunnel RS Tulloch Dam Tuolumne Meadows	b b s	30.23 18.07 22.95 22.26 35.33	.00	.00	.13 .14	1.03 .63 Septe 1.58	.22 .06 .06 .91 June 25,	.06 .04 1962 to 2.48 1962 to	8.93 3.60 Septem 1.47 July 1	5.31 3.93 er 25, 5.74 7, 1963	4.64 3.42 1963 3.63	8.25 5.42 5.20	1.27 .46	.39 .37	
80 80 80 C0	9073 9073-01 9073-02 9145	Turlock Turlock 5 SW Turlock 8 WSW U.S. Cotton Field Sta Upper Chiquito	CD S	12.86 16.35E 11.31E 6.50	.00 .00E .00E .00	.00 .00E .00E .00	T .00E .05	.20 .25 .21 .04 1.67	.27 .30 .20	1.49 1.30 1.43 .02	1.35 4.42 1.29 .17	3.69 3.68 3.00 2.14	2.25 2.80 1.90 1.49	3.27 3.15 2.88 1.40	.32 .25 .20 .56	.02 .20 .20 .63	
01 87 C0 C0	9189 9301 9304 9367 9369	Upper Tres Pinos Vermilion Valley Vestal Visalia Visalia 4 E	HPD S b CD	13.38 29.13 7.18 9.08 9.83	.00	.00	.00 .22 .02 .05	.71 .21 .40 .36	.16 June 20, .00 T	2.19 1962 to .00 .05 .45	2.29 June 2 .60 .82 1.69	2.13 1963 1.79 2.13 1.71	3.30 1.51° 2.10 1.90	2.30 1.79 3.15 3.17	.30 .24 .22 .18	.00 .82 .19	
C0 B5 C5 C0 B6	9452 9482 9512 9535	Wasco Wawona RS Weldon 1 WSW West Camp SLF Westfall RS	CD HPD HPD	7.15 M 5.77 6.02 58.21	.00	.00 .14 .00 .00	.00 .21 .00 .00	.09 2.05 .00 .07 2.45	.00 .53 .00 .00	.00 1.67 .00 .03 2.23	16.10 2.09 .25 15.53	1.94 5.12 .58 2.72 16.91	1.72 7.99 1.61 .94 7.95	1.40 7.91 .51 1.50 9.62	1.04 2.67 .69 .29 2.29	.74 .44 .29 .22	
C0 B0 C5 C0	9560 9565 9602 9749	Westhaven Westley Wet Meadow Wilbur Ditch Wishon Res	CD S b	6.01 11.75 40.27 7.20 48.98	.00	.00	.00 .00	.07 .50	.00 .33 July 14, .00	.23 1.81 1962 to .04 .20	.52 2.09 August .40 16.73	2.56 2.90 28, 1963 2.33 8.89	.50 1.87 1.13 7.72	1.37 1.96 1.81 9.95	.55 .09	.21 .20 1.02 .56	
C5 C1 C4 B5	9754 9773 9805 9855	Wofford Heights Woodchuck Meadow Woody Yosemite National Pk HPD	CD S	8.66 48.29 10.38 39.76	.00	.00	.04 .02 .71	.02 .58 1.58	.00 July 12 .00	.00 1962 to .00 1.23	2.91 August .46 10.06	1.99 9, 1963 2.81 6.50	2.12 2.38 7.76	1.05 3.33 7.09	.23 .54 2.73	.30 .71 .82	

8 =	Alpha															
Drainoge Bosin	Order *Number	Station Name		July	Aug	Sept.	Oct	Nov.	Dec.	Jan.	Feb.	Mar	Apr	Moy	June	
в6	0049	Ahwahnee 2 NNW	Max Min Av Max Av Min Avg	95 59 89.6 66.0 77.8	97 60 89.2 65.7 77.4	94 56 86.7 62.5 74.6	88 44 76.9 53.4 65.2	86 33 69.7 46.3 58.0	79 30 68.1 43.2 55.6	72 23 59.9 36.4 48.2	82 40 66.8 46.1 56.4	70 29 59.8 39.2 49.5	74 32 57.9 41.0 49.4	86 40 71.4 54.6 63.0	92 48 77.4 56.9 67.1	
C0	∪396	Avenal Walden	Max Min Av Max Av Min Avg	107 60 102.1 66.3 84.2	M M M M	M M M M	93 44 77.0M 52.0 64.5M	82 37 68.5M 45.5M 57.0M	M M M	66 21 55.6M 32.6M 44.1M	75 40 66.2 50.0 58.1	77 33 66.4 44.9 55.6	80 40 69.6 48.9 59.2	95 48 81.0 58.8 69.9	105 55 90.5 63.0 76.7	
B5	0430	Bagby	Max Mln Av Max Av Min Avg	106 58 99.7 62.9 81.3	106 54 98.9 61.5 80.2	102 52 95.7 57.9 76.8	96 42 80.0 48.8 64.4	86 31 70.2 41.5 55.9	78 28 61.2 37.6 49.4	65 22 57.2 31.5 44.4	78 38 69.5 45.8 57.6	70 32 62.3 38.6 50.4	76 34 60.9 40.3 50.6	RE RE RE RE		
co	155"	Caruthers 4 E	Max Min Av Max Av Min Avg		RB RB RB RB	99M 46M 90.4M 51.6M 71.0M	91 40 77.8 47.1 62.5	M M M M	77 20 59.3 34.5 46.9	63 17 54.4 28.3 41.4	77 37 69.0 44.6 56.8	85 31 69.4 39.0 54.2	82 33 66.0 39.3 52.6	99 41 87.0 52.1 69.6	108 46 92.8M 55.3M 74.0M	
BO	1580	Castle AFB	Max Min Av Max Av Min Avg	106 56 96.2 63.5 79.8	103 53 91.4 61.0 76.2	97 50 86.2 56.8 71.5	90 41 74.0 50.1 62.0	78 30 66.6 41.2 53.9	69 25 54.2 37.8 46.0	63 22 50.8 31.2 41.0	69 40 64.1 47.6 55.8	74 33 62.4 41.1 51.8	74 34 62.5 44.1 53.3	94 42 75.8 52.4 64.1	101 50 84.3 56.1 70,2	
B8	1563	Castle Rock Rad Lab	Max Min Av Max Av Min Avg	104 54 97.0 61.4 79.2	104 53 93.3 61.2 77.2	99 46 88.6 56.5 72.6	91 40 76.1 50.3 63.2	80 33 69.9 43.6 56.8	70 21 57.7 34.7 46.2	65 18 54.2 27.9 41.0	76 36 67.2 47.2 57.2	76 32 64.8 40.9 52.8	77 33 65.3 44.1 54.7	96 38 77.8 52.6 65.2	104 50 86.7 57.7 72.2	
В6	1590	Cathay Sawyer Ranch	Max Min Av Max Av Min Avg	101 54 95.3 61.9 78.6	103 52 93.5 60.6 77.0	98 50 88.5 57.1 72.8	90 43 73.4 50.0 61.7	80 26 64.5 40.9 50.7	72 22 58.2 37.8 48.0	65 21 52.2 30.3 41.2	74 37 62.9 44.7 53.8	72 30 59.0 36.0 48.5	71 30 59.9 40.2 50.0	86 37 72.4 51.0 61.7	99 43 82.2 53.3 67.7	
В6	1591	Cathay Stonehouse	Max Min Av Max Av Min Avg	101 50 94.6 55.8 75.2	102 45 93.5 55.1 74.3	97 45 89.0 51.6 70.3	90 38 71.8 46.1 59.0	80 24 65.4 37.0 51.2	74 20 58.6 33.7 46.2	64 16 53.2 26.4 39.8	75 31 63.9 41.2 52.6	73 25 60.4 34.3 47.4	73 25 61.6 38.7 50.2	87 34 74.5 48.5 61.5	97 38 83.6 49.0 66.3	
B4	1904	Cold Springs	Max Min Av Max Av Min Avg	M M M M	M M M M	M M M M	80 29 66.7 40.2 53.5	76 21 60.3 34.9 47.6	67 16 52.7 31.9 42.3	62 12 45.2 26.3 35.8	M M M M	63 16 46.5 26.0 36.2	60 13 44.0M 27.7M 35.8M	82 28 60,6 39.2 49.9	80 32 67.4 42.9 55.6	
CO	2013	Corcoran El Rico l	Max Min Av Max Av Min Avg	102 51 96.4 56.2 76.3	102 46 93.6 55.6 74.6	102 46 88.8 52.0 70.4	91 37 76.0 45.3 60.6	84 70.2 38.9 54.6	74 19 60.6M 35.1M 47.8M	66 17 55.1 28.7 41.9	72 38 67.6 46.6 57.1	80 30 66.6 39.5 53.0	80 31 68.5 43.2 55.8	96 38 81.7 51.3 66.5	106 46 88.7 54.6 71.6	
B5	2012	Coulterville FFS	Max Min Av Max Av Min Avg	109 56 94.4 64.2 79.3	100 55 91.8 62.7 77.2	95 52 86.8 58.9 72.8	89 41 72.2 49.5 60.8	81 30 65.1M 43.3M 54.2M	72 26 M M	63 25 M M	72 34 M M	70 32 M M	7 2 M M M	86 M M M	98 44 82.6M 52.9 67.7M	
В7	2122	Crane Valley PH	Max Min Av Max Av Min Avg	97 58 90.0 63.4 76.7	99 56 89.3 63.0 76.2	92 52 85.7 58.4 72.0	88 40 73.5 49.3 61.4	82 30 64.1 41.7 52.9	72 16 60.5 37.8 49.2	66 20 55.1 31.4 43.2	78 36 62.3 41.9 52.1	66 30 56.3 36.8 46.6	70 30 54.9 38.8 46.8	84 40 70.0M 50.6M 60.3M	93 30 78.2 52.6 65.4	
C6	2222	Cummings Valley	Max Min Av Max Av Min Avg	94 42 87.2 45.9 66.6	99 37 88.0 44.8 66.4	96 31 85.4 40.3 62.9	92 26 74.3 33.3 53.8	80 14 66.0 27.3 46.7	74 10 61.5 29.3 45.4	66 8 57.4 23.6 40.5	76 26 63.6 37.9 50.8	70 20 56.4 30.2 43.3	76 20 56.0 31.0 43.5	86 28 70.0 40.0 55.0	90 34 72.9 43.9 58.4	
B8	2369	Del Puerto Road Camp	Max Min Av Max Av Min Avg	106 52 97.3 59.7 78.5	100 50 92.2 57.8 75.0	94 48 86.0 53.5 69.8	88 38 72.8 47.2 60.0	82 30 66.5 40.7 53.6	70 24 58.7 36.7 47.7	64 18 54.1 29.1 41.6	72 36 60.8 40.4 50.6	70 30 63.6 39.3 51.4	76 30 62.5 40.5 51.5	90 38 78.1 48.6 63.4	106 44 88.2 53.7 70.9	
C0	2436	Di Giorgio	Max Min Av Max Av Min Avg	106 56 99.8 60.8 80.3	107 54 97.3 59.5 78.4	104 48 92.9 55.0 74.0	98 42 80.6 47.9 64.2	87 30 70.6 41.1 55.8	78 23 63.3 35.8 49.6	71 21 59.0 33.5 46.2	80 40 70.1 49.6 59.8	81 40 70.6 45.8 58.2	83 40 70.4 48.4 59.4	100 44 83.9 57.6 70.7	105 52 88.0 60.6 74.3	
C7	2464	Domengine Ranch	Max Min Av Max Av Min Avg	101 57 96.5 69.1 82.8	102 54 94.2 66.0	101 52 87.5 64.0 75.8	92 40 74.8 53.0 63.7	82 39 66.9 50.3 58.6	72 34 57.6 44.4 51.0	65 25 53.0 37.0 45.0	80 43 65.1 50.6 57.8	75 36 63.2 43.8 53.5	78 36 65.4 45.3 55.4	97 45 79.4 53.7 66.6	101 39 86.6 59.2 72.9	
в4	2473	Don Pedro Reservoir	Max Min Av Max Av Min Avg	105 53 97.5 63.7 80.6	104 56 95.3 61.7 78.5	99 50 90.6 57.3 73.9	97 42 77.7 50.2 63.9	B6 30 69.3 42.5 55.9	70 27 59.2 38.1 48.6	65 23 54.5 30.2 42.3	75 37 66.5 42.9 54.7	75 31 62.6 37.7 50.1	76 31 63.6 41.8 52.7	93 39 77.1 49.7 63.4	104 43 86.9 53.1 70.0	
co	3084	Five Points Diener	Max Min Av Max Av Min Avg	103 58 98.5 62.5 80.5	102 52 94.7 61.7 78.2	101 52 89.9 57.7 73.8	91 43 76.3 50.7 68.5	84 26 68.0 43.0 55.5	71 22 57.0 37.5 47.2	65 21 54.1 31.4 42.8	73 41 65.7 47.6 56.6	80 33 66.2 41.0 53.6	80 34 68.5 44.5 56.5	96 42 81.5 52.9 67.2	104 50 88.1 57.6 72.8	
В6	3948	Midden Valley	Max Min Av Max Av Min Avg	101 58 94.9 64.7 79.8	103 56 94.8 63.7 79.2	101 55 91.5 60.1 75.8	92 43 75.3 51.3 63.3	83 30 66.5 43.6 55.1	75 26 61.7 39.2 50.4	67 23 55.4 31.9 43.7	78 38 64.7 44.4 54.6	70 29 60.2 38.0 49.1	74 30 60.5 40.6 50.6	96 39 75.1 52.3 63.7	103 40 84.8 54.1 69.4	
B5	4103	Mornitos Giles Ranch	Max Min Av Max Av Min	101 54 94.3 65.3 79.8	100 54 92.2 63.3 77.8	96 52 87.8 59.8 73.8	90 44 73.2 52.4 62.8	82 28 65.9 44.6 55.3	74 28 57.6 40.3 49.0	62 22 52.0 32.8 42.4	72 40 63.1 47.1 55.0	74 32 60.2 40.4 50.3	72 32 61.4 42.7 52.0	88 40 73.9 51.1 62.5	98 46 83.0 54.7 68.8	

TABLE A-3
MONTHLY TEMPERATURES (Continued)

8 5	Alpha Order	Station Name													
Bosin	Order "Number	Station Name		July	Aug	Sept	Oct	Nov.	Dec.	Jan.	Feb.	Mor	Apr.	May	June
83	4170	Hunters Dam	Max Min Av Max Av Min Avg	95 44 88.4 49.8 69.1	96 42 87.3 48.4 67.8	95 40 85.5 44.7 65.1	88 31 72.8 39.2 56.0	84 23 60.9 31.5 46.2	74 15 59.6 30.4 45.0	64 12 54.0 23.7 38.8	74 28 61.0 36.9 48.9	66 20 53.6 28.9 41.2	69 22 52.4 32.9 42.6	84 30 67.5 41.7 54.6	89 33 74.9 43.6 59.2
cs	4303	Isabella Dam	Max Min Av Max Av Min Avg	103 58 96.3 63.6 80.0	107 55 96.9 63.1 80.0	102 50 92.8 56.3 74.6	96 38 80.0 46.9 63.5	87 28 6B.8 40.2 54.5	75 12 63.6 31.9 47.8	68 16 58.8 28.6 43.7	77 34 64.5 41.0 52.8	73 26 60.6 37.0 48.8	78 27 60.4 38.8 49.6	93 34 75.7 51.2 63.4	96 44 80.7 55.3 68.0
26	4463	Keene	Max Min Av Max Av Min Avg	94 46 90.8M 55.0M 72.9M	96 42 89.3 54.5 71.9	94 42 83.8 53.4 68.6	91 38 70.8 45.5 58.2	85 22 63.0 37.9 55.5	77 23 64.3 37.2 50.8	66 19 57.0 31.1 44.1	87 30 65.5 42.1 53.8	76 27 61.0 34.2 47.6	69 27 59.3 37.0 48.1	87 32 73.1 46.5 59.8	93 40 79.8 49.7 64.7
25	4513	Kern Canyon	Max Min Av Max Av Min Avg	99 60 95.4 67.6 81.5	98 60 - -	98 51 89.7 64.8 77.2	91 46 74.4M 53.8M 64.1M	76 M M M	73 24 60.6M 39.1M 49.9M	71 22 M M	78 41 65.1M 47.5M 56.3M	73 34 63.4M 42.5M 53.0M	76 34 64.2M 45.2M 54.7M	92 43 76.6M 55.3M 65.9M	98 53 83.8 61.5 72.6
00	4535	Kettleman Hills	Max Min Av Max Av Min Avg	101 60 95.5 70.4 83.0	101 56 93.3 68.6 81.0	98 54 88.1 65.7 76.9	89 49 73.4 56.5 65.0	81 39 65.2 50.7 58.0	72 33 58.0 45.3 51.6	64 24 51.7 37.9 44.8	78 44 63.2 50.6 56.9	74 37 62.7 45.5 54.1	76 38 63.8 46.0 54.9	93 48 78.1 56.6 67.3	102 52 85.1 62.4 73.7
90	4999-03	Livingston 5 W	Max Min Av Max Av Min Avg	106 49 100.0 55.7 77.8	110 47 98.7 54.3 76.5	104 45 93.3 48.4 70.9	97 39 79.6 46.4 63.0	83 29 70.9M 37.5M 54.2M	70 25 56.2M 36.1M 46.2M	66 19 54.3M 27.9M 41.1M	77 38 66.7M 45.6M 56.2M	77 30 68.5M 38.3M 53.4M	80 34 66.4 42.4 54.4	95 37 81.8M 49.6M 65.7M	107 45 91.0 52.1 71.6
30	5117	Los Banos Field Sta	Max Min Av Max Av Min Avg	103 53 96.1 58.1 77.1	102 51 94.0 57.0 75.5	98 48 89.0 52.0 70.5	91 41 77.0 47.0 62.0	80 28 68.0 41.0 54.5	68 21 57.0 32.0 44.5	67 20 54.0 28.0 41.0	71 38 66.0 46.0 56.0	72 30 63.0 39.0 51.0	76 32 65.0 43.0 54.0	94 42 78.0 51.0 64.5	103 51 86.0 56.0 71.0
36	5202	Lushmeadows Rch	Max Min Av Max Av Min Avg	92 56 85.5 64.7 75.1	M M M	88 54 M M	M M M	M M M	M M M M	66 23 54.2 33.5 43.8	76 37 62.6M 41.3M 52.0M	72 27 58.9M 35.5M 47.2M	74 29 56.8M 36.8M 46.8M	M M M M	M M M
00	5257	Magunden	Max Min Av Max Av Min Avg	107 46 101.9 63.9 82.9	106 60 98.6 65.3 82.0	102 46 92.8 59.9 76.4	93 44 78.8 51.8 65.3	85 31 66.1 41.2 53.7	78 19 62.1 35.5 48.8	68 18 58.0 29.8 43.9	78 41 69.4 48.6 59.0	83 37 68.1 43.8 56.0	81 38 69.6 46.8 58.2	97 44 83.7 57.2 70.4	106 52 89.6 61.6 75.
95	5348	Mariposa Circle 9 Rch	Max Min Av Max Av Min Avg	104 48 98.4 55.0 76.7	104 44 94.0 54.0 74.0	93 42 86.8 50.2 68.5	84 33 71.3 42.4 56.8	80 23 58.3M 33.5M 45.9M	70 19 58.5 32.3 45.4	64 16 53.7 27.5 40.6	73 30 60.0M 37.2M 48.6M	65 18 54.5 28.9 41.7	74 21 53.4 33.1 43.2	93 30 70.8M 45.1M 58.0M	100 34 81.3 45.9
B5	5,352	Mariposa RS	Max Min Av Max Av Min Avg	99 53 93.9 58.4 76.2	101 49 93.0 56.6 74.8	97 47 89.1 53.3 71.2	91 31 76.5 45.5 61.0	85 27 68.1 38.7 53.4	76 22 63.4 34.4 48.9	70 19 56.6 27.1 41.8	80 33 66.4M 40.1M 53.2M	72 26 61.6M 33.9M 47.8M	71 26 59.4 36.5 48.0	89 35 74.0M 49.0M 65.1M	96 41 81.4 51.8 66.6
87	5496	Meadow Lakes	Max Min Av Max Av Min Avg					RB RB RB RB	73 25 58.8 41.6 50.2	64 19 51.7 34.8 43.2	75 34 58.6 42.4 50.0	62 24 52.0 34.2 43.1	66 25 47.7 33.6 40.6	84 34 64.4 50.4 57.4	86 44 73.6 52.6
B7		Minarets	Max Min Av Max Av Min Avg	90 45 84.3 51.9 68.1	94 40 B5.7 47.7 66.7	90 35 81.2 44.8 63.0	86 30 71.4 40.7 56.1				f winte:	season			84M 34M 71.6 43.1
30	5740	Modesto KTRB	Max Min Av Max Av Min Avg	104 50 95.7 56.0 75.8	99 51 91.4 57.1 74.2	95 50 87.2 53.3 70.2	92 43 74.7 49.4 62.0	82 31 68.4 41.3 54.9	67 25 53.8 39.2 46.5	63 20 52.4 30.7 41.6	73 37 67.7 46.7 57.2	77 31 66.6 40.5 53.6	78 34 67.9 44.8 56.4	95 38 79.0 51.3 65.2	101 49 86.4 54.4
21	5893	Mountain Rest FFS	Max Min Av Max Av Min Avg	93 46 86.9 55.7 71.3	94 37 87.8 50.9 69.4	M M M M	85 21 70.2 39.0 54.6	M M M M	M M M M	M 53.5M 35.1M 44.3M	74 33 60.1M 42.3M 51.2M	63 23 53.0M 33.1M 43.0M	60 24 50.7M 33.4M 42.0M	84 38 66.4M 44.6M 55.5M	89 38 75. 47. 61.
20	6230-50	North Belridge	Max Min Av Max Av Min Avg	105 63 100.2 69.4 84.8	105 62 97.8 67.7 82.8	104 57 92.0 62.3 77.2	94 46 78.7 53.1 65.9	83 31 68.3 44.6 56.4	74 20 59.3 38.2 48.8	70 18 55.9 31.7 43.8	79 43 67.1 47.7 57.4	80 35 67.2 42.8 55.0	80 38 67.7M 46.2M 57.0M	95 49 80.8 57.8 69.3	103 54 87. 62. 74.
36		Oakhurst	Max Min Av Max Av Min Avg	97 43 91.5 48.2 69.8	99 35 90.7 46.1 68.4	97 36 86.2 42.6 64.4	89 30 74.3 36.8 55.6	82 20 66.6 29.4 48.0	77 13 62.0 26.1 44.0	66 9 55.4 18.8 37.1	82 24 64.5 34.2 49.3	70 18 58.3 28.2 43.2	74 21 58.4 33.0 45.7	88 26 71.5 43.1 57.3	94 30 77. 41.
33	6893	Pinecrest Strawberry	Max Min Av Max Av Min Avg	86 42 81.2 48.3 64.8	88 38 80.3 48.1 64.2	84 38 76.5 44.1 60.3	80 26 68.3 37.2 52.8	82 20 59.9 31.9 45.9	68 12 54.6 27.9 41.2	68 8 53.5 23.4 38.4	24 56.4 31.8 44.1	60 12 49.4 25.0 37.2	64 12 46.2 26.5 36.4	80 24 63.8 36.6 50.2	84 32 67. 39. 53.
21	6895	Pine Flat Oam	Max Min Av Max Av Min Avg	106 57 100,2 61.8 81.0	106 51 98.6 59.8 79.2	102 49 93.5 56.9 75.2	94 42 78.2 48.9 63.6	84 28 69.4 40.6 55.0	77 21 62.0 34.6 48.3	69 18 56.7 27.6 42.2	81 41 67.0 45.8 56.4	77 32 64.6 40.7 52.6	75 33 64.9 43.8 54.3	94 40 79.6 52.5 66.0	104 45 88. 56. 72.
71	6902	Pinehurst	Max Min Av Max Av Min Avg	90 52 85.1 60.7 72.9	93 54 85.6 60.6 73.1	90 47 81.7 56.6 69.2	84 37 70.0M 48.8M 59.4M	79 28 M M	70 23 M M	62 15 53.6M 31.8M 42.7M	75 32 M M	62 22 M N	67 23 52.4M 32.8M 42.6M	80 33 64.5M 47.9M 56.2M	85 39 72. 50. 61.

TABLE A-3
MONTHLY TEMPERATURES (Continued)

2 6	Alpha Order						100					1961			
Drainage Bosin	Order *Number	Station Nome		July	Aug	Sept	Oct.	Nov.	Dec.	Jon.	Feb.	Mar	Apr.	May	June
87		Placer GS	Max Min Av Max Av Min Avg	94 44 89.9 48.6 69.2	100 38 90.7 46.9 68.8	96 36 88.5 43.9 66.2	88 30 76.1 36.7 56.4			losed fo	r winter	season			90 M 34 M 76.1M 43.3M 59.7M
86	Section	Raymond 9 N	Max Min Av Max Av Min Avg	104 54 97.3 59.5 78.4	104 49 96.1 57.5 76.8	99 48 91.1 54.4 72.8	88 38 76.2 46.8 61.5	84 25 68.7 37.6 53.2	76 21 61.6 33.0 47.3	66 19 56.4 27.3 41.8	79 36 67.4 42.0 54.7	73 40 62.4 34.1 48.2	75 27 63.1 39.5 51.3	90 36 76.4 49.9 63.1	100 40 86.4M 48.0M 67.2M
co	7268	Rector	Max Min Av Max Av Min Avg	103 50 97.7 60.5 79.1	102 50 95.9 59.3 77.6	100 49 91.7 54.5 73.1	92 41 78.5 47.4 63.0	82 28 69.4 39.4 54.4	75 20 59.9 33.6 46.8	66 18 56.4 28.0 42.2	78 38 67.0 46.4 56.7	78 31 66.0 40.3 53.1	80 36 67.2 45.5 56.4	96 44 82.4 54.7 69.4	104 47 87.8 57.1 72.4
C0	7360	Riverdale	Max Min Av Max Av Min Avg	104 55 98.9 60.0 79.4	105 53 96.2 59.5 77.8	100 45 92.2 53.6 72.9	90 42 78.4 47.5 63.0	86 27 70.6 38.7 54.7	75 19 59.1 33.7 46.4	68 15 56.7 28.1 42.4	75 33 67.0 43.9 55.4	79 33 67.6 39.9 53.7	80 34 68.1 43.2 55.6	96 41 81.2 52.3 66.7	105 46 89.1 55.9 72.5
C0	7800-02	Sanger 1 NE	Max Min Av Max Av Min Avg	103 57 98.6 59.6 79.1	105 52 96.6 58.4 77.5	101 49 92.4 54.9 73.6	91 43 76.0 49.5 62.8	81 29 66.8 41.7 54.3	73 24 59.2 37.0 48.1	65 20 56.2 30.4 43.3	77 41 66.6 48.1 57.4	78 35 66.6 42.2 54.4	80 36 65.2 46.5 55.8	97 44 81.3 54.6 67.9	102 48 88.2 57.0 72.6
C0	8375-50	South Belridge	Max Min Av Max Av Min Avg	105 61 99.7 66.1 82.9	105 58 97.5 64.0 80.8	103 52 92.1 58.5 75.3	92 43 77.7 49.9 63.8	84 28 68.7 40.7 54.7	74 16 59.4 34.5 47.0	71 13 56.5 27.6 42.1	80 37 67.2 43.6 55.4	78 31 67.4 39.6 53.5	81 31 70.8 43.5 57.2	96 44 81.7 54.2 67.9	104 50 85.9 55.8 70.8
	8407-11	South Lake Farms Ndq	Max Min Av Max Av Min Avg	104 55 99.1 60.5	105 49 96.6 59.3 78.0	101 48 91.1 55.1 73.1	92 40 77.7 47.7 62.7	83 24 69.1 38.1 53.6	72 13 59.1 32.6 45.8	67 10 55.9 25.5 40.7	73 38 65.7 46.2 56.0	79 31 65.8 38.2 52.0	78 29 68.2 42.0 55.1	95 37 81.6 52.1 66.8	104 47 87.8 56.3 72.0
В3	8450	Spring Gap Forebay	Max Min Av Max Av Min Avg	88 42 M M	90 40 83.1 48.9 66.0	86 40 M M	82 28 65.4M 38.7M 52.0M	72 24 M M	68 20 M M	58 9 M M	68 42 M M	60 12 47.6M 24.0M 35.8M	64 16 46.7M 27.4M 37.0M	78 24 62.3M 38.1M 50.2M	82 32 M M
183	8499	Stanislaus Power Nouse	Max Min Av Max Av Min Avg	102 52 97.7 58.5 78.1	105 47 96.3 56.1 76.2	100 42 92.9 52.6 72.8	95 35 77.8 45.1 61.4	86 25 67.7 38.3 53.0	74 20 60.7 33.8 47.2	M M M	79 30 66.4M 39.7M 53.0M	72 24 61.9 32.4 47.1	74 26 60.2 37.0 48.6	92 33 75.0M 46.7M 60.8M	96 42 82.2 50.3 66.2
C 3	8620	Success Dam	Max Min Av Max Av Min Avg	103 59 97.8 64.2 81.0	103 56 95.7 63.6 79.6	100 52 91.4 60.6 76.0	94 45 78.3 53.1 65.7	84 33 69.3 45.6 57.5	75 23 62.3 37.9 50.1	67 23 57.5 31.9 44.7	79 43 67.2 48.2 57.7	78 36 65.8 43.4 54.6	77 36 65.7 45.8 55.7	97 42 81.3 54.6 67.9	103 47 86.8 58.6 72.7
C7	8755	Taft KTKR Radio	Max Min Av Max Av Min Avg	102 54 97.6 64.9 81.2	103 55 95.8 61.9 78.8	100 51 89.6 58.4 74.0	92 40 76.2 48.6 62.4	83 28 67.6M 42.1M 54.9M	72 22 60.0 34.2 47.1	70 17 55.3 30.2 42.8	81 41 66.5 46.6 56.6	79 32 65.2 42.4 53.8	78 29 63.2 43.1 53.2	94 47 79.6 55.0 67.3	102 52 85.9M 59.9M 72.9M
C2	8868	Terminus Dam	Max Mi Av Max Av Min Avg	104 58 97.8 68.7 83.2	102 58 95.9 66.6 81.2	99 54 90.8 63.3 77.0	92 47 76.5 53.5 65.0	82 35 68.1 46.7 57.4	75 27 60.5 39.9 50.2	66 24 55.4 32.5 44.0	77 44 65.9 49.1 57.5	77 32 64.3 43.4 53.8	76 36 63.9 45.6 54.7	94 44 79.5 55.9 67.7	102 48 86.0 59.3 72.6
c0	9006	Tranquillity Glotz	Max Min Av Max Av Min Avg						RB RB RB RB	62 14 52.4 24.8 38.6	74 35 65.1 43.6 54.4	77 28 63.8 36.8 50.3	78 28 68.1 40.9 54.5	94 42 78.4 51.1 64.7	100 49 85.5 56.1 70.8
c1	9025	Trimmer RS	Max Min Av Max Av Min Avg	102 58 93.6 61.7 77.6	104 57 95.7 62.7 79.2	100 51 91.0 57.9 74.4	89 39 75.5 47.5 61.5	M M M	M M M	M M M M	M M M M	M M M	M M M M	M M M M	102 47 85.4 56.0 70.7
CO.	9051	Tulare	Max Min Av Max Av Min Avg	107 60 102.6 63.5 83.1	107 56 100.3 61.5 80.9	103 51 95.7 58.1 76.9	95 43 82.1 51.0 66.6	89 30 72.5 42.4 57.5	74 22 61.1 36.5 48.8	70 18 59.3 30.1 44.7	81 34 68.8 47.1 58.0	80 34 69.0 42.8 55.9	84 35 71.0 46.3 58.6	100 46 85.4 56.4 70.9	108 51 91.4 59.6 75.5
c -	9145	US Cotton Field Sta	Max Min Av Max Av Min Avg	103 60 98.5 65.3 81.9	102 58 95.2 62.8 79.0	99 52 90.4 58.4 74.4	92 41 78.4 49.6 64.0	83 29 68.3 41.6 55.0	74 22 59.0 35.4 47.2	69 17 55.9 29.4 42.7	79 39 66.6 46.1 56.4	80 33 67.8 42.2 55.0	81 37 68.3 46.1 57.2	95 43 81.6 54.7 68.1	104 51 87.7 59.3 73.5
c.	9304	Vestal	Max Min Av Max Av Min Avg	104 60 99.2 67.2 83.2	105 58 96.7 65.4 81.0	100 54 91.2 61.1 76.2	92 41 78.8 52.8 65.8	83 27 69.8M 43.0M 56.4M	75 18 62.8M 38.3M 50.6M	69 15 58.4M 30.8M 44.6M	79 43 M 68.6M 49.6M 59.1M	79 38 63.6M 40.6M 52.1M	80 36 68.5M 47.3M 57.9M	98 43 84.1M 58.2M 71.2M	104 52 89.1M 63.1M 76.1M
BO	95 65	Westley	Max Min Av Max Av Min Avg	101 50 96.6 55.0 75.8	100 49 93.2 54.8 74.0	97 47 M M	92 41 77.7 48.7 63.2	81 30 M M	68 24 M M	62 20 52.9M 29.2M 41.1M	75 36 68.1M 46.9M 57.5M	72 32 65.6M 40.0M	77 32 65.0M 43.3M 54.2M	94 37 77.9M 48.8M 63.4M	100 47 85.6M 53.5M 69.5M
C1	9749	Wishon Res	Max Min Av Max Av Min Avg	83 33 M M	87 31 M M	82 36 M M	75 27 63.8M 36.1M 50.0M	71 16 55.2M 30.4M 42.8M	64 13 M M	57 12 M M	42 22 52.8M 30.8M 41.8M	55 7 42.9M 21.4M 32.2M	58 7 42.5M 22.0M 32.2M	76 30 60.6M 36.6M 48.6M	78 31 63.0M 40.3M 51.6M
C4	9805	Woody	Max Min Av Max Av Min Avg	100 53 95.8 59.7 77.8	101 51 93.9 59.3 76.6	97 43 88.6 54.7 71.6	92 38 74.5 45.5 60.0	82 23 66.0 38.3 52.2	74 22 62.5 36.9 49.7	65 17 56.7 31.4 44.1	79 37 64.4 44.4 54.4	74 30 61.9 37.4 49.6	72 29 60.6 40.0 50.3	93 34 76.8 48.5 62.6	101 35 84.4M 49.7M 67.0M

TABLE A-4
MONTHLY SUMMARY OF EVAPORATION STATION DATA

ş	Alpha																
Bos	Order Number	Station Name		July	Aug.	Sept	Oct	Nov.	Dec.	Jan.	Feb.	Mor.	Apr	May	June		
0	2013	Corcoran El Rico 1	Evap Procip Wind Av Max Av Min	14."- .00 1905 96.4 56.2	12.27 .00 1865 93.6 55.6	8.96 .00 1520 88.8 52.0	98 .06 1640E 76.0 45.3	3.6. .00 1265 70.2 38.9	31 .09 1210 60.6M 35.1M	.36 1308E 55.1 28.7	1.52E 2.24 1462E 67.6 46.6	4.37E 1.04 2045E 66.6 39.5	3.97E 2.22 1780E 68.5 43.2	8.36 .21 1840 81.7 51.3	10.69 1955 88.3 54.6		
:6	2222	Cummings Valley	Evap Precip Wind Av Max Av Min	12.74 .00 2091 87.2 45.9	11.25 .00 1986 8B.0 44.8	8.66 .00 1732 85.4 40.3	5.60 .33 1580 74.3 33.3	3.40 .01 1819 66.0 27.3	2.92 .00 3256 61.5 29.3	4.62E .00 3747 57.4 23.5	4.15 2.71 2198 63.6 9	4.64 1.87 2900 56.4 30.2	5.50 2.30 2600 56.0 31.0	6.69 .40 1950 70.0 40.0	8.9 .7 188 72. 43.		
14	24~3	Oon Pedro Reservoir	Evap Precip Wind Av Max Av Min	15.10 .16 - 97.5 63.7	13.13 .00 .95.3 61.7	9.82 .05 - 90.6 57.3	6.20 1.68 - 77.7 50.2	2.B1 .49 _ 69.3 42.5	2.46 3.37 - 59.2 38.1	1.72E 3.97 - 54.5 30.2	2.16E 3.17 66.5 42.9	4.44 3.34 62.6 37.7	4.09 4.22 - 63.6 41.8	6.91 .94 _ 77.1 49.7	10.7 .1 .86. 53.		
25	4303	Isabella Oam	Evap Prclip Wind Av Max Av Min	13.29 .00 1860 96.3 63.6	12.63 .00 1881 96.9 63.1	9.41 .00 1658 92.8 56.3	5.66 .03 1592 80.0 46.9	3.09 .00 1405 68.8 40.2	2.68 .03 1439 63.6 31.9	2.82 1.52 1885 58.8 28.6	2.58 3.06 2075 64.5 41.0	4.55 2.06 2753 60.6 37.0	4.25 1.07 2713 60.4 38.8	8.23 .13 2751 75.7 51.2	10.5 .7 241 80. 55.		
10	5117	Los Banos Field Sta	Evap Precip Wind Av Max Av Min	16.94 .00 3840 96.1 58.1	13.11 .00 3398 94.0 57.0	9.17 .00 2819 B9.0 52.0	6.07 .14 2252 77.0 41.0	2.79 .12 1236 6B.0 41.0	.85 1.67 526 57.0 32.0	1.25 2.13 1235 54.0 28.0	2.14 2.42 1478 66.0 46.0	4.33 1.28 2784 63.0 39.0	5.58 1.69 2168 65.0 43.0	10.25 0.22 3447 78.0 51.0	13.6 .0 514 86. 56.		
21	6895	Pine Flat Dam	Evap Precip Wind Av Max Av Min	12.24 .01 .852 100.2 61.8	11.22 T 974 98.6 59.8	8.59 .06 903 93.5 56.9	4.35 1.32 873 78.2 48.9	2.32 .05 703 69.4 40.6	1.57 .19 768 62.0 34.6	1.41 4.06 913 56.7 27.6	1.82 4.57 760 67.0 45.8	3.52 3.49 1020 64.6 40.7	3.38 4.53 809 64.9 43.8	5.91 .47 511 79.6 52.5	9.4 .0 83 88. 56.		
36	7273	Raymond 9N	Evap Precip Wind Av Max Av Min	12.00 .20 811 97.3 59.5	10.92 .00 781 96.1 57.5	8.85 .05 660 91.1 54.4	5.67 1.95 809 76.2 46.8	3.60 .17 347 68.7 37.6	2.19 2.02 321 61.6 33.0	1.20 6.26 445 56.4 27.3	2.78 3.89 433 67.4 42.0	3.67 5.15 378 62.4 34.1	2.96 6.06 175 63.1 39.5	4.77 .81 254 76.4 49.9	8.5 50 86. 48.		
:3	8620	Success Dam	Evap Precip Wind Av Max Av Min	14.75 .11 1511 97.8 64.2	13.35 .00 1644 95.7 63.6	10.32 .07 1409 91.4 60.6	6.23 .29 1544 78.3 53.1	3.59 .00 1450 69.3 45.6	2.32 .00 1487 62.3 37.9	2.31 .81 1682 57.5 31.9	2.22 2.83 1210 67.2 48.2	4.54 2.33 1577 65.B 43.4	4.84 2.92 1026E 65.7 45.8	8.71 .23 1600E 81.3 54.6	11.4 17. 86. 58.		
:7	8755	Taft KTKR	Evap Precip Wind Ay Max Av Mln	16.02 T 1110 97.6 64.9	14.04 .00 800 95.8 61.9	10.17 T 630 B9.6 58.4	5.83 .10 630 76.2 48.6	3.5B .00 540 67.6M 42.1M	2.40 T 440 60.0 34.2	2.52 .01 670 55.3 30.2	3.23 .86 700 66.5 46.6	5.79 .99 1420 65.2 42.4	6.25 .83 1720 63.2M 43.1M	10.14 1.14 1380 79.6 55.0	13.: 160 85. 59.		
2	8868	Terminus Oam	Evap Precip Wind Av Max Av Min	T 97.8 68.7	RB .00 RB 95.9 66.6	9.08M .14 1726M 90.8 63.3	6.39 .53 2103 76.5 53.5	3.92 T 1950 68.1 46.7	2.81 .04 2168 60.5 39.9	2.82 2.05 2398 55.4 32.5	2.53 3.21 1654 65.9 49.1	4.72 2.95 2100 64.3 43.4	4.52 4.09 1696 63.9 45.6	7.66 .27 1032 79.5 55.9	11.5 146 86 59		
00	9145	U. S. Cotton Field Sta.	Evap Precip Wind Av Max Av Min	13.87E .00 1263 98.5 65.3	11.47 .00 1066 95.2 62.8	8.74E .05 934 90.4 58.4	5.23E .04 1074 78.4 49.6	2.4 ⁻ .00 886 68.3 41.6	1.18E .02 904 59.0 35.4	2.03E .17 1181 55.9 29.4	2.21E 2.14 1211 66.6 46.1	5.57 1.49 2322E 67.8 42.2	6.07E 1.40 2~09 68.3 46.1	10.62E .56 3083 81.6 54.7	208 87 59		
30	9565	Westley	Evap Precip Wind	9.50	6.93	5.28E	3.35E	1.86	.86E	.92E 2.09	1.86	3.62E 1.87	3.49E 1.96	6.57	8.		
			Av Max Av Min	96.6	93.2 54.8	M M	77.7	M	M M	52.9M 29.2M	68.1M 46.9M	65.6M 40.0M	65.0M				

APPENDIX B
SURFACE WATER FLOW

ALS OR 20 B*

TABLE OF CONTENTS

	PAGE
ALPHABETICAL IND	EX TO TABLES
DRAINAGE BASIN I	NDEX TO DAILY MEAN DISCHARGE TABLES
Definition	of Terms
Lakes and R Daily Mean Daily Mean	ABULAR DATA B- 6 eservoirs B- 6 Discharge B- 6 Gage Height B- 6 B- 6
	LIST OF TABLES
TABLE	
B-1	Gaging Station Additions and Discontinuations and Revisions to Previously Published Reports
B-2	Daily Mean DischargeInflow to Millerton Lake
B-3	Daily Content Millerton Lake
B-4 to B-58	Daily Mean Discharge
B-59 to B-85	Daily Mean Gage Height
B-86 to B-93	Diversions
B-94	Diversions and Acreage IrrigatedEast Side Canals and Irrigation Districts B-10
B-95	Deliveries from Central Valley Project Canals

LIST OF PLATES

(Bound at end of volume)

PLATE

B-1 Location of Surface Water Measurement Stations

ALPHABETICAL INDEX TO TABLES

PAGE

DAILY MEAN DISCHARGE, DAILY MEAN GAGE HEIGHT AND CREST STAGES

		PAGE
	Daily Mean Discharge	Daily Mean Gage Height and
Bear Creek below Bear Reservoir near Cathay	B-30 B-29 B-17 B-41 B-32 B-31 B-59 B-23 B-23 B-23 B-11 B-14 B-15 B-45 B-15 B-56 B-56 B-66	Crest Stages B-71 B-86
Kein River Rear Bakersiteid Kings River, South Fork below Empire Weir #2 Mariposa Bypass near Crane Ranch Mariposa Creek near Cathay Mariposa Creek near Cathay Mariposa Creek near Cathay, Revised below Mariposa Reservoir Maxwell Creek at Coulterville Maxwell Creek at Coulterville, Revised Merced River at Cressey below Snelling near Livingston North Fork near Coulterville Miami Creek North Fork near Coulterville	B-68 B-52 B-27 B-27 B-11 B-26 B-36 B-11 B-38 B-37 B-37 B-19 B-12 B-13	B-76 B-75 B-77
Millerton Lake Infilow to Daily Content Orestimba Creek near Crows Landing Owens Creek below Owens Reservoir Panoche Drain merr Dos Palos Poplar Ditch near Porterville Porter Slough at Porterville Near Porterville Porter Slough at Porterville Porter Slough at Porterville Rhodes-Fine Ditch near Porterville San Joaquin River at Crows Landing Bridge Near Dos Palos Near Near Near Near Near Near Near Near	B-13 B-39 B-28 B-34 B-64 B-60 B-62 B-61 B-66 B-20 B-47 B-16 B-33 B-51 B-11 B-50 B-48 B-59 B-24 B-59 B-44 B-42 B-42 B-42 B-43 B-42 B-43 B-46 B-67	B-79 B-74 B-70 B-81 B-89 B-78 B-80 B-72 B-73 B-95 B-92 B-91 B-96 B-92 B-91 B-69 B-87 B-88
		PAGE
DIVERSIONS Deliveries from Central Valley Project Canals Dry Creek East Side Canals and Irrigation Districts Merced River San Joaquin River		B-106 B-102 B-105 B-100
Vernalis to Fremont Ford Bridge Fremont Ford Bridge to Gravelly Ford Gravelly Ford to Friant Dam Stanislaus River Tule River Tuloumne River		

ALPHABETICAL INDEX TO TABLES

		PAGE
	Millerton Lake, Daily Content	B-12 B-13 B-69
GAGIN	NG STATION ADDITIONS AND DISCONTINUATIONS AND REVISIONS TO PREVIOUSLY PUBLISHED REPORTS	B-11
	DRAINAGE BASIN INDEX TO DAILY MEAN DISCHARGE TABLES	
	SAN JOAQUIN RIVER BASIN	
Can 1		
	Daily Content Millerton Lake San Joaquin River at Whitehouse Delta-Mendota Canal near Tracy. Delta-Mendota Canal to Mendota Pool San Joaquin River near Mendota	B-12 B-13 B-11 B-14 B-15 B-16
	Fresno River Big Creek Diversion near Fish Camp	B-17 B-18 B-19 B-20
	San Joaquin River near Dos Palos Chowchilla River East Fork Chowchilla River near Ahwahnee West Fork Chowchilla River near Mariposa Middle Fork Chowchilla River near Mipinnawassee Striped Rock Creek near Raymond Mariposa Creek	B-21 B-22 B-23 B-24
	Mariposa Creek near Cathay Mariposa Creek near Cathay, Revised Mariposa Creek below Mariposa Reservoir Mariposa Bypas near Crane Ranch Owens Creek below Owens Reservoir Bear Creek	B-25 B-11 B-26 B-27 B-28
	Burns Creek at Hornitos	B-29 B-30 B-31
	Burns Creek below Burns Reservoir San Joaquin River near Stevinson Panoche Drain near Dos Palos Merced River	B-32 B-33 B-34
	North Fork Merced River near Coulterville Maxwell Creek at Coulterville. Merced River below Snelling Merced River at Cressey Orestimba Creek near Crows Landing San Joaquin River at Grayson Burkhardt Drain near Grayson	B-35 B-36 B-11 B-37 B-38 B-39 B-40 B-41
	Tuolumme River Tuolumme River at La Grange Bridge Tuolumme River at Roberts Ferry Bridge Tuolumme River at Hickman Bridge Tuolumne River at Hickman Bridge Dry Creek near Modesto Tuolumme River at Tuolumme City San Joaquin River at Hetch Hetchy Aqueduct Crossing	B-42 B-43 B-44 B-45 B-46 B-47
	Stanislaus River Stanislaus River at Orange Blossom Bridge Stanislaus River at Riverbank Stanislaus River at Koetitz Ranch San Joaquin River near Vernalis	8-48 B-49 B-50 B-51
	TULARE LAKE BASIN	
Kings	s River	
Kawea	South Fork Kings River below Empire Weir #2	B-52
Friar	Cross Creek below Lakeland Canal #2 Elk Bayou near Tulare	B-53 B-54
	Delivery to Tule River	B-55 B-56
	River North Fork Tule River at Springville	B-57 B-58
	River Diversions Campbell Moreland Ditch above Porterville Porter Slough at Porterville Porter Slough Ditch at Porterville Porter Slough near Porterville Vandalia Ditch near Porterville Poplar Ditch near Porterville Hubbs-Miner Ditch at Porterville Hubbs-Miner Ditch near Porterville Rhodes-Fine Ditch pear Porterville	B-59 B-60 B-61 B-62 B-63 B-64 B-65 B-66
Deer Kern	Woods-Central Ditch near Porterville	B-67 B-11 B-68

INTRODUCTION

This appendix presents surface water data for the Water Year 1963 which is from October 1, 1962, to September 30, 1963. The data presented in this appendix consists of daily mean discharge, station locations, daily mean gage heights, and diversion quantities.

Stream gaging station descriptions presented show the historic maximum discharge of record and the maximum discharge for the report year. Locations of the gaging stations and other important data on the length of record and datum of gage are also presented.

Quantities of daily mean discharge for most stations shown are computed by an electronic computer. The gage height data are fed into the computer simultaneously with rating and shift correction data. Daily mean discharge, total monthly acre-feet, and instantaneous maximum and minimum discharge are computed. The gage height data are extracted from the standard recorder chart by a semiautomatic chart-reading machine and put into machine language. The record for those stations affected by backwater conditions is not adaptable to computation by machine methods and is computed manually by standard methods.

Daily mean stage tables are presented for key stations on the major streams in the San Joaquin Valley. These daily mean stages are computed by the electronic computer, as mentioned above. The gage heights are computed to the nearest one-hundredth of a foot, and the major crests for the year are shown.

Quantities of water diverted for use are shown as monthly total acre-feet and total acre-feet diverted for a certain reach of a stream.

Definition of Terms

A list of definition of terms as used herein follows:

<u>Second-foot or cubic foot per second</u> is the unit rate of discharge of water. It is a cubic foot of water passing a given point in one second.

Acre-foot is the quantity of water required to cover one acre to a depth of one foot. It is equivalent to 43,560 cubic feet or 325,850 gallons.

<u>Drainage area</u> of a stream above a specific location is that area, measured in a horizontal plane, which is enclosed by a drainage divide.

<u>Unimpaired runoff</u> is the flow that would occur naturally at a point in a stream if there were:

(1) no upstream controls such as dams and reservoirs; (2) no artificial diversions or accretions; and (3) no changes in ground water storage resulting from development. Unimpaired flow is computed from measured runoff by allowing for man-made changes in natural conditions.

<u>Water Year</u> is the 12-month period from October 1 of any year through September 30 of the subsequent year and is designated by the calendar year in which it ends.

Surface Water Gaging Station Designation

The index number for each gaging station is composed of a number which begins with an alphabetical letter designating the hydrographic area, followed by the first digit which indicates the main river basin. The second digit refers to a tributary of the main river basin. The hydrographic area and the river basin are outlined on Plate B-1. The remaining three digits are used to number stations in an upstream direction with the lowest number at or near the mouth. The digit 9, which is the third from the left, indicates that the station is a surface gravity diversion station. Each station is listed by name as well as by machine index number.

EXPLANATION OF TABULAR DATA

The tabular data presented in this appendix are divided into the general categories of daily mean discharge, daily mean stage, and monthly diversions.

The area to which these data pertain is shown as Area 4 on page iii and on Plate B-1.

Table B-1 presents gaging station additions and discontinuations; it also presents revisions to previously published reports.

Lakes and Reservoirs

Three types of data are presented for lakes and reservoirs. Table B-2 presents inflow to Millerton Lake. Table B-3 presents the daily content of Millerton Lake in thousands of acre-feet. Table B-59 presents daily mean gage height of Tulare Lake.

Daily Mean Discharge

Presented in Tables B-4 through B-58 are records of daily mean discharge, gaging station location, period of record, maximum flow of record, maximum and minimum flow for the season, as well as the total flow in acre-feet for the 1962-63 water year.

The streamflow tables are arranged, for each stream or stream system, in downstream order. Stations on a tributary entering between two main stem stations are listed between those stations, and in downstream order on that tributary. A stream gaging station is named from the stream and the nearest post office (Merced River at Cressy) or well-known landmark (San Joaquin River at Fremont Ford Bridge).

Each stream gaging station has a stage-discharge relationship or rating developed. The rating gives the flow in second-feet for each gage height at the station. When flows at a single station occur in excess of 140 percent of the highest measurement on the rating, the computed daily mean discharges from the electronic computer are shown as estimated. Normally, the rating is fairly permanent where there is a fixed channel and a fixed flow regimen at the station. The rating varies, however, where the bed at the channel is of loose shifting sand, or where aquatic growth builds up in the channel changing the flow regimen.

Where the rating is not permanent and varies periodically, more frequent measurements of discharge are necessary to accurately determine the daily mean discharge.

All streamflow data reported herein are derived through the use of mechanical, arithmetical, and empirical operations and methods. Since the results are affected by inherent inaccuracies in the procedures and equipment used, it becomes necessary to establish limits of accuracy for which the data are reported. The following is a listing of significant figures used in reporting streamflow data:

1. Daily flows - second-feet

0.0 - 9.9 Tenths 10 - 99 2 significant figures 100 - up 3 significant figures

2. Means - second-feet

0.0 - 99.9 Tenths 100 - 999 3 significant figures 1000 - above 4 significant figures

The water year totals are reported to a maximum of four significant figures.

Daily Mean Gage Heights

Presented in Table B-59 through B-85 are records of daily mean gage heights for key stations on major streams in the San Joaquin Valley for the 1962-63 water year.

At the bottom of the stage tables are shown the major river crests occurring for the 1962-63 water year. The table also shows the location of the station, maximum gage height of record, period of record, and datum of gage. The elevation of water surface at the gaging station is obtained by adding the gage

height reading to the elevation of the gage datum presented in each table. Gage height for stage tables are computed from recorder charts and are reported to one-hundredth of a foot.

Of the 26 stations for which daily mean gage heights are presented in this report, 13 have computed daily mean discharge. These data are included in the streamflow tables.

Diversions

Presented in Tables B-86 through B-95 are the amounts of water diverted for irrigation during the period October 1, 1962 through September 30, 1963. The amounts of water diverted by pumping were determined by rating the capacity of each diversion pumping plant and collecting data on hours of operation. The amounts of water diverted by gravity (indicated by "Gravity" in column headed "Number and Size of Pump") were determined either by calibrating suitable measuring devices or by rating canals in a manner similar to that used to rate streamflow stations.

Because of the intermittent operation of most diversion facilities, the monthly diversion values are reported in acre-feet to three significant figures. The totals for individual water users and stream reaches are reported to four significant figures.

GAGING STATION ADDITIONS AND DISCONTINUATIONS AND

REVISIONS TO PREVIOUSLY PUBLISHED REPORTS

*ADDITIONAL STATIONS

Delta Mendota Canal to Mendota Pool San Joaquin River below Friant Hubbs-Miner Ditch at Porterville Rhodes-Fine Ditch near Porterville Woods-Central Ditch near Porterville Poplar Ditch near Porterville Vandalia Ditch near Porterville Campbell-Moreland Ditch above Porterville Porter Slough Ditch at Porterville

DISCONTINUED STATIONS None

PUBLICATION DISCONTINUED

Deer Creek near Terra Bella Irrigation District San Joaquin River at Whitehouse

REVISED DATA

אואע עשט		Maximum Discharge During Year	Maximum Discharge Of Record
Mariposa Creek near Cathay	1958 1959 1960 1961 1962	2114 1044 4620	7180 7180 7180 7180 7180
Maxwell Creek at Coulterville	1959 1960 1961 1962	1720 1550	740 1720 1720 1720

^{*}Installed prior to 1963. Records not published in previous reports.

DAILY MEAN DISCHARGE IN SECOND FEET

INFLOW TO MILLERTON LAKE

WATER STATION NO 871121 1963

DAY	ост	NOV	DEC.	JAN	FE8	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	DAY
- 1	1760	1270	648	557	13416	2054	3628	3963	6332	4099	2570	2651	1
2	1285	1527	731	874	4193	1492	3004	3966	6875	4263	2586	2554	2
3	1358	947	639	606	3688	1626	2752	3901	7399	4460	2623	3077	5
4	1365	785	593	578	3555	1437	2955	3864	5883	4213	2605	2830	4
5	1301	1061	578	577	3575	1627	3446	3893	5631	4052	2587	2875	5
6	1024	1566	519	340	3521	1632	3376	3809	5278	4427	2614	2827	6
7	1148	1611	477	330	3430	1631	3909	3948	4891	4607	2637	2445	7
8	1191	1453	566	388	3303	1395	3733	3914	4839	5017	2637	2367	8
9	1534	1453	538	435	3643	1430	3582	4630	5142	5332	2634	2674	9
10	1204	649	651	604	4419	1520	3522	3986	5145	5057	2683	2898	10
- 11	1178	298	644	577	3777	1364	3481	4046	4667	5008	2406	2797	- 10
12	1671	298	504	742	3507	1550	3513	3851	4420	5341	2667	2772	12
1.3	1246	688	587	637	3765	1624	3493	3827	4288	5447	2761	2844	13
14	1407	756	363	1166	3678	1669	4043	3885	4406	5294	2637	2469	14
15	913	787	593	507	3543	1582	4306	3737	5326	4969	2680	2515	15
16	1519	754	467	586	3524	1942	3841	3754	7352	4762	2812	2847	16
17	1227	502	686	994	3540	1871	4032	3793	7596	4693	2646	2848	17
18	1528	521	625	764	3528	1670	3818	3725	8209	4188	2523	3013	18
19	1534	1143	640	398	3496	1618	3772	3760	7543	3984	2635	3065	19
20	820	1341	542	82	3366	1769	4080	3713	7812	3564	2565	3019	2.0
2 1	760	1284	486	416	3469	1683	4435	3709	7265	3539	2793	2575	2 1
22	1421	887	599	473	3385	1769	4106	3641	6093	3617	2659	2540	2.2
2.3	1136	1008	532	317	3372	1828	4056	3785	5140	3482	2750	2946	2.3
24	1163	898	750	698	3399	1987	3882	3803	4680	3438	2728	2824	2.4
25	1628	730	76	442	3365	1824	3912	3790	4096	3455	2569	2455	2.5
26	1549	1006	488	317	3321	1787	4312	3745	4465	3397	2813	2421	26
27	961	703	711	201	3385	1983	4049	4215	5123	2488	2752	2549	27
28	387 a	671	683	360	3318	3489	3958b	6739	5160	2688	2689	1865	2.8
29	1030	678	699	649		3798	3880	6862	4386	2583	2766	1253	29
30	1082	697	419	2211		2717	3863	6426	3620	2506	2479	1609	3.0
31	1131		569	11121		2618		6783		2640	2510		3 1
MEAN	1241	932	568	934	3910	1871	3758	4241	5635	4084	2646	2614	MEAN
MAX	1760	1611	750	11121	13416	3798	4435	6862	8209	5447	2813	3077	MAX
MIN	387	298	76	82	3318	1364	2752	3641	3620	2506	2406	1253	MIN.
AC.FT	76318	55482	34915	57416	217152	115014	223287	260753	335330	251127	162676	155552	AC.FT.
			1	1		1	1	1	1		1-020.0	1	

E - Estimoted
NR - No Record

- Oischorge measurement or observation
of no flow mode on this day

t - E and #
a - 25 hr. day
b - 23 hr. day

MEAN MAXIMUM						MINIMUM							
DISCHARGE	DISCHARGE	GAGE HT	MO	DAY	TIME	0	ISCHARGE	GAGE HT	MO	DAY	TIME		

WATER YEAR SUMMARY

TOTAL ACRE - FEET 1945022 8

		LOCATION	N	MAXII	MUM DISCH	IARGE	PERIOD O	F RECORD		DATUM OF GAGE			
Ì	LATITUDE	E LONGITUDE 1/4 SEC. T. B.R. OF RECORD DISCHARGE GAGE H		DISCHARGE GAGE HE		GAGE HEIGHT PERIOD		2ERO ON	REF				
CATHODE		LUNGITUUE	M 0.8.8M	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM	
	37 00 00	119 42 10	SW 5 11S 21E				OCT 41-DATE	OCT 41-DATE	1941		0.00	USCGS	

Station located near center of Friant Dam on San Joaquin River, immediately above Cottonwood Creek, 0.9 mi. NE of Friant. Usable capacity, 503,000 ac.-ft. between elevations 375.4 and 578.0 ft. above mean sea level. Not available for release, 17,400 ac.-ft. Inflow to Friant Reservoir takes into account change in storage, release, spill, precipitation, and evaporation, and is representative of the natural flow which would pass the dam site if the dam had not been constructed. Figures shown under total discharge are computed inflow to the reservoir. Feriod of record for computed inflow is shown under period of record for discharge. Records fornished by U.S.B.R. Orannage area is 1,633 sq. ml.

TABLE B-3

OAILY CONTENT MILLERTON LAKE (In thousands of acre-feet)

	WATER
STATION NO	YEAR
871100	1963

OAY	OCT	NOV	O E C.	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OAY
2 3	147.1 147.0 146.9	161.9 163.3 163.6	189.3 190.5 191.6	219.6 221.2 222.3	295.5 301.4 306.4	424.5 425.4 426.4	456.9 461.4 465.4	493.9 494.1 495.8	500.0 504.0 508.7	502.0 499.1 496.6	433.7 428.6 424.2	257.7 251.8 247.0	2 3
4 5	146.9 147.0	163.5 164.0	192.7 193.6	223.3	311.2 317.6	426.8 427.4	469.7 475.1	497.8 499.9	509.8 510.0	493.9 492.0	419.6	241.7	5
6	146.8	165.4 167.1	194.5 195.3	224.9 225.4	323.5 329.2	427.7 427.9	480.3 486.6	502.7 505.5	509.7 509.1	491.6 491.6	410 • 0 405 • 8	234.2	6 7
9	146.5	168.4 169.7 169.4	196.3 197.2 198.4	226.1 226.8 227.8	334.8 341.1 348.6	427.5 427.2 426.7	492.6 498.0 502.0	508.4 512.1 512.9	509.1 509.8 511.0	492.6 494.1 495.1	400.5 395.1 390.3	229.6 227.7 226.5	9
10	146.8	168.4	199.5	228.9	354.6	424.9	505.9	513.9	511.3	496.2	384.8	225.1	
12	147.6 147.9	167.4 167.3	200.3 201.3	230.2 231.3	359.7 365.2	423.9 422.9	507.7 507.7	514.3 514.0	511.4 511.7	498.3 500.3	378.8 372.8	223.7	12
14	148.5 148.3	167.3 168.0	201.9 202.9	233.5 234.4	370.6 375.8	421.9 422.2	508.8 511.3	513.3 512.0	512.5 515.0	501.3 501.2	366.5 360.4	218.9 216.0	15
16	149.4 150.0	168.7 169.2	203.7 204.9	235.4 237.2	380.8 385.7	423.3 424.1	512.8 512.1	510.3 507.8	520.5 524.1	499.4 497.4	354.5 348.2	213.8 211.7	16
19	151.4 153.0 153.3	169.7 171.4 173.6	206.0 207.2 208.1	238.6 239.3 239.3	389.9 393.5 396.9	424.4 424.8 425.6	510.4 508.4 507.1	505.0 502.1 499.0	527.0 527.5 528.1	494.5 491.5 487.9	341.7 335.5 329.1	210.3 209.5 209.6	18
21	153.3	175.8	208.9	240.0	400.3	426.2	506.5	495.8	527.6	484.2	323.2	209.5	21
22	154.6 155.2	177.2 178.9	210.0 210.9	240.8 241.2	403.4	427.1 428.3	505.3 503.9	492.2 488.9 485.7	525.7 523.2 520.9	480.0 475.5 471.0	317.0 311.0 304.9	209.3 209.9 210.5	2 2
24	156.0 157.7	180.4 181.7	212.3 212.3	242.5 243.2	409.3 411.9	429.7 430.7	502.2 500.7	482.7	517.6	466.9	298.6	210.7	24
26 27 28	159.3 159.8 159.1	183.4 184.6 185.8	213.2 214.5 215.7	243.7 243.9 244.5	414.5 418.0 422.4	431.7 433.2 438.0	500.0 498.7 497.3	479.7 477.6 480.6	515.0 513.6 512.3	463.5 459.1 454.7	292.9 287.1 281.2	210.6 210.7 209.4	2 6 2 7 2 8
29 30 31	159.6 160.2 160.9	186.9 188.2	216.9 217.7 218.7	245.6 249.4 270.8		443.9 447.7 451.3	496.0 494.8	485.0 489.3 495.5	509.6 505.3	449.7 444.4 439.1	275.4 269.0 263.4	206.9 205.0	30
Mont	hly ge+14.9	+27.3	+30.5	+52.1	+151.6	+28.9	+43.5	+0.7	+9.8	-66.2	-175.7	-58.4	

E - Estimated NR - Na Record

	LOCATION	N	MAXI	MUM DISCH	ARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD C.F.S. GAGE HT DATE		DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF
LATITUDE	LONGITUDE	M.O.B.&M.	C.F.S.			DIS STATISE	ONLY	FROM	TO	GAGE	DATUM
37 00 00	119 42 10	SW 5 11S 21E				OCT 41-DATE	OCT 41-DATE	1941		0.00	USCGS

Station located near center of Friant Dam on San Joaquin River, immediately above Cottonwood Creek, 0.9 mi. NE of Friant. Usable capacity, 503,000 ac.-ft. between elevations 375.4 and 578.0 ft. above mean sea level. Not available for release, 17,400 ac.-ft. Records furnished by U.S.B.R. Drainage area is 1,633 sq. mi.

TABLE B-4

DELTA-MENDOTA CANAL NEAR TRACY IN SECONO FEET

STATION NO YF AR B95925 1963

DAY	ОСТ	NOV	OEC	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	DAY
2 3 4 5	1976 1982 1863 1729 1726	716 717 717 717 717 786	0.0 0.0 0.0 0.0	0.0 0.0 0.0 146 0.0	506 505 507 508 878	1158 1064 1064 1057 1660	1264 1079 1077 1148 1149	1261 1476 1796 1962 1961	31 78 28 21 25 35 25 33 26 05	3953 3925 3926 3770 3770	4165 4169 4163 4160 4161	2740 2735 2735 2735 2567 2433	1 2 3 4 5
6 7 8 9	1789 1826 1824 1919 1926	788 716 716 755 755	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	877 942 1177 1040 615	1870 1804 1910 1981 2268	971 972 974 905 942	1960 2131 2133 2427 2458	2713 3463 3597 3594 3600	3511 3510 3509 3507 3506	4030 3902 3900 3892 3793	2389 2228 2229 2228 1928	6 7 8 9
11 12 13 14	1888 1676 1575 1579 1171	754 681 681 681 680	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 70	615 613 649 503 466	2041 2128 2161 2329 2333	1157 1159 1158 1160 1012	2463 2365 2464 2466 2461	3593 3593 3420 3278 3442	3800 4172 4233 4341 4186	3796 3795 3700 3699 3826	1827 1827 1832 1831 1829	11 12 13 14
16 17 18 19 20	970 868 937 936 934	753 752 752 713 785	0.0	282 0.0 69 320 862	469 467 866 932 1132	2267 1901 1896 1891 1974	1011 1268 1230 1232 1339	2524 2592 2812 2815 2821	3510 3518 3528 3655 3844	4063 4059 4163 4227 4293	3904 3910 3898 3769 3743	2068 1928 1928 1826 1827	16 17 18 19 20
2 1 2 2 2 3 2 4 2 5	929 928 929 1029 1030	787 787 717 717 717	0.0 0.0 0.0 0.0	927 1160 1159 1160 1160	898 868 867 867 866	2002 2038 2022 1884 1846	1341 1411 1195 1197 1269	3462 3657 3726 3794 3730	3850 3980 3018 2362 3443	4351 4288 4159 4214 4368	3630 3630 3630 3560 3463	1830 1830 1828 1826 1827	2 I 2 2 2 3 2 4 2 5
26 27 28 29 30	1027 1092 1114a 1025 861 716	928 865 864 865 538	0.0 176 0.0 0.0 0.0	1159 1663 1159 1158 1097	866 930 930	1950 1951 1294 897 938 1262	1381 1379 1244 b 1264 1260	3634 3564 3296 3247 3244 3249	3602 4160 4150 4143 4145	4203 4378 4382 4381 4355 4197	3201 3151 3158 2986 2987 2882	1670 1670 1668 1671 1669	26 27 28 29 30
MEAN MAX MIN. AC.FT.	1348 1982 716 82950	747 928 538 44426	6 176 0.0 349	455 1663 0.0 27951	763 1177 466 42365	1769 2333 897 108776	11 72 1411 905 69612	2708 3794 1261 166514	3429 4160 2362 204046	4055 4382 3506 249322	3698 4169 2882 227411	2014 2740 1668 119849	MEAN MAX MIN. AC.FT.

E - Estimated
NR - No Record

** - Discharge measurement or observation
of no flow mode on this day
a - 25 hr. day
b - 23 hr. day

	WATER	YEAR	SUM	MARY			
XIMUM				MINIM			
GE HT M	DAY TIM	E 0150	HARGE	GAGE HT	MO	OAY	TIME

TOTAL 1343571

	M O.8 6M C.F.S. GAGE HT. OA					PERIOD O	FRECORD		DATUM	OF GAGE	
		1/4 SEC T.8 R.				DISCHARGE	GAGE HEIGHT	PER	001	ZERD	REF
LATITUDE	LONGITUDE	M 0.8 8 M	C.F.S.				DNLY	FROM	TO	GAGE	DATUM
37 47 45	121 35 05	SW31 1S 4E				JUN 51-DATE		1951		0.00	USGS

MA

DISCHARGE GAGE HT MO DAY TIME

Station located at Tracy Pumping Plant at intake to canal, 6 mi. SE of Byron, 10 mi. NW of Tracy. Discharge computed from records of operation of pumps. Water is diverted from Sacramento-San Joaquin Delta by way of Old River and a dredged channel to the Tracy Pumping Plant where it is lifted about 200 ft. into canal. Records furn. by U.S.B.R.

MEAN

SCHARGE

DAILY MEAN DISCHARGE

DELTA-MENDOTA CANAL TO MENDOTA POOL IN SECOND FEET

WATER YEAR STATION NO B00770 1963

DAY	OC T.	NOV	OEC.	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEP7	DAY
2 3 4 5	1615 1504 1482 1390 1424	510 520 524 525 534	238 218 200 200 200	0.0 0.0 0.0 0.0	200 200 200 217 323	895 885 828 861 1358	1040 849 859 856 868	1149 1289 1340 1497 1491	2195 1971 1802 1757 1790	3000 2846 2816 2805 2767	2820 2809 2829 2939 2966	2161 2136 2109 1932 1804	2 3 4 5
6 7 8 9	1488 1429 1436 1430 1408	530 519 511 509 503	175 200 200 200 200 370	0.0 0.0 0.0 0.0	500 523 894 515 370	1500 1463 1497 1498 1627	647 667 681 702 800	1499 1714 1734 1959 1944	1980 2428 2647 2616 2657	2642 2586 2590 2583 2544	2937 2854 2700 2705 2788	1577 1568 1592 1613 1370	6 7 8 9
11 12 13 14 15	1365 1199 1133 1147 794	523 497 514 506 499	325 17 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	246 245 311 206 195	1637 1642 1635 1783 1737	937 906 928 929 771	1897 1814 1874 1875 1897	2668 2668 2581 2297 2352	2704 2805 2933 3037 3058	2701 2753 2752 2713 2747	1419 1248 1260 1290 1281	11 12 3 14
16 17 18 19	700 700 701 715 763	490 490 490 490 496	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	196 196 347 627 798	1765 1450 1465 1496 1713	803 1047 1066 1100 1152	1918 1907 2092 2074 2137	2553 2547 2502 2508 2716	2904 2832 2812 2824 2917	2733 2782 2834 2800 2718	1313 1185 1180 1062 1082	16 7 18 19 20
21 22 23 24 25	745 763 786 909 894	504 504 515 515 516	0.0 0.0 0.0 0.0 0.0	573 657 724 742 819	677 571 580 585 573	1667 1580 1515 1370 1373	1158 1129 885 971 1132	2386 2628 2664 2733 2730	2717 2707 1537 1567 2316	2996 2983 2856 2821 2942	2554 2587 2592 2567 2506	1057 1051 1052 1064 1071	21 22 23 24 25
26 27 28 29 30 31	881 912a 877 867 561 528	594 694 702 691 664	0.0 0.0 0.0 0.0 0.0	723 680 673 588 465 280	572 567 620	1435 1440 782 478 635 929	1208 1179b 1020 1055 1062	2612 2627 2370 2267 2213 2223	2516 2759 2893 3031 2857	2878 2942 2879 3016 2966 2917	2468 2252 2258 2237 2200 2082	1105 1157 1312 1320 1306	26 27 28 29 30
MEAN MAX. MIN AC.FT.	1050 1615 528 64629	536 702 490 31892	82 370 0.0 5044	223 819 0.0 13734	430 894 195 23909	1353 1783 478 83185	947 1208 647 56247	2018 2733 1149 124074	2405 3031 1537 143078	2845 3058 2544 174944	2651 2966 2082 163008	1389 2161 1051 82665	MEAN MAX MIN, AC.FT.

E = Estimated NR = No Record κ = 0 is charge measurement or observation of no flow made on this day κ = E and κ = 25 hr. day κ = 25 hr. day

WATER YEAR SUMMARY

MEAN
DISCHARGE DISCHARGE GAGENT MO DAY TIME MINIMUM DISCHARGE GAGE HT MO DAY TIME 1327

TOTAL 966409

	LOCATION	V	MAXI	MUM DISCH	ARGE	PERIOD C	FRECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF
CATTIONE	LONGITUDE	M.O.B.B.M	C.F.S.	C.F.S. GAGE HT.		ONLY		FROM	то	GAGE	DATUM
36 47 11	120 23 05	NW19 13S 15E									

Station located approximately 2 mi. N of Mendota, where DMC crosses the Outside Cinal, which is 0.8 mi. NW of Bass Avenue crossing (check No. 21). Flow measured by 3 Sparling meters located at siphon outlet.

Record furnished by U.S.B.R.

SAN JOAQUIN RIVER NEAR MENDOTA

WATER STATION NO B07710

IN SECONO FEET DAY ост NOV DEC. JAN FFA MAR APR MAY JUNE JULY AUG SEPT DAY 166 177 51 50 140 129 31 30 76 291 294 351 164 152 162 148 134 129 396 58 125 70 9 0 76 177 177 184 59 -456 459 71 72 72 27 316 314 65 286 18 193 291 14 354 . 9 72 142 138 148 396 231 193 5.8 144 126 3 1 231 50 10550 MEAN MEAN 301 106 236 MAX MAX MIN ACFT AC.FT

- Estimated

NR - No Record

- Dischargs measurement or observation of no flow mode on this day.
- E and

			WATE	ER Y	EAR
MEAN		MAXIMU	м		$\overline{}$
DISCHARGE	DISCHARGE	GAGE HT	MD DAY	TIME	DISC

7	ì		MINIM	UM		
		DISCHARGE	GAGE HT	мо	OAY	TIME

SUMMARY

TOTAL ACRE-FEE IESN.

WAX WN ALFT

	LOCATION	٧	MAXII	MUM DISCH	HARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
	LONGITUDE	1/4 SEC. T.8 R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PER	RIOD	ZERO	REF
LATITUDE	LONGITUDE	M 0.8.8 M	C.F.S.	C.F.S. GAGE HT.			ONLY	FROM	то	GAGE	DATUM
36 48 37	120 22 35	SW 7 13S 15E	8840		6-1-52	OCT 39-DATE	OCT 39-DATE	1939		142.53	USBR

Station located 2.5 mm. below Mendota Dam, 4 mm. N. of Mendota. Records furn. by U.S.B.R. Drainage area is 4,310 sq. mm. This station equipped with DWR radio telemeter.

TABLE B-7

BIG CREEK DIVERSION NEAR FISH CAMP IN SECOND FEET

WATER STATION NO 867920 1963

OAY	ост	NOV	OEC.	JAN	FE8	MAR	APR	MAY	JUNE	JULY	AUG	SEPT.	OAY
1 2 3 4 5	1.3 1.7 2.0 2.3 2.5	2 • 2 2 • 1 2 • 1 2 • 0 2 • 2 *	2.6E 2.7 2.1* 2.8 2.6	2 • 3 E 2 • 3 E 2 • 3 # 2 • 0 E 2 • 0 E	1.5 0.0 0.0 0.0 9.4	23 22 21 20 20	24 23 24 28 31	37 37 38 * 38	35 34 33 32 32	21 20 17 • 16 16	4 • 4 5 • 9 6 • 1 6 • 1 6 • 3	3.5 3.4 3.1 3.1 3.9	1 2 3 4 5
6 7 8 9	2 • 2 2 • 1 2 • 0 2 • 0 2 • 0	2 • 1 1 • 8 1 • 8 1 • 8	2 • 4 2 • 4 2 • 4 2 • 4 2 • 3	2.0E 1.9E 1.7E 1.7E 1.6E	34 32 32 33 35	20 22 * 19 20 19	34 42 37 34 32	38 39 41 43 40	32 31 * 31 30 31	16 15 15 15 15	6 • 5 * 6 • 7 6 • 5 6 • 4 6 • 2	3.6 3.3 2.8 2.6 2.5	6 7 8 9
11 12 13 10	2.2* 2.2 2.1 19 4.7	1 • 8 1 • 8 1 • 9 2 • 2 2 • 3	2.3 2.2 2.1 2.2 3.9	1.5E 1.6E 1.6E 1.4E 1.2E	32 31 36 33 30	20 19 19 18 18	32 33 33 40 38	39 38 35 36 37	30 30 29 28 28	13 13 12 12	5 • 9 5 • 7 5 • 4 5 • 0 4 • 8	2.5 2.5 3.4 3.3 3.0	11 12 13 14 15
16 17 18 19 20	3.5 3.2 2.7 2.5 2.4	2 · 3 2 · 4 2 · 3 2 · 2 2 · 4	14 5 • 3 5 • 4 4 • 1 3 • 4	1.2E 1.3E 1.4E 1.4E	29 28 27 26 26	15 21 23 22 22	35 34 33 33 30	38 39 40 40 41	27 26 25 24 23	11 10 9.9 9.3 9.0	4 • 5 4 • 4 4 • 4 4 • 5 4 • 3	3 • 2 3 • 4 • 4 • 8 5 • 2 4 • 4	16 17 18 19 20
21 22 23 24 25	2.4 2.3 2.2 2.2 2.5	2 · 3 2 · 2 2 · 2 2 · 2 2 · 2 2 · 3	3 • 2E 2 • 7E 2 • 7E 2 • 7E 2 • 7E	1.2E 1.3E 1.3E 1.2E 1.3E	26 25 24 24 23	22 22 21 22 22	32 32 32 34 33	41 40 39 38 38	23 23 24 24 22	9 • 2 8 • 8 8 • 6 8 • 1 7 • 7	4 • 3 4 • 3 4 • 3 4 • 5 4 • 4	4.3 3.5 3.3 2.9 3.0	2 I 2 2 2 3 2 4 2 5
26 27 28 29 30 31	2 · 3 2 · 2 2 · 2 2 · 2 1 · 9 2 · 2	2 • 2 4 • 0 3 • 1 2 • 8 2 • 4 E	2.6E 2.6E 2.7E 2.6E 2.4E 2.4E	1.2E 1.2E 1.4E 11 E 83 E 62 E	23 23 23	22 29 30 28 28 28	31 29 31 36 39	37 37 36 36 35 35	21 21 21 22 22 21	7.5 7.3 7.0 6.9 6.6 6.4	4.0 3.8 3.5 3.3 3.6	2.5 2.6 2.6 2.4 2.2	26 27 28 29 3 D 3 1
MEAN MAX MIN. AC.FT.	2.9 19.0 1.3 177	2 • 2 4 • 0 1 • 8 1 3 3	3.2 14.0 2.1 196	6.4 83.0E 1.2E 396	23.8 36.0 0.0 1321	21 • 8 30 • 0 15 • 0 1343	32.6 42.0 23.0 1942	38.2 43.0 35.0 2348	27+1 35+0 21+0 1613	11.6 21.0 6.4 713	5.0 6.7 3.3 305	3.2 5.2 2.2 192	MEAN MAX MIN AC.FT.

- Estimoted

E - Estimated
NR - No Record
- Discharge measurement or observation
of no flow made on this day.
- E and

WATER YEAR SUMMARY

MEAN MAXIMUM MINIMUM DISCHARGE GAGE HT MO DAY TIME GAGE HT MO DAY TIME 14.7 150E NR 3.56 1 30 2400

TOTAL ACRE-FEET 10680

	LOCATION	١	MAXII	MUM DISCH	ARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T.B.R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	RIOD	ZERO	REF.
LATITODE	LONGITODE	M, D, 6, 8 M	C.F.S.	C.F.S. GAGE HT. DATE			ONLY	FROM	TO	GAGE	DATUM
37 28 10	119 36 52	NE25 5S 21	E 150	3.58	1-30-63	DEC 58-DATE		195B		0.00	LOCAL

Station located 195 ft. above road culvert pipe, 1.4 mi. SE of Fish Camp. This is regulated diversion from Big Creek to Lewis Fork, Fresno River. Stage-discharge relationship at times affected by ice and extreme high flows affected by culvert pipe below station.

Maximum discharge determined from slope area survey and maximum capacity of culvert pipe below station.

TABLE B-8

LEWIS FORK FRESHO RIVER NEAR DAKHURST IN SECONO FEET

WATER STATION NO 867325 1963

> 26 11

> > (EX) 1000

> > > 1

TOTAL

ACRE-FFFT

1961 DATE NR

OAY	OCT	NOV	OEC.	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	DAY
1	2 • 3	5.9	4.9	9.8	1090 #	50	NR	122	112	50	20	7.0	1
2	2 • 3	6 • 3	4 + 8	10	161	47	NR	119	110	48	18	5.9	2
3	5.0	6.0	4.5*	10 *	58	45	NR	115 *	105	45 .	19	5.7	3
4	4.5	6.4	3 . 8	7.4	31	41	71.2**	109	108	44	19	6.0	4
5	4.7	5.90	4 • 1	6.5	35	42	NR	104	104	42	17	6.6	5
6	3.9	6.5	3 + 8	6.5	55	42	NR	106	105	41	18 •	5.9	6
7	4 • 0	5 . 8	4 . 8	6.7	51	42 *	NR	104	108 •	39	10	5.0	7
8	4.5	4.9	5.0	7 . 2	45	43	NR	125	102	37	17	4 . 2	8
9	3.8	4.9	3 • 2	6.8	68	45	NR	186	102	3.8	16	4.0	9
10	3 • 8	4.9	4.4	6 - 4	161 *	44	NR	165	101	35	16	4 • 0	10
11	5.4*	4.4	4 . 4	7.1	84	44	NR	167	100	33	16	4.4	-11
12	8.7	3 • 8	4.3	5 • 2	77	44	71	154	99	33	10	4.4	12
1.3	9 • 2	3 • 5	4.7	4.9	111	43	68	140	95	31	8.9	5.3	+3
14	53	3 • 9	5.7	6 • 4	94	44	151	135	93	30	8 • 9	6 • 4	- 10
15	19	4.0	7 . 8	8 • 2	76	47	190 +	128	- 96	29	8 • 1	6 • 3	>5
16	13	3 . 8	35	8 • 1	70	51	122	121	91	27	7.9	5 . 8	16
17	11	4+0	16	7.7	67	51	96	122	87	25	7.9	6.10	> 7
18	10	3 • 1	15	7.8	62	54	85	121	8.3	28	8.7	8 . 8	1.6
19	8 • 8	3 • 1	11	7.5	62	5.2	102	117	79	25	7 • 5	14	19
20	8 • 3	8.1	11	7.2	57	NR	97	116	77 E	25	7 • 2	14	5.0
2 1	8.5	7.2	9.0	7.7	57	NR	119	123	75 E	24	7.8	9.9	2 1
2.2	8.0	6.7	7.6	8 - 1	56	NR	107	134	73 E	26	7 • 3	8 • 8	2.2
2.3	8.0	5 . 7	8.7	7 . 2	53	NR	109	137	72 E	25	7 • 4	9.4	2.3
24	7.6	5 . 2	8.5	7.7	51	NR	107	134	70 E	23	7.9	8 • 8	2.4
25	7 • 6	5 • 4	5.9	6+5	53	NR	109	131	70 E	23	7.0	7.9	2.5
26	7.5	6 • 0	6 - 1	6 • 6	52	NR	123	131	66 E	24	7 • 0	7.3	2 6
27	6.3	8.8	7 • 1	5.9	52	NR	103	128	61 E	23	6 • 8	7.8	27
2.8	6.9	9 . 7	7 . 8	6.1	49	171 **	104	124	59	22	6 • 3	7.5	2 6
29	6.8	7.5	8.9	9.1		NR	112	120	58	21	6.1	7 . 2	2 9
30	6.7	6 - 1	7.8	430		NR	123	117	54	21	6.4	7 - 1	30
31	6+1		7 • 8	1500 E		NR		114		19	7+2		3 >
MEAN	8 • 6	5 • 6	7.9	69.1	105	NR	NR	128	87.3	30.8	10.9	7 - 1	MEAN
MAX	53.0	9.7	35 • 0	1500 E	1090 E	NR	NR	186	112	50.0	20.0	14.0	MAX
MIN.	2 • 3	3.1	3 • 2	4.9	31.0	N/R	NR	104	54.0	19.0	6.1	4.0	MIN
AC.FT.	526	3 3 2	483	4249	5827	NR	NR	7872	5193	1896	671	420	AC.FT.

- Estimated

ments.

37 20 44

E - Estimated
NR - No Record

+ Oischarge measurement or observation
of no flow made on this day

= E and #

** - Result of discharge measure-

119 38 20

SE 2 7S 21E

MEAN
DISCHARGE GAGE HT MD DAY TIME MINIMUM DISCHARGE GAGE HT MO DAY TIME NR NR

SEP 61-DATE

WATER YEAR SUMMARY

LOCATION MAXIMUM DISCHARGE PERIOD OF RECORD DATUM OF GAGE OF RECORD PERIOO ZERO 1/4 SEC. T. 8 R. GAGE HEIGHT REF LATITUDE LONGITUDE OIS CHARGE M.O.B.8 M. C.F.S. GAGE HT. OATE ONLY FROM TO DATUM GAGE

2- 1-63

Station located 1.6 mi. N. of Oakhurst on Highway 41, 500 ft. downstream from Shady Oaks Motel. Station located on left bank above concrete weir. Altitude of gage is approximately 2,520 ft. (from topographic map.)

493

2930E

DAILY MEAN DISCHARGE

MIAMI CREEK NEAR OAKHURST IN SECOND FEET

WATER YEAR STATION ND B67300 1963

			IH SECOND										
DAY	QC T.	NOV	OEC.	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	DAY
-	6.4	0.8	1.2	1.4	391 #	5 • 6	14	24	10	4.9	1.7	1.6	1
2	0.4	2 • 2	1.2	1.2	45	5.4	12	23	9.4	4.9	1.7	1.5	2
3	0.4	1 • 4	1.2*	1.3*	20	5.2	12	21 •	8.9	4.6*	1.9	1.4	3
9	0.5	1.1	1.3	1.3	13	5.2	12 *	19	8.9	4.4	1.8	1 • 4	4
5	C • 5	1.1*	1.3	1.3	10	5 • 2	14	19	9 • 1	4.5	1.8	1.5	5
6	C • 6	1.1	1.2	1.3E	9.1	5.1	16	18	9.4	4.2	1.7*	1.4	6
7	٤.6	1.0	1.2	1.3E	6.1	5 • 0	35	18	8.7*	4+2	1.6	1.3	7
8	0.6	0.9	1.2	1.3	1.2	5 + 0	28	21	8 • 0	3.9	1.7	1.2	В
9	C - 5	0.9	1.1	1.3	8 • 6	5 • 0	20	30	7.4	3.8	1.7	1.2	9
ID	0.5*	0.9	1.1	1.3	30	5.0	17	22	7.5	3 . 8	1.6	1.2	10
D.	0.6	0+9	1.1	1.3	17	4.8*	15	24	7.8	3.6	1.5	1.2	-11
12	0.6	0.9	1.1	1.2E	12	4.6	14	22	8 • 4	3 • 4	1.6	1.3	12
13	0.7	0.9	1.1	1.0E	22	4.4	14	19	8 • 4	3 • 3	1.5	1 - 4	13
14	2.6	1.0	1.1	1.4	18	4.6	42	16	8.1	3.2	1.6	1.5	14
15	1 • 4	1.1	1 • 2	1.3	12	5.1	50	17	7.9	3 • 1	1.5	1.4	15
16	1.2	1.1	6.1	1.3	10	5.2	29	15	7.3	3 - 1	1.5	1.4	16
17	2 • 4	1.1	2 • 6	1.3	9.5	5.8	22	14	7.1	3 • 1	1.5	1.4*	17
18	3 • 4	1 • 1	2.4	1.2	8.6	6.0	18	14	6.8	3 • 0	1.4	1.7	18
19	1.2	1.2	1.9	1.1	7.9	6.1	22	13	3 + 8	2.7	1.5	2.3	19
2.0	1.0	1.2	1+6	1.1	7.5	6.4	21	12	5.9	2.7	1.5	3.1	20
2 1	1.0	1.2	1.4	1.i	1.6	7.3	20	12	5.9	2 . 6	1.5	2 • 0	2 1
2.2	C • 9	1 - 1	1.3	1.2	1.2	8 + 1	21	11	5 . 8	2.6	1.6	1.7	2.2
23	C • 9	1+1	1.3	1.2	6.7	14	2.3	11	6.2	2.4	1.6	1.4	2.3
24	2.9	1.1	1.3	1.2	6 • 4	1.2	24	12	6+1	2 • 4	1.7	1.4	24
2.5	1.1	1 • 1	1.2	1 • 2E	6.1	11	22	12	5.7	2 • 2	1.7	1 . 3	2.5
26	1.0	1.1	1.3	1 • 1E	5.9	11	23	11	5.4	2 • 2	1.5	1 + 2	2.6
27	C+9	1 • 4	1+1	1 • 2E	5.9	16	22	11	5.0	2.2	1.4	1.0	27
28	€ • 9	1.5	1 • 2	1.3E	5.7	3.8	22	11	5.0	2 • 1	1.4	1.0	2.8
29	5 . 8	1.3	1.2	1.6		2.3	24	11	5 • 0	1.9	1.4	1.0	29
50	0.8	1.2	1.2	95 E		1.7	25	11	4.9	1.8	1.6	1.0	30
31	0.8		1.3	443 €		16		10		1.8	1.6		3 1
MEAN	1.0	1.1	1.5	18.5	25.6	9+0	21.8	16.3	7 • 1	3 • 2	1.6	1.4	MEAN
MAX.	3.4	2 • 2	6+1	443 E	391 E	38.0	50.0	30.0	10.0	4.9	1.9	3.1	MAX
MIN.	0.4	0.8	1.1	1.0	5.7	4.4	12.0	10.0	3.8	1.8	1.4	1.0	MIN.
AC.FT.	60	67	91	1139	1424	552	1295	1004	424	196	98	86	AC.FT.
						,,,	12//	-004	727	170	70		_

E - Estimated
NR - No Record

♣ - Discharge measurement or observation
of no flow made on this day

□ - E and ★

MEAN			MAXIMU			
DISCHARGE	DISCHAR	3 E	OAGE HT	MD	DAY	TIME
8.9	1140	Ε	9.08	2	1	0110
		_		_	_	

MINIMUM DISCHARGE GAGE HT MO DAY TIME 0.3 2.4 10 1 1650

YEAR SUMMARY

WATER

(TOTAL
1	ACRE-FEET
1	6435

		LOCATION	1	MAXII	MUM DISCH	IARGE	PERIOD O	RECORD DATUM		DATUM	OF GAGE	
	LATITUDE	LATITUDE LONGITUDE 1/4 SE		OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF.
Į	LATITODE	LONGITODE	M. D. B. & M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	то	GAGE	DATUM
-	37 23 3B	119 39 10	SE22 6S 21E	1140E	9.08	2- 1-63	DEC 59-DATE		1959	Date	0.00	

Station located 150 ft. below bridge, 4.5 mi. N. of Oakhurst. Tributary to Fresno River. Stage-discharge relationship at times affected by ice. Drainage area is 10.6 sq. mi. Recorder installed December 15, 1959. Altitude of gage is approximately 3,500 ft. (from topgaphic map.)

TABLE B→10

DAILY MEAN DISCHARGE

SAN JOAQUIN RIVER NEAR DOS PALOS IN SECONO FEET

WATER YEAR 1963 STATION NO 807610

DAY	OCT.	NOV	OEC.	JAN	FE8	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	DAY
2 3 4 5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 32 121	12 90 29 6 0•0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	7 12 12 8 12	12 12 5 0.0	12 12 3 0•0	0.0 0.0 0.0 0.0	1 2 3 4 5
6 7 8 9	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	101 71 120 186 202	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	12 9 8 12 12	0.0 7 12 12 4	0.0 0.0 0.0 0.0	9 4 0•0 0•0	6 7 8 9
11 12 13 14 15	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	182 88 16 10 7	0.0 0.0 0.0 0.0	0.0 8 12 12 12	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	12 7 0.0 4	0.0 0.0 0.0 0.0	0.0 7 12 4 0.0	0.0 0.0 3 4 0.0	11 12 13 14 15
16 17 18 19 20	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	5 1 0.0 0.0 0.0	0.0 0.0 0.0 0.0	6 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 8 12	12 12 12 12 12	9 12 10 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	16 17 18 19 20
2 ! 2 2 2 3 2 4 2 5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	12 18 16 12	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	12 12 0.0 0.0	12 4 0•0 9	0.0 8 11 0.0 0.0	0.0 7 12 3 0.0	0.0 0.0 4 0.0 0.0	2 I 2 2 2 3 2 4 2 5
26 27 28 29 30 31	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	8 6 5 4 2	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	12 12 12 12	0.0 9 5 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 9 5	26 27 28 29 30 31
MEAN MAX MIN AC, FT.	0.0 0.0 0.0	0.0 0.0 0.0	3.0 18 0.0 186	37.0 202 0.0 2270	4.9 90 0.0 272	1.6 12 0.0 99	0.0 0.0 0.0	1.8 12 0.0	9.9 12 0.0 587	4.1 12 0.0 254	2.5 12 0.0 151	1.3 9 0.0 75	MEAN MAX MIN. AC.FT.

E - Estimated
NR - No Record
- Oischarge measurement or observation
of no flow mode on this day
- E and

MEAN		UMIXAN			1		MININ			
DISCHARGE	15CHARGE	GAGE HT	MO OA	TIME	1	DISCHARGE	343E HT	MO	DAY	TIME

WATER YEAR SUMMARY

TOTAL ACRE-FEET E & 4

	LOCATION	٧	MAXII	MUM DISCH	HARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PERIO0		ZERO	REF
CATITOOE	LONGITODE	M 0.8 8 M	C.F.S.	GAGE HT.	OATE	o i o o i i i i i i	ONLY	FROM	то	GAGE	DATUM
36 59 38	120 30 02		8200		6-5-52	OCT 40-DATE	OCT 40-DATE	1940		116.5	USED

Station located 800 ft. below the head of Temple Slough, 6.5 ml. E of Dos Palos. Records furn. by U.S.B.R. Drainage area is approx. 5,630 sg. ml.

DAILY MEAN DISCHARGE IN SECONO FEET

EAST FORK CHOWCHILLA RIVER NEAR AHWAHNEE

WATER VEAR 1963 STATION ND B64400

DAY	ост	NOV	OEC.	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	DAY
2 3 4 5	0 • 0 0 • 0 0 • 0 0 • 0	1.0 1.0 1.0 1.0 1.0	2 • 6 2 • 3 2 • 3 2 • 3 2 • 3	2 • 2 2 • 0 1 • 9 2 • 2 2 • 4	1370 E 180 115 106 103	23 23 24 21 22	98 87 75 69 64	100 95 90 86 82	36 34 32 29 30	13 12 12 11 11	2 • 6 2 • 5 2 • 3 2 • 3 2 • 3	1.0 1.0 1.0 0.9 0.8	1 2 3 4 5
6 7 8 9	0.0 0.0 0.0 0.0	1 • 1 1 • 2 1 • 1 1 • 2 1 • 2	2 • 2 2 • 2 2 • 1 2 • 3 2 • 3	2 • 7 2 • 8 2 • 6 2 • 8 2 • 6	102 101 101 106 218 *	20 19 19 21 20	68 278 166 115 107	78 74 81 122 90	31 33 29 26 26	11 11 11 9•9 9•2	2.4 2.3 2.2 2.2 1.9	0 • 8 0 • 7 0 • 6 0 • 5 0 • 4	6 7 8 9
11 12 13 14	C.C C.O C.1 23 6.6*	1.2 1.2 1.3 1.6 2.0	2 • 2 2 • 0 1 • 9 2 • 1 2 • 5	2.6 2.8 2.8 2.6 2.7	116 109 138 125 103 E	19 17 16 17 26	92 83 75 284 304	100 91 82 83 75	27 28 30 27 24	9 • 1 8 • 7 7 • 7 7 • 3 6 • 8	1 · 8 1 · 6 1 · 8 1 · 4	0.3 0.3 0.4 0.5 0.6	11 12 13 14 15
16 17 18 19 20	2 • 8 1 • 8 1 • 3 1 • 0 0 • 9	2 • 6 • 2 • 3 2 • 1 2 • 2 2 • 2	12 7.9* 4.8 4.0 3.5	2 • 7 • 3 • 1 3 • 0 3 • 8 3 • 5	85 E 69 E 51 E 46	36 52 36 * 45 55	157 122 108 139 176	68 62 56 53 51	22 20 18 * 17 16	6.5 6.2 6.4* 6.1 5.4	1.3 1.2 1.1 1.1 1.1	0+6 0+6 0+8 1+3 4+8*	16 17 18 19 20
21 22 23 24 23	0 • 8 6 • 8 6 • 8 0 • 9 0 • 9	2 • 2 2 • 1 2 • 1 2 • 0 2 • 0	3 • 0 2 • 8 2 • 8 2 • 8 2 • 7	3.9 3.9 3.9 4.3 4.3	37 35 32 30 28	48 47 142 105 82	199 159 * 141 128 119	48 * 44 44 45 45	16 17 17 17 16	5 • 3 5 • 2 4 • 7 4 • 6 4 • 3	1.0 1.1 1.2* 1.3 1.3	3+1 2+2 1+9 1+7 1+5	2 r 2 2 2 3 2 4 2 5
26 27 28 29 30 31	1 • 0 1 • 2 1 • 3 1 • 1 1 • 0 1 • 0	2+0 2+5 3+2 3+1 2+7	2 • 6 2 • 6 2 • 4 2 • 3 2 • 4 2 • 2	4.7 4.7 4.7 5.3 365 •	27 26 26	68 77 438 • 151 115	169 132 115 107 103	44 42 40 41 39 37	15 14 14 14 13	4 • 2 4 • 3 4 • 1 3 • 7 3 • 5 3 • 1	1.3 1.2 1.0 1.0 1.0	1 • 2 0 • 8 0 • 6 0 • 5 0 • 5	26 27 28 29 30 31
MAX.	1.6 23.0 0.0 96	1 · 8 3 · 2 1 · 0 106	3.0 12.0 1.9 187	66.7 1610 E 1.9 4103	130 1370 E 26.0 7192	61.5 438 16.0 3784	135 304 64•0 8011	67.4 122 37.0 4141	22.9 36.0 13.0 1365	7.4 13.0 3.1 453	1.6 2.6 1.0 98	1 • 1 4 • 8 0 • 3 63	MEAN MAX MIN AC.FT.

WATER YEAR SUMMARY

| MEAN | DISCHARGE | GAGE HT | MO | DAY | TIME | DISCHARGE | GAGE HT | MO | DAY | TIME | DISCHARGE | GAGE HT | MO | DAY | TIME | DISCHARGE | GAGE HT | MO | DAY | TIME | DISCHARGE | DAY | TIME | DAY | TIME | DISCHARGE | DAY | TIME | DISCHARGE | DAY | TIME | DAY | DAY | TIME | DAY | DAY | TIME | DAY | TIME | DAY | TIME | DAY |

TOTAL ACRE · FEET 29600

	LOCATION	N	MAXII	NUM DISCH	ARGE	PERIOD O	F RECORD	DATUM OF GAGE			
LATITUOS	LATITUDE LONGITUDE			OF RECORO		DISCHARGE	GAGE HEIGHT	PERIO0		ZERO	REF
LATITODE	LONGITUDE	M. O. B. & M.	C.F.S.	GAGE HT.	OATE			FROM	TO	GAGE	OATUM
37 20 09	119 48 59	SE 7 7S 20E	3710E	10.34	1-31-63	NOV 57-DATE		1957	Date	0.00	LOCAL

Station located 1.1 mi. above mouth, 5.5 mi. W of Ahwahnee. Dranage area 57.8 sq. mi. Altıtude of gage 980 ft. (from topographic map.)

DAILY MEAN DISCHARGE IN SECOND FEET

WEST FORK CHOWCHILLA RIVER NEAR MARIPOSA

WATER YEAR 1963 STATION NO B64300

DAY	ост	NOV	OEC.	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	DAY
1	0.0	0.0	0 • 1	0 • 4	916 #	7.6	33	50	14	3.1	0 • 2	0.0	1 2
2	C + C*	0.0	0 • 2	0.5	74	7.3	25	46	13	2 • 8	0+2	0.0	3
3	0.0	0.0	0 • 2	0.4	34 20	6.8	21	42 38	11	2.8	0 • 2	0 • 0	4
4	0.0	0 • 0	0 • 2 0 • 2	0.4	13	6.1	19 18	36	11	2.4	0.2	0.0	5
5	C+0	0.0	0.2		1.5	0.1	10					0.0	
6	0.0	0.0	0 • 2	0 • 3	10	6.1	21	35	11	2 • 3	0 • 1	0.0	6 7
7	U+0	0.0	0 • 2	0 • 3	9.0	6.1	219	34	11	2 • 2	0 • 2	0.0	6
8	0.0	0.0	0 • 2	0 • 3	7.9	6.0	106	44	9 • 8 9 • 3	2+1	0 • 1	0.0	9
9	C+0	0.0	0 • 2	0 • 3	17	6 • 3	60	68	8.9	1.9	0.1	0.0	10
10	0.0	0.0	0 • 2	0 • 3	162	6+2	51	44	8.9	1.9	0 • 1	0.0	
10	0+0	0 • 0	0 - 2	0 • 3	35	6.1	43	51	9.9	1.6	0.1	0.0	11
12	C • O	0.0	0 • 2	0 • 3	27	5 • 6	36	41	11	1.5	0 • 1	0.0	12
13	0.0	0.0	0 • 2	0 • 3	92	5.1	31	35	12	1.4	0 - 1	0.0	13
14	0 + 1	0.0	0 • 3	0 • 3	69	6.0	299	35	10	1.2	0.0	0.0	15
15	0 • 0	0.1	0 • 4	0 • 3	36	9 • 8	2 38	32	9 • 0	1 • 2	0.0	0.0	13
16	0.0	0.0*	2.5	0.3	27	17	111	29	* 8 + 2	1.0	0 • 0	0.0	16
17	0.0	0.0	2 • 3 *	0.3	21	27	79	26	7 • 3	0.9	0 • 0	0.0	17
18	0.0	0.0	1 • 3	0.4	17	19	66	23	6.7*	0.9*	0 • 0	0.0	19
19	0.0	0.0	1.0	0 • 4	15	19	95	21	5 . 8	0.9	0 • 0	0 • 1	
20	0.0	0 • 1	0 + 8	0 • 3	13	16	164	20	5 • 3	0.8	0.0	0.0*	20
21	0.0	0 • 1	0 + 8	0 • 3	12	14	176	19 •	5.0	0.8	0.0	0.0	21
2.2	0.0	0.1	0.7	0.4	11	1.2	123 +	19	4.9	0.7	0.0	0 • 0	2 2
23	0.0	0 • 1	0 • 7	0 • 4	10	46	100	18	4.9	0.6	0.0	0.0	23
24	0.0	0 • 1	0 • 7	0.4	9 • 6	35	84	20	5 • 2	0.6	0 • 0	0.0	24
2.5	0.0	0 • 1	0 + 6	0 • 4	8 • 9	21	75	20	4 • 5	0.5	0.0	0.0	25
26	0.0	0 • 1	0.6	0 • 4	8 • 4	17	119	19	4 • 1	0.5	0.0	0.0	2 6
27	0.0	0 • 2	0.6	0.4	7.9	18	85	18	3 . 8	0.5	0.0	0.0	27
28	0.0	0 • 1	0.5	0 • 4	7.5	207 *	68	18	3 • 5	0.4	0 • 0	0.0	26
29	0.0	0 • 1	0.5	0.5		5 7	59	18	3.4	0 • 4	0.0	0.0	30
30	0.0	0 • 1	0.5	233 *		3.8	55	16	3 • 3	0 • 4	0 • 0	0.0	
31	0 • 0		0 • 5	1400 E		33		15		0 + 3	0.0		3
MEAN	0.0	0+0	0.6	53.0	60.4	22.4	89.3	30.6	7.9	1.3	0 • 1	0.0	MEAN
MAX	0.1	0 • 2	2.5	1400 E	916 E	207	299	68.0	14.0	3.1	0 • 2	0.1	MAX.
MIN.	0.0	0.0	0 • 1	0.3	7.5	5.1	18.0	15.0	3 • 3	0 • 3	0+0	0.0	MIN.
AC.FT.	340	3	35	3259	3352	1375	5314	1884	472	82	4		AC.FT.

E - Estimated
NR - No Record
- Orecharge measurement or observation
of no flow mode on this day,
- E and

WATER YEAR SUMMARY

MINIMUM DISCHARGE GAGE HT MO DAY TIME 10 1 0000 0.0

TOTAL ACRE-FEET 15780

	LOCATION	V	MAXII	MUM DISCH	HARGE	PERIOD O	F RECORD	DATUM OF GAGE			
LATITUDE		1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF
LATITUDE	LONGITUOE	M. O. B. & M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
37 25 14	119 52 25	SE10 6S 19E	3590E	8.67	4- 3-58	NOV 57-DATE		1957		0.00	LOCAL

Station located 15 ft. below Indian Peak Road Bridge, 6.7 mi. SE of Mariposa. Drainage area is 33.6 sq. mi. Altitude of gage is 1,680 ft. (from topographic map.)

DAILY MEAN DISCHARGE IN SECONO FEET

MIDDLE FORK CHOWCHILLA RIVER NEAR NIPINNAWASEE

WATER STATION NO 864360

OAY	ост	NOV	OEC	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OAY
1	0.0	0.1	0+2	0.3	473	4.0	17	26	9.6	2.8	0+2	0+2	1
2	0.0.	0+1	0.2	0+4	39	3.9	14	24	9.1	2.7	0.2	0 • 2	2
3	0.0	0 • 1	0.2	0.4	1.7	3.8	12	23	8 • 2	2 • 1	0 • 2	0 • 2	3
4	0 • 0	0+1	0 • 2	0.3*	12	3.9	11	21	6 • 8	1.9	0 • 2	0 • 2	4
5	0.0	0.1	0 • 2	0 • 3	8.9*	4 • 8	10	19	6.6	1.8	0+2	0 • 2	5
6	0.0	0 • 2	0.2	0.3	7.3	4.8	10	19	6 . 8	1.6	0 • 1 E	0 • 1	6
7	0.0	0+2	0 • 2	0.3	6+1	4.7	176	20	6.8	1.6	0 • 2 E	0 • 1	7
6	0.0	0 + 1	0 • 2	0.3	5 • 2	4.5	59	25	6.5	1.5	0 • 2 E	0+1	8
9	0.0	0 • 2	0.2	0.4	8 • 2	4.6	28	43	6.2	1.5	0 • 1 E	0 • 1	9
10	0.0	0 • 2	0 • 2	0 • 4	71 •	4 • 4	25	25	6 • 2	1.2	0.1E	0.1	10
11	0.0	0.2	0 • 2	0.4	17	4.4	23	28	6.2	1.0	0.1E	0 • 1	11
12	0.0	0.2	0 • 2	0.3	14	4.1	22	23	6.8	0.8	0 • 1 E	0 + 1	12
13	0 • 1	0 • 2	0 • 2	0.3	44	3 . 7	20	20	7.1	0.7	0 • 1 E	0 - 1	(3
14	3.9	0 • 3	0 • 2	0.3	36	4 • 3	141	21	5.9	0.6	0 • 1 E	0 • 2	14
15	0 + 3 *	0.3	0 • 3	0 • 3	18	5.7	125	19	5.5	0.6	0 • 1 E	0 • 2	15
16	0.1	0.3*	2.7	0 • 3	14	8.0	46	17	5.0	0.5	0 • 1 E	0 • 2	16
17	0.1	0 • 3	1.2*	0.3	11	11	. 32	17	4.9	0.5	0.1E	0 + 2	17
18	0.1	0 • 3	0.7	0.3	9.7	8.4*	28	15	4 . 1 +	0.5*	0 • 1 E	0.3	18
19	0.1	0.2	0.6	0.4	8.8	13	52	14	3.6	0.5	0 • 1 E	0 - 4	19
2.3	0 • 1	0 • 2	0.5	0 • 4	7.8	19	78	14	3.5	0.5	0.1E	0.40	20
21	0.1	0.3	0.4	0.4	6.4	15	87	12 +	3.5	0.5	0 • 1 E	0.3	1.5
22	0 + 1	0 • 2	0.4	0.4	5 . 8	11	71 •	12	3 . 8	0.5	0.1E	0 • 3	2.2
23	0.1	0.2	0.4	0.3	5.3	37	54	12	4.0	0.5	0.1#	0 • 3	2.3
24	0.1	0 • 2	0 • 4	0.3	4 • 8	24	38	13	3.9	0.4	0 • 2	0.3	24
25	0.1	0 • 2	0.4	0.3	4 • 5	13	30	12	3 . 7	0 • 3	0.1	0 + 2	2.5
26	0.2	0 • 2	0.4	0.4	4.5	11	68	12	3 • 2	0.3	0+2	0 • 2	2 6
27	0 • 6	0+2	0.4	0.4	4.5	11	44	12	3.0	0.3	0.1	0 • 2	2.7
28	0.2	0.2	0.4	0 • 4	4.2	182 •	34	11	3 • 1	0.3	0 • 1	0 • 1	2.8
29	0.1	0 • 2	0 • 4	0.6		35	29	11	3.1	0.3	0 • 1	0 • 1	29
30	0.1	0 • 2	0.4	134 *		21	28	9.9	3 • 1	0.2	0 • 2	0.1	30
3	0.1		0 • 4	572 •		17		9.3		0 • 2	0 • 2		3 -
MEAN	0.2	0 • 2	0.4	23 • 1	31.0	16.2	47.1	18.0	5 • 3	0.9	0+1	0 • 2	MEAN
MAX.	3.9	0.3	2.7	572	473	182	176	43.0	9.6	2 . 8	0 • 2	0.4	MAX
MIN.	0.0	0 • 1	0 • 2	0.3	4.2	3.7	10.0	9.3	3.0	0.2	0+1	0 • 1	MIN.
C.FT.	12	12	26	1421	1722	996	2801	1109	317	57	8	12	AC.FT.

E — Estimated
NR = No Recard

& - Oischarge measurement or abservation
of no flow mode on this day

- E and

WATER YEAR SUMMARY

MEAN DISCHARGE DISCHARGE MAXIMUM MINIMUM GAGE HT MO DAY TIME 10+10 2 1 0150 DISCHARGE GAGE HT MO DAY TIME 11.7 1280 0.0 10 1 0000

TOTAL 4 C R E - F E E T 8492

	LOCATION	N	MAXII	MUM DISCH	IARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. 8 R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	RIOD	2ERO ON	REF.
LATITUDE	LONGITUDE	M.D.B.8.M.	C.F.S.	GAGE HT.	DATE	DIO GILLANOE	ONLY	FROM	то	GAGE	OATUM
37 22 56	119 50 11	NE25 6S 19E	1280	10.10	2- 1-63	MAR 58-DATE	MAR 58-DATE	1958	Date	0.00	LOCAL

Station located 6 mi. W of Nipinnawasee, 10 mi. SE of Mariposa. Tributary to East Fork Chowchilla River. Drainage area is 12.3 sq. mi. Altitude of gage is 1,520 ft. (from topographic map.)

DAILY MEAN DISCHARGE

STRIPED ROCK CREEK NEAR RAYMOND IN SECONO FEET

	WATER
STATION NO	YEAR
B64260	1963

OAY	OCT.	NOV	O E C.	JAN	FEB.	MAR	APR	MAY	JUNE	JULY	AUG	SEPT.	OAY
2 3 4 5	0.0 0.0 0.0 0.0	0.1 0.1 0.1 0.1 0.1	0.1 0.2 0.2 0.2 0.2 0.1	0.2 0.2 0.2 0.2 0.2	297 # 23 12 9.4 7.5	5.4 5.2 4.5 3.4* 2.8	6.9 5.8 5.0 5.7 5.0	14 13 13 12	4.3 3.9 3.5 3.1 3.1	0.3 0.3 0.2* 0.2	0.0 0.0 0.1 0.1	0.1 0.0 0.0 0.0 0.0	2 3 4 5
6 7 8 9	0.0 0.0 0.0 0.0 0.1	0.1 0.1 0.1 0.1 0.1	0.1 0.2 0.2 0.1 0.2	0.2 0.2 0.2 0.3 0.2	6.1 5.0 4.7 11 78	2 · 8 2 · 8 2 · 5 2 · 5 2 · 5	5 • 2 8 4 2 9 1 5 1 2	11 * 10 11 16 11	3.2 2.8 2.7 2.6 2.5	0.2 0.2 0.2 0.1 0.1	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	6 7 8 9
11 12 13 14	0.1 0.1 0.2 1.5 0.3*	0.1 0.1 0.1 0.2 0.2	0.2 0.2 0.2 0.2 0.3	0 • 2 0 • 2 0 • 2 0 • 2 0 • 2	15 14 41 16 13	2 • 1 2 • 3 1 • 7 2 • 5 4 • 3	11 9.5 8.9 104 55	9.8 9.1 9.4 8.7	2 · 8 2 · 8 2 · 9 2 · 4 2 · 1	0.1 0.1 0.1 0.1	0 • 0 0 • 0 0 • 0 0 • 0	0.0 0.0 0.0 0.0	11 12 13 4 15
16 17 18 19 20	0.2 0.2 0.3 0.3 0.3	0.1* 0.2 0.2 0.2 0.2	1.7 0.4. 0.2 0.2 0.2	0.2* 0.2 0.2 0.2 0.2	12 10 9•1 8•6 8•1	5.0 16 7.5 4.7 3.6	26 19 16 31 79	8.0 7.2 6.3 5.6 5.4	1.9 1.6 1.1 0.9 0.8	0.0 0.1 0.1 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.1 0.1	16 17 18 19 20
2 I 2 2 2 3 2 4 2 5	0.3 0.3 0.3 0.4 0.3	0.1 0.2 0.2 0.2 0.2	0 • 2 0 • 2 0 • 2 0 • 2 0 • 2	0 • 2 0 • 2 0 • 2 0 • 2 0 • 2	7.3 7.0 6.5 6.1 6.1	3 • 1 3 • 4 12 4 • 1 3 • 2	78 34 26 21 22	5.0 5.1 5.0 5.2 5.4	0.6 0.7 0.7 0.7 0.6	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.1 0.0 0.0	21 22 23 24 25
26 27 28 29 30 31	0.3 0.2 0.1 0.1 0.1 0.1	0.1 0.2 0.2 0.2 0.2 0.2	0 • 2 0 • 2 0 • 2 0 • 2 0 • 2 0 • 2	0.2 0.2 0.1 0.1 63 *	5.7 5.2 4.9	2.8 3.0 101 * 15 9.6 7.6	47 25 20 17 15	4.9 4.5 4.4 4.9 4.5	0.5 0.4 0.4 0.4	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	26 27 28 29 30
MEAN MAX MIN. AC.FT.	0 • 2 1 • 5 0 • 0 12	0.1 0.2 0.1 9	0.2 1.7 0.1 15	11.9 300 E 0.1 731	23.3 297 £ 4.7 1292	8.0 101 1.7 493	27.9 104 5.0 1662	8.3 16.0 4.4 507	1.9 4.3 0.4 112	0.1 0.3 0.0 5	0.0 0.1 0.0 1	0.0 0.1 0.0 1	MEAN MAX MIN. AC.FT.

E - Estimated
NR - Na Record
- Discharge measurement or observation
of no flow made on this day.
- E and

WATER YEAR SUMMARY

| MEAN | OISCHARGE | GAGE HT | MO | DAY | TIME | 892 | E | 7.53 | 2 | 1 | 0150 | MINIMUM | OSCHARGE | GAGE HT | MO | OAY | TIME | Oo0 | 10 | 1 | 0000 TOTAL 4841 11

EX III III

		LOCATION	V.	MAXII	MUM DISCH	HARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
LATIT	UOF	LONGITUDE	1/4 SEC. T. B. R.		OF RECORD)	OISCHARGE	GAGE HEIGHT	PER	100	ZERO	REF.
		LONGITUDE	M. O. B. & M.	C.F.S.	GAGE HT.	OATE	O S O TARROE	ONLY	FROM	TO	GAGE	DATUM
37 20	1	119 53 35	NE 9 7S 19E	1180E	8.87	4- 3-58	NOV 57-DATE		1957		0.00	LOCAL

Station located 8.7 mi. N of Raymond, 11 mi. SE of Mariposa. Tributary to Chowchilla River. Drainage area is 17.1 sq. mi. Altıtude of gage is approximately 1090 ft. (from USGS topographic maps.)

DAILY MEAN DISCHARGE

MARIPOSA CREEK NEAR CATHAY IN SECOND FEET

STATION NO YEAR 1963 862400

DAY	OCT.	NOV	OEC.	JAN	FE8	MAR	APR	MAY	JUNE	JULY	AUG.	SEPT.	OAY
1	0.0	0.0	0.0	1.5	1700 *	10 •	57	64	12	2.3	0.0	0.0	1
2	0.0*	0.0*	0.0	1.6	153	9.7	41	57	11	2 • 1	0.0	0.0	2
3	0.0	0.0	0.0	1.6	62	9.5	32	50	10	1.7	0.0	0.0	3
4 5	0.0	0.0	0.0	1.5	35	8.9	26	44	8.7	1.8	0.0	0.0	4
2	0.0	0.0	0.0*	1 • 4	21	8 • 2	21	38	8.4	1.8	0.0	0 • 0*	5
6	0.0	0.0	0.0	1 • 4	15	8.1	23	35	8 • 6	1.7	0.0*	0.0	6
7	0.0	0.0	0.0	1.4	11	8.1	327	34	7.9	1.6	0.0	0.0	7
6	0.0	0.0	0.0	1.4	9.2	7.5	179	40	7.4	1.4	0.0	0.0	8
9	0.0	0.0	0.0	1.4	66	9.5	102	65	6.8	1 . 4	0.0	0.0	9
10	0.0	0.0	0.0	1.3	647	8.8	75	39	6.4	1.3	0.0	0.0	10
11	0.0	0.0	0 • 2	1.3	120	8 • 2	58	41	7.0	1.0	0.0	0.0	11
12	0.0	0.0	0.8	1.2	79	7.6	47	34	7.3	0.9	0.0	0.0	12
13	0.0	0.0	0.9	1.1	529	6.8	38	30	7.2	0.8	0.0	0.0	13
14	0.0	0.0	1.0	1.1	332	7.5	423	27	7.2	0.6	0.0	0.0	+4
15	0.0*	0.0	1.3	1.2*	125	13	440	25	6.5	0.5	0.0	0.0	15
16	0.0	0.0*	86	1.2	79	24	211	23	5.6	0.4	0.0	0.0	16
17	C • O	0.0	16	1.2	55	72	132	21	4.9*	0.3	0.0	0.0	17
16	0.0	0.0	6.3	1.3	41	53	95	19	4.2	0.3*	0.0	0.0	18
19	0.0	0.0	4 • 1	1.2	33	33	143	18	3.7	0.3	0.0	0.0*	19
20	0.0	0.0	3 • 3	1 • 2	26	24	3 3 3	17	3 • 4	0.3	0.0	0.0	20
21	0.0	0.0	2 • 8	1.2	20	20	415	16	3.3	0.2	0.0	0.0	21
22	0.0	0.0	2 • 5	1.2	18	21	240 *	16	3.7	0.1	0.0	0.0	22
23	0.0	0 • C	2 • 2	1.2	16	47	162	16	3 . 3	0.1	0.0*	0.0	2 3
24	0.0	0.0	2.1	1.2	14	46	121	17 *	3.1	0.1	0.0	0.0	24
25	C.O	0.0	2.0	1 • 2	13	31	108	18	3.1	0.0	0.0	0.0	2.5
26	0.0	0.0	1.8*	1.3	12	25	199	16	2.9	0.0	0.0	0.0	2 6
27	0.0	0.0	1.8	1.2	11	24	128	14	2.5	0.0	0.0	0.0	27
28	0.0	0.0	1.6	1.2	11	662 *	100	14	2.5	0.0	0.0	0.0	28
29	0.0	0.0	1.6	1.3		155	85	14	2 • 4	0.0	0.0	0.0	29
30	0.0	0.0	1.6	453 *		86	75	13	2 • 3	0.0	0.0	0.0	30
31	0.0		1.6	2490 #		64		12		0.0	0.0		3 1
MEAN	0.0	0.0	4.6	96.1	152	49.0	148	28.6	5 . 8	0.7	0.0	0.0	MEAN
MAX MIN.	0.0	0.0	86.0	2490 E	1700	662	440	65.0	12.0	2.3	0.0	0.0	MAX
MIN.	0.0	0.0	0.0	1.1	9.2	6.8	21.0	12.0	2.3	0.0	0.0	0.0	MIN
AC.FT.			281	5912	8436	3012	8799	1759	344	46			AC.FT.

- Estimoted

E - Estimatea
NR - No Record

- Discharge measurement or observation
of no flow mode on this day.

- E and

WATER YEAR SUMMARY

MINIMUM

DISCHARGE GAGE HT MO DAY TIME

0 +0 1 0000 MEAN DISCHARGE DISCHARGE MAXIMUM GAGE HT MO DAY TIME 10.69 2 1 0150 39.5 5290

TOTAL ACRE-FEET 28590

		LOCATION	٧	MAXII	MUM DISCH	ARGE	PERIOD O	FRECORD		DATUM	OF GAGE	
Ī	LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	DOD	ZERD	REF.
ı	CATTIONE	LONGITODE	M. D. B. B. M.	C.F.S.	GAGE HT.	DATE	5.0 5.1141.02	ONLY	FROM	TO	GAGE	DATUM
	37 23 55	120 00 10	NE21 6S 18E	7180Eª	11.62	4- 3-58	NOV 57-DATE		1957		0.00	LOCAL

Station located at Co. Rd. bridge, 5.6 mi. E. of Cathay School. Tributary to San Joaquin River. Drainage area is 66.0 sq. mi. Altitude of yage is 1100 ft. (from topographic map.)

a-Previously reported as 4530E cfs. After obtaining additional high flow discharge measurements, the stage-discharge relation for high flows was more closely defined. Maximum discharge of record adjusted to present rating. See Table 8-1 for additional information.

DAILY MEAN DISCHARGE IN SECOND FEET

MARIPOSA CREEK BELOW MARIPOSA RESERVOIR

WATER YEAR 1963 STATION NO B62100

DAY	OCT.	NOV	ØEC.	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	DAY
1 2 3 4	0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0	916 896 738 637	15 16 14 14	64 50 38 35	80 63 58 48	10 a 10 a 9.9a 9.3a	1.8 1.7 1.5 1.3	0.0 0.0 0.0	0.0 0.0 0.0	1 2 3 4
5	0.0	0.0	0.0	0.0	325	16	32	40	9•0a	1.2	0.0	0.0	5
6 7 8	0.0	0.0	0.0	0.0	64 24 22	16 14 14	23 62 321	35 33 32	8.7a 8.1a 7.8a	1.0 0.7 0.5	0.0	0.0	6 7 8
9 10	0.0	0.0	0.0	0.0	343	14 15	187 127	48	7.5a 7.2	0.2	0.0	0.0	9 10
11 12	0.0	0.0	0.0	0.0	374 134	16 14	90 67	34 33	7.2 6.9	0.0	0.0	0.0	11 12
14	0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	174 449 275	13 12 16	50 124 375	28 25 24	6.9 6.9	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	14
16	0.0	0.0	0.0	0.0	108 64	16 27	355 239	21 20	6.6	0.0	0.0	0.0	16
19	0.0	0.0	0.0	0.0	43 38 32	46 39 30	155 134 183	20 19 18	5.3 5.0 4.6	0.0	0.0	0.0	18
21	0.0	0.0	0.0	0.0	28	25 21	410	17	4.0	0.0	0.0	0.0	21
23 24 25	0.0	0.0	0.0	0.0	22	28 43	244 190	16 16	3.4 3.0	0.0	0.0	0.0	23 24 28
26	0.0	0.0	0.0	0.0	19	39 29	134	15 14 a	2.6	0.0	0.0	0.0	2.0
2 8 2 9	0.0	0.0	0.0 0.0 0.0	0.0	18	27 258 427	198 148 120	13 a 12 a 12 a	2.0 2.0 1.9	0.0	0.0	0.0	27 28 29
30	0.0	0.0	0.0	0.0 552		198 93	96	11 a 11 a	1.9	0.0	0.0	0.0	30
MEAN MAX. MIN.	0.0	0.0	0.0	18 552 0+0	210 916 17	50 427 12	160 410 23	28 80 11 a	5.9 10.0a 1.9	0.3 1.8 0.0	0.0	0.0	MEAN MAX MIN
AC.FT.	0.0	0.0	0.0	1095	11687	3106	9515	1742	352	20	0.0	0.0	AC.FT.

E - Estimated
NR - Na Recard
- Discharge measurement or abservation
of na flow made on this day.
- E and # a - Partially estimated

MAXIMU	М		1	MINIM	UM	
 CACCUT		 W	1	 0 4 0 F F		 W

2 1

WATER YEAR SUMMARY

0.0

TOTAL 27517 5

		LOCATION	N	MAXII	NUM DISCH	HARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
	LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PEF	RIOD	ZERO ON	REF
1	CATITODE	CONGITODE	M. D. B. B. M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
	37 16 52	120 09 45	NE36 7S 16E	6020		12-24-55	NOV 52-DATE	NOV 52-DATE	1952		337.63	USCGS

Station located 1.5 mi, below Mariposa Dam. Tributary to San Joaquin River via Bear Creek. Flow regulated by Mariposa Reservoir. Records furn. by U.S.C.E. Drainage area is 108 sq. mi.

941

MEAN

38.0

DISCHARGE

MARIPOSA BYPASS NEAR CRANE RANCH IN SECOND FEET

WATER STATION NO

DAY	ост	NOV	DEC.	JAN	FEB.	MAR	APR	MAY	JUNE	JOFA	AUG.	SEPT.	VAO
1 2 3 4 5													3 4 5
6 7 8 9													6 7 8 9
11 12 13 14													12 13 -4
16 17 18 19 20						No í	low						16 17 18 9
21 22 23 24 25													2 2 2 2 3 2 4 2 5
26 27 28 29 30 31													26 27 28 29 30 31
MEAN MAX. MIN. AC.FT.													MEAN MAX MIN. ACFT

E - Estimated
NR - No Record
- Discharge measurement or abservation
of no flow made on this day.
- E and

WATER YEAR SUMM	R YEA	R SU	MMARY
-----------------	-------	------	-------

MEAN)	1	MAXIMUM		,	1 (MINIM	UМ		
ISCHARGE	DISCHARGE	GAGE HT.	MO. OAY	TIME	OISCHARGE	GAGE HT.	мо	YAC	TIME

TOTAL	١
ACRE-FEET	ı
NID	ı

	LOCATION	V	MAXII	MUM DISCH	ARGE	PERIOD O	F RECORD		DATUM	OF GAGE	1
	LONGITUDE	1/4 SEC. T. 8 R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	RIOD	ZERO ON	REF
LATITUDE	LONGITUOE	M.D.B.B.M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
37 12 00	130 41 50	NW 31 8S 11E						1962		0.00	uscgs

This station was installed in January 1962 for the Lower San Joaquin Flood Control Project for the purpose of recording flows diverted into Mariposa bypass by float activated electrically operated gates. No continuous water stage recorder is installed to date. Miscellaneous measurements of instantaneous discharge will be presented when appropriate.

0

OWENS CREEK BELOW OWENS RESERVOIR IN SECOND PEET

STATION NO YEAR 806170 1963

DAY	OCT	NOV	OEC.	JAN	FE8	MAR.	APR	MAY	JUNE	JULY	AUG	SEPT	DAY
	0.1	0.5	0.5	0.5	76 a	2	6	8	0.8	0.0	0.0	0.0	1
5	0.2	0.5	0.5	0.5	43 a 7	2	5	7	0.8	0.0	0.0	0.0	2
3	0 • 2	0.5	0.5	0.5	4	2 2	3	6	0.6	0.0	0.0	0.0	3
4	0.3	0.5			3	2	3	5		0.0	0.0	0.0	5
5	0.4	0.5	0.5	0.5	,		3	4	0.5	0.0	0.0	0.0	,
δ	0.4	0.5	0.5	0.5	2	2	3	4	0.5	0.0	0.0	0.0	6
7	0.4	0.5	0.5	0.5	2	2	9	4	0.5	0.0	0.0	0.0	7
8	0.4	0.5	0.5	0.5	2	2	12	5	0.5	0.0	0+0	0.0	8
9	0.5	0.5	0.5	0.5	7 a	2	6	11	0.5	0.0	0.0	0.0	9
10	0.5	0.5	0.5	0.5	73 a	2	5	5	0.5	0.0	0.0	0.0	10
D	0.5	0.5	0.5	0.5	22 a	2	4	5	0.5	0.0	0.0	0.0	-11
12	0.5	0.5	0.5	0.5	8	2	4	4	0.5	0.0	0.0	0.0	12
13	0.5	0.5	0.5	0.5	55 a	2	4	3	0.5	0.0	0.0	0.0	13
14	0.5	0.5	0.5	0.5	73	2	18	3	0.5	0.0	0.0	0.0	14
15	0.5	0.5	0.5	0.5	19	4	39	3	0.5	0.0	0.0	0.0	15
16	0.5	0.5	5.0	0.6	10	3	16	3	0.5	0.0	0.0	0.0	18
17	0.5	0.5	1.2	0.6	7	4	11	2	0.5	0.0	0.0	0.0	17
16	0.5	0.5	0.7	0.6	5	4	8	2	0.5	0.0	0.0	0.0	18
19	0.5	0.5	0.6	0.6	4	3	9	2	0.5	0.0	0.0	0.0	19
20	0.5	0.5	0.6	0.6	4	2	23	1.6	0.5	0.0	0.0	0.0	5.0
21	0.5	0.5	0.6	0.6	3	2	80	1.6	0.5	0.0	0.0	0.0	21
22	0+5	0.5	0.6	0.6	3	2	48	1.5	0.5	0.0	0.0	0.0	5.5
23	0.5	0.5	0.6	0.6	3	6	19	1.5	0.5	0+0	0.0	0.0	2.3
24	0.5	0.5	0.6	0.6	3	4	14	1.5	0.5	0.0	0.0	0.0	24
2.5	0.5	0.5	0.6	0.6	3	3	12	1.6	0.5	0.0	0.0	0.0	2.5
26	0.5	0.5	0.5	0.6	2	3	42	1.5	0.5	0.0	0.0	0.0	26
27	0.5	0.5	0.5	0.6	2	3	21	1.3	0.4	0.0	0.0	0.0	27
2.8	0.5	0.5	0.5	0.6	2	60	14	1.2	0.2	0.0	0.0	0.0	2.6
29	0.5	0.5	0.5	0.7		46	11	1.2	0.1	0.0	0.0	0.0	29
30	0.5	0.5	0.5	1.7		10	9	1.2	0.0	0.0	0.0	0.0	30
31	0.5		0.5	34.0a		7		1.0		0.0	0.0		31
MEAN	0.4	0.5	0.7	1.7	16	6.2	15	3,3	0.5	0.0	0.0	0.0	MEAN
MAX.	0.5	0.5	5.0	34.0	76	60	Bó	11	0.8	0.0	0.0	0.0	MAX.
MIN.	0.1	0.5	0.5	0.5	2.0	2.0	3.0	1.0	0.0	0.0	0.0	0.0	MIN.
AC,FT.	27.6	29.8	42.8	103	887	385	920	204	28.6	0.0	0.0	0.0	AC.FT.

E - Estimoted
NR - No Record
& - Dischorge measurement or observation
of no flow mode on this day.
- E and
a - Flow partially computed from
reservoir outlet

											_
MEAN		MAXIMU			1		MINIM				
ISCHARGE	DISCHARGE	GAGE HT	MO OAY	TIME	l	DISCHARGE	GAGE HT.	мо	OAY	TIME	П
3.6	88		4 21		ш	0.0					

WATER YEAR SUMMARY

TOTAL ACRE-FEET 2627

	LOCATIO	v.	MAXII	MUM DISCH	ARGE	PERIOD 0	F RECORD		DATUM	OF GAGE	
LATITUOE	LONGITUDE	GITUDE 1/4 SEC. T. & R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PER	100	ZERO	REF.
	LONGITUDE	M. D. B. & M.	C.F.S.	GAGE HT.	OATE	OID CITATION.	ONLY	FROM	то	GAGE	DATUM
37 18 28	120 11 35	SW23 7S 16E	590		12-24-55	FEB 50-DATE		1950		338.22	usces

Station located 0.25 mi. below Owens Dam. Tributary to San Joaquin River, via Mariposa Creek and Bear Creek. Flow regulated by Owens Reservoir. Records furn. by U.S.C.E. Drainage area is 25.6 sq. mi.

DAILY MEAN DISCHARGE IN SECONO FEET

BEAR CREEK NEAR CATHAY

WATER STATION NO 855400 1963

DAY	OCT.	NOV	OEC	JAN	FEB.	MAR	APR	MAY	JUNE	JULY	AUG	SEPT.	DAY
-	0.0	0.0	0.0	0.6	1060 E	2.0*	41	24	1.3	0.0			
2	0.0*	0.0*	0.0	0.6	95	1.8	33	19	1.2	0.3	0.0	0.0	2
3	0.0	0.0	0.0	0.6	40	1.8	23	17	1.1	0.4	0.0	0.0	3
4	0.0	0.0	0.0	0.5	24	1.5	19	14	1.0	0.3	0.0	0.0	4
5	0.0	0.0	0.0*	0.5	15	1.4	17	12	0.8				5
,	0.0	0.0	0.0*	0.5	15	1.4	17	12	0.8	0 • 3	0.0	0 • 0*	1
6	0.0	0.0	0.0	0.5	11	1.3	17	9.7	0.9	0.3	0 • 0*	0 + 0	6
7	0.0	0.0	0.0	0.5	8.0	1.2	34	8.6	0.9	0.2	0.0	0.0	
8	0.0	0.0	0.0	0 • 4	5.7	1.2	36	12	0.9	0 • 2	0.0	0.0	6
9	0.0	0.0	0.0	0.5	40	1.4	28	19	0 • 8	0 + 3	0.0	0 • 0	9
10	0.0	0.0	0.0	0 • 4	290	1 + 4	21	11	0 • 8	0.3	0.0	0.0	10
£1	0.0	0.0	0+0	0 • 3	61	1.3	18	14	0 • 8	0.3	0.0	0 • 0	
12	0.0	0.0	0.0	0.3	41	1.2	15	11	0.9	0 • 2	0.0	0.0	12
13	0.0	0.0	0.0	0.3	374	1.0	13	8.7	0 • 8	0.2	0.0	0.0	13
14	0.0	0.0	0.0	0.3	154	1.2	312 E	7.6	0.7	0.2	0.0	0.0	14
15	0.0*	0.0	0.0	0.3*	58	2.6*	336	6.1	0.6	0.2	0.0	0.0	15
	****	***			''				0.00		0.0	0.0	
16	0.0	0.0*	24	0 • 3	33	3.7	114	5.2	0.6	0.2	0.0	0.0	16
17	0.0	0.0	8.6	0.3	22	29	60	4.7	0.5*	0.2	0.0	0.0	17
18	0.0	0.0	3.7	0 • 3	17	37	39	4.0	0.4	0.2	0.0	0.0	18
19	0.0	0.0	2 • 3	0 • 3	13	28	75	3.4	0.4	0.2	0.0	0.0*	19
20	0.0	0.0	1.7	0.2	11	18	219	3.3	0.4	0.2	0.0	0.0*	20
20	0.0	0.0	1.7	0.2	11	10	217	,,,	0.4	0.2	0.0	0.0	-
21	0.0	0.0	1.3	0.3	8.0	14	248	2 . 8	0 • 4	0 • 1	0 • 0	0 • 0	2!
22	0.0	0.0	1.1	0.3	6.4	18	108 *	2.5	0 • 4	0 + 1	0.0	0.0	5.5
23	0.0	0.0	0.9	0.2	5.4	66	63	2.4	0 • 3	0.1	0.0*	0 • 0	2.3
24	0.0	0.0	0 • 8	0 • 2	4.5	42	43	2.6*	0.3	0.1	0.0	0.0	24
25	0.0	0.0	0.7	0 • 2	3.5	27	37	2.7	0 • 3	0 • 1	0.0	0.0	2.5
1									0.0	0.1	0.0	0.0	
5.6	0.0	0.0	0 • 6 *	0 • 2	3.1	20	122	2.3	0.3	0.1	0.0	0.0	2.6
27	0.0	0.0	0.7	0 • 2	2.7	20	80	2.1	0 • 3	0.0	0.0	0.0	2.7
28	0.0	0.0	0.7	0.2	2.3	5/6 #	51	1.8	0 • 3	0.0	0.0	0.0	2.8
29	0.0	0.0	0+6	0.2		108	37	1.7	0.3	0.0	0.0	0.0	29
30	0.0	0.0	0.6	128		54	29	1.6	0.3	0.0	0.0	0.0	30
31	0.0		0.6	937 #		39		1.5		0.0	0.0	0.0	3 1
MEAN	0.0	0.0	1.6	34.1	86.0	36.2	76.3	1.7	0.6	0 • 2	0.0	0.0	MEAN
MAX.	0.0	0.0	24.0	937 E	1060 E	576 E	336	24.0	1.3				MAX
MIN.	0.0				2 • 3	1.0				0 • 4	0.0	0.0	MIN
AC.FT.	0.0	0.0	0 • 0 9 7	0 • 2			13.0	1.5	0.3	0.0	0 • 0	0.0	AC.FT.
MUT L			97	2132	4777	2225	4538	4 7 3	3.8	11			

E — Estimated
NR — Na Record

& — Oischarge measurement or observation
at no flow made on this day.

— E and

O'SCHARGE 19.7

MEAN MAXIMUM 015CHARGE GAGE HT MO DAY TIME 3850 E 9.98 2 1 0220 2 1 0220

MINIMUM DISCHARGE GAGE HT MO DAY TIME 10 1 0000 0.0

YEAR SUMMARY

TOTAL ACRE-FEET 14290

	LOCATION	٧	MAXI	NUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE	DNGITUDE 1/4 SEC. T.8 R. M. O.B. B.M.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	100	ZERO	REF
LATITUDE	LONGITUDE			GAGE HT.	DATE	- OTO OTTAIN OF	ONLY	FROM	TO	GAGE	DATUM
37 28 38	120 06 43	SW21 5S 17E	3850E	9.98	2-1-63	DEC 57-DATE		1957		0.00	LOCAL

4538 WATER

Station located at Co. Rd. bridge, 3.7 mi. N of Cathay School. Tributary to San Joaquin River. Drainage area is 24.6 sq. mi. Altitude of gage is approx. 1,210 ft. (From U.S.G.S. topographic map.)

DAILY MEAN DISCHARGE BEAR CREEK BELOW REAR RESERVOIR IN SECOND FEET

WATER YEAR 1963 STATION NO B05570

DAY	ост	NOV	DEC.	JAN	FE8	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	DAY
	0.0	0.0	0.0	3	1185	14	43	40	6	0.4	0.0	0.0	1 2
2	0.0	0.0	0.0	3	424	14	38	35	6	0.4	0.0	0.0	3
3	0.0	0.0	0.0	3	75	13	30	31	5 5	0.4	0.0	0.0	4
5	0.0	0.0	0.0	3	42	12 12	23 18	28 25	9	0.3	0.0	0.0	5
2	0.0	0.0	0.0	3	28	12	1.0	25	4	0.3	0.0	0.0	1
6	0.0	0.0	0.0	3	21	11	17	22	4	0.3	0.0	0.0	6
7	0.0	0.0	0.0	3	1 4	10	21	21	4	0.3	0.0	0.0	7
8	0.0	0.0	0.0	3	12	12	38	20	4	0.2	0.0	0.0	8
9	0.0	0.0	0.0	3	2.4	11	32	33	3	0.1	0.0	0.0	9
10	0.0	0.0	0.0	3	450	11	27	30	3	0.1	0.0	0.0	10
11	0.0	0.0	0.0	3	140	11	22	23	3	0.1	0.0	0.0	-11
12	0.0	0.0	0.0	3	60	12	19	23	3	0.0	0.0	0.0	12
13	0.0	0.0	0.0	3	400	12	16	19	3	0.0	0.0	0.0	13
14	0.0	0.0	0.0	2	506	11	157	16	3	0.0	0.0	0.0	14
15	0.0	0.0	0.0	2	135	14	488	14	3	0.0	0.0	0.0	15
16	0.0	0.0	0.0	2	90	18	195	14	. 3	0.0	0.0	0.0	16
17	0.0	0.0	0.0	3	68	21	94	12	2	0.0	0.0	0.0	17
18	0.0	0.0	0.0	3	52	50	55	10	2	0.0	0.0	0.0	18
19	0.0	0.0	0.0	2	43	56	56	10	1	0.0	0.0	0.0	19
20	0.0	0.0	0.0	2	37	44	152	9	1	0.0	0.0	0.0	2 0
21	0.0	0.0	0.0	2	32	34	513	9	1	0.0	0.0	0.0	21
2.2	0.0	0.0	0.5	2	28	30	190	8	1	0.0	0.0	0.0	2.2
2.3	0.0	0.0	4	3	25	54	105	6	1	0.0	0.0	0.0	2 3
24	0.0	0.0	4	3	23	84	74	8	1	0.0	0.0	0.0	24
2.5	0.0	0.0	4	2	21	56	50	8	0.9	0.0	0.0	0.0	2.5
2.6	0.0	0.0	4	3	19	46	139	8	0.8	0.0	0.0	0.0	26
2.7	0.0	0.0	4	3	17	41	135	8	0.7	0.0	0.0	0.0	27
2.8	0.0	0.0	4	3	16	647	86	7	0.6	0.0	0.0	0.0	2.8
29	0.0	0.0	4	3		290	55	7	0.5	0.0	0.0	0.0	29
3.0	0.0	0.0	4	4		78	44	7	0.4	0.0	0.0	0.0	3.0
31	0.0		3	513		49		6		0.0	0.0		3 1
MEAN	0.0	0.0	1.2	19	143	57	98	17	2.5	0.9	0.0	0.0	MEAN
MAX.	0.0	0.0	4	513	1185	647	513	40	6	0.4	0.0	0.0	MAX
MIN.	0.0	0.0	0.0	2	12	10	16	6	0.4	0.0	0.0	0.0	MIN.
AC.FT.	0.0	0.0	70	1188	7932	3531	5816	1029	150	5.7	0.0	0.0	AC.F1

E - Estimated
NR - No Record
- Discharge measurement or observation
of no flow mode on this day.
- E and 兼

WATER YEAR SUMMARY

MEAN		MAXIMU	м	-		1		MINIM	UM	_	
DISCHARGE	DISCHARGE	GAGE HT	MO	DAY	TIME	1	DISCHARGE	GAGE HT	мо	DAY	TIME
27.2	1320		2	1		ŀ	0.0				

TOTAL ACRE-FEET 19722

ı		LOCATION	1	MAXII	MUM DISCH	ARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
	LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD		OISCHARGE	GAGE HEIGHT	PER	8100	ZERO	REF
į	LATITUDE	LUNGITUDE	M, D, B, & M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
	37 21 27	120 14 05	NE 5 7S 16E	4460		12-24-55	JAN 55-DATE		1955		320.50	USCGS

Station located approx. 0.75 mi. below Bear Dam. Tributary to San Joaquin River. Flow regulated by Bear Reservoir. Records furn. by U.S.C.E. Drainage area is 72 sq. mi.

DAILY MEAN DISCHARGE

BURNS CREEK AT HORNITOS IN SECOND FEET

WATER STATION ND 856400 1963

DAY	OCT	NOV	OEC	JAN	FE8	MAR	APR	MAY	JUNE	JULY	AUG	SEPT.	OAY
1 2 3 4 5	0.0 0.0* 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.1 0.1 0.1	252 # 22 9.3 6.0 4.4	1.4 1.4 1.1 1.0	8.1 5.2 4.5 3.9*	17 15 14 13	0.6 0.5 0.4 0.4*	0.1 0.1 0.0* 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.1 0.0	1 2 3 4 5
6 7 8 9	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.1 0.1 0.1 0.1 0.1	3.0 2.6 2.1 103 E 118 *	1.0 0.9 1.0 1.1 1.0	4.0 4.8 3.9 3.2 3.0	11 * 11 13 16 13	0.3 0.3 0.3 0.2 0.1	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	6 7 8 9
11 12 13 14 15	0.0 0.0 0.0 0.1 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.1 0.1 0.1 0.1 0.1	12 29 231 43 14	0.9 0.9 0.8 1.0 1.4*	2.9 2.5 2.2 71 70	14 11 7.2 4.0 1.7	0 • 1 0 • 1 0 • 1 0 • 1 0 • 1	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	11 12 13 14
16 17 18 19 20	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	5.0 0.5 0.2 0.2 C.1	0.1 0.1 0.1 0.2 0.2	8.9 6.2 4.9 4.2 3.6	1.9 1.9 1.5 1.1	15 8.6 6.1 13 219 E	1.5 1.4 1.2 1.0 1.0	0.1 0.1 0.1 0.1 0.1	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0+0 0+0 0+0 0+0	16 17 18 19 20
2 1 2 2 2 3 2 4 2 5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0 • 1 0 • 1 0 • 1 0 • 1 0 • 1	0.2 0.2 0.1 0.2 0.2	3+1 2+8 2+3 2+0 1+7	1.0 3.5 6.0 2.8 2.3	127 28 15 9•8 8•9	1.0 1.0 0.9 0.9	0.1 0.1 0.1 0.1 0.1	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	2 I 2 2 2 3 2 4 2 5
26 27 28 29 30 31	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.1* 0.1 0.1 0.1 0.1	0.2 0.2 0.2 0.3 1.0	1.6 1.6 1.4	2.2 9.5 287 E 21 10 8.0	40 13 8.4 6.6 5.7	0.9 0.9 0.8 0.8 0.7	0 • 1 0 • 1 0 • 1 0 • 1 0 • 1	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	26 27 28 29 30 31
MEAN MAX. MIN. AC.FT.	0.0 0.1 0.0	0.0 0.0 0.0	0.2 5.0 0.0 14	3.3 99.0E 0.0 206	32.0 252 E 1.4 1777	12•1 287 E 0•8 747	23.9 219 E 2.2 1422	6 • 1 17 • 0 0 • 6 374	0.2 0.6 0.1	0.0 0.1 0.0	0 • 0 0 • 0 0 • 0	0.0 0.1 0.0	MEAN MAX MIN. AC.FT.

E - Estimated
NR - No Record
- Discharge measurement or observation
of no flow mode on this day.

I - E and #

WATER YEAR SUMMARY

| MEAN | MEAN | MAXIMUM | MINIMUM |

TOTAL ACRE-FEET 4551

		LOCATION	V		MAXII	NUM DISCH	HARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
ľ	LATITUOS	LONGITUDE	1/4 SEC. T. 8	R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PER	RIOD	ZERO ON	REF.
1	LATITUDE	LONGITODE	M. D. B. 8 M.		C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
	37 29 42	120 14 17	SE17 5S	16E	4340E	10.66	2-15-62	DEC 58-DATE	DEC 58-DATE	1958		0.00	LOCAL

Station located 130 ft. S of Stockton-Mariposa Road, 0.2 mi. SW of Hornitos. Drainage area is 26.7 sq. mi.
Maximum discharge from slope-area measurement. Altitude of gage is approx. 780 ft. (From U.S.G.S. topographic mag)

TABLE 8-22

DAILY MEAN DISCHARGE

BURNS CREEK BELOW BURNS RESERVOIR

WATER STATION NO B56400 1963

DAY	ост	NOV	OEC.	JAN	FE8	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OAY	111
1	0.0	0.0	0.0	0.0	260	4	14	10	0.5	0.0	0.0	0.0	1	Ш
2	0.0	0.0	0.0	0.0	63	4	11	9	0.5	0.0	0.0	0.0	2	and the
3	0.0	0.0	0.0	0.0	16	4	8	8	0.5	0.0	0.0	0.0	3	100
4	0.0	0.0	0.0	0.0	7	3	7	8	0.5	0.0	0.0	0.0	4	100
5	0.0	0.0	0.0	0.0	5	4	6	7	0.5	0.0	0.0	0.0	5	ll'
6	0.0	0.0	0.0	0.0	4	4	6	6	0.0	0.0	0.0	0.0	6 7	. 5
	0.0	0.0	0.0	0.0	3	4	6	6	0.0	0.0	0.0	0.0		
8	0.0	0.0	0.0	0.0	3	3	6	5	0.0	0.0	0.0	0.0	8 9	400
9	0.0	0.0	0.0	0.0	80	3	6	6	0.0	0.0	0.0	0.0	10	400
10	0.0	0.0	0.0	0.0	364	3	5	7	0.0	0.0	0.0	0.0	10	an a
10	0.0	0.0	0.0	0.0	58	3	5	6	0.0	0.0	0.0	0.0	11	BU.
12	0.0	0.0	0.0	0.0	60	3	4	6	0.0	0.0	0.0	0.0	12	1 1
13	0.0	0.0	0.0	0.0	494	2	4	5	0.0	0.0	0.0	0.0	13	400
14	0.0	0.0	0.0	0.0	246	2	7	5	0.0	0.0	0.0	0.0	15	400
15	0.0	0.0	0.0	0.0	66	4	106	4	0.0	0.0	0.0	0.0	12	
16	0.0	0.0	1.9	0.0	46	4	59	4	0.0	0.0	0.0	0.0	16	3 5
17	0.0	0.0	1.4	0.0	31	4	20	3	0.0	0.0	0.0	0.0	17	
18	0.0	0.0	0.9	0.0	20	4	10	2	0.0	0.0	0.0	0.0	18	1 12
19	0.0	0.0	0.5	0.0	15	4	8	2	0.0	0.0	0.0	0.0	20	
50	0.0	0.0	0.4	0.0	11	4	87	2	0.0	0.0	0.0	0.0	20	100
2 1	0.0	0.0	0.2	0.0	9	4	427	1.5	0.0	0.0	0.0	0.0	2 !	4 .
2.2	0.0	0.0	0.2	0.0	8	3	100	1.5	0.0	0.0	0.0	0.0	5.5	1 1
2.3	0.0	0.0	0.1	0.0	7	3	54	1.5	0.0	0.0	0.0	0.0	2 3	
24	0.0	0.0	0.1	0.0	6	4	34	1.5	0.0	0.0	0.0	0.0	2.4	21
2.5	0.0	0.0	0.0	0.0	6	5	22	1.5	0.0	0.0	0.0	0.0	25	- 85
2.6	0.0	0.0	0.0	0.0	5	5	79	1.5	0.0	0.0	0.0	0.0	26	1 25
27	0.0	0.0	0.0	0.0	5	5	70	1.5	0.0	0.0	0.0	0.0	27	1
2.6	0.0	0.0	0.0	0.0	4	339	31	1.5	0.0	0.0	0.0	0.0	2.8	1 51
29	0.0	0.0	0.0	0.0		79	18	1.5	0.0	0.0	0.0	0.0	29	23
30	0.0	0.0	0.0	0.0		32	14	1.0	0.0	0.0	0.0	0.0	30	30
31	0.0		0.0	79		17		1.0		0.0	0.0		3 1	17
MEAN	0.0	0.0	0.2	2.5	68	18	41	4.1	0.1	0.0	0.0		MEAN	EN
MAX	0.0	0.0	1.9	79	494	339	427	10	0.5	0.0	0.0	0.0	MAX.	I HAX
MIN.	0.0	0.0	0.0	0.0	3	2	4	1.0	0.0	0.0	0.0	0.0	MIN.	1/15
AC.FT.	0.0	0.0	11	157	3773	1123	2448	251	5	0.0	0.0	0.0	AC.FT.	1 MFT

E - Estimated NR - No Record

- Diecharge measurement or observation of no flow mode on this day
- E and

WATER YEAR SUMMARY

MEAN MAXIMUM MINIMUM

OISCHARGE GAGE HT MO DAY TIME OISCHARGE GAGE HT MO DAY TIME 10.7 890 3 28 0.0

TOTAL ACRE-FEET 7768

LOCATION				MAXIMUM DISCHARGE			PERIOD O	DATUM OF GAGE				
LATI	LATITUDE	LONGITUDE	1/4 SEC. T. & R.	OF RECORD			OIS CHARGE	GAGE HEIGHT	PERIO0		ZERO	REE
	LATTIOUE	LONGITUDE	M. D. B. B. M	C.F.S.	GAGE HT.	OATE		ONLY	FROM	TO	GAGE	DATUM
	37 22 27	120 16 35	NE36 6 5 15E	2590		12-24-55	APR 50- DATE		1950		260.60	uscgs

Station located 0.5 mm. below Burns Dam. Tributary to San Joaquin River via Bear Creek. Flow regulated by Burns Reservoir. Records furn. by U.S.C.E. Drainage area is 73.8 sq. mi.

DAILY MEAN DISCHARGE

SAN JOAQUIN RIVER NEAR STEVINSON IN SECONO FEET

STATION NO	WATER
807400	1963

OAY	ост	NDV	DEC.	JAN	FE8	MAR.	APR	MAY	JUNE	JULY	AUG	SEPT.	DAY
1	22	9.1	12	16	177	97	659	881	115	61	55	53	1
2	25	9.1	9.0	15	515	90	591	581	124	67	54	54	2
3	23	9.2	7.9	15	1590	83	458	441	127	78	51	54	3
4	21	20	7.7	15	2120 *	77	349	339	127	89	56	53	4
5	32	30	7.7	13	1630	74	234	326	120	100	60	54	5
6	36	30	7.9	11	1020	67	2 29	249	120	104	66	55	6
7	33	22	7.7	40	579	60	356	212	128	104	71	54	7
В	28	17	7.9	87	298	56	390	180	134	95	74	50	8
9	23	12	8.3	96	190	51	371	161	143	92	73	47	9
10	17	11	8.3	88	403	48	339	149	135	97	70	43	10
B	17	12	8.5	75	722	45	400	145	144	91	66	42	11
15	17	14	8.3	54	1040	42	456 #	258	137	81 #	69	43	12
13	20	14	8.7	62	1230	40	445	261	146	72	71	47	13
14	17	14	9.0	64	1490	39	412	205	164	67	68	62	14
15	14	13 *	9.9	61	1960	38	393	196	164	72	69	77	15
16	14	13	17	47	1930	41	644	184	151	71	65	83	16
17	13	13	21	35 *	1370	40	920	167	150	61	61	82	17
1.8	13 *	13	34	29	932	49	1140	142	145	58	58	78 *	18
19	12	8.9	38 +	24	648	59	1080	124	123	56	56	94	19
5.0	12	7.8	39	23	464	57	916	106	99 *	58	59	106	50
21	11	9.3	39	22	354	52 *	905	99 #	83	61	56	125	21
5.5	l îô l	12	37	20	279	52	1120	96	75	61	54 *	141	5.5
23	10	ii	35	19	193	53	1530	91	73	53	50	145	2.3
24	10	10	33	20	162	79	1700	90	76	51	53	143	24
25	11	8.9	31	27	144	103	1580	97	8.8	52	59	112	2.5
26	11	9.3	29	23	131	87	1370	95	93	54	65	114	2.6
27	ii	11	23	18	116	91	1200	101	90	56	74	91	2.7
2.8	ii	11	19	16	106	103	1180	111	79	53	79	80	2.6
29	10	11	îé	17		252	1160	122	75	52	66	73	29
30	9.5	12	16	23		765	1070	127	67	52	58	70	30
31	9.2		15	51		775		126		56	54	-,0	3 1
MEAN	16.9	13.3	18.5	36.3	778	115	787	209	117	70.2	62.6	77.5	MEAN
MAX.	36.0	30.0	39.0	96.0	2120	775	1700	881	164	104	79.0	145	MAX
MIN.	0.2	7.8	7.7	11.0	106	38.0	229	90.0	67.0	51.0	50.0	42.0	MIN.
AC,FT.	1037	789	1136	2233	43230	7071	46800	12820	6932	4314	3848	4612	AC.FT.

E - Estimated
NR - No Record
- Discharge measurement or observation
of no flow made on this day.
- E and

WATER YEAR SUMMARY

TOTAL 134800

LOCATION MAXIMUM DISCHARGE				PERIOD O	F RECORD	DATUM OF GAGE							
LATITUDE	LONGITUDE	_DNGITUDE 1/4 SEC. T. B. R. M. D. 8. 8 M.		4 SEC. T. B.R. OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF	
	LONGITODE			В.М.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
37 17 42	120 51 00	26	78	10E	606D	73.D4	2-17-62	OCT 61-DATE		1961		0.00	USCGS

Station located on bridge 2.3 miles south of Stevinson on Lander Avenue.

PANOCHE DRAIN NEAR DOS PALOS

STATION NO	WATER YEAR
B00975	1963

IN SECONO FEET AUG SEPT. DAY APR JUNE JULY OAY FE8. MAR MΔY OCT NOV DEC. JAN 6.5** 20.6** 56.2** 3 4 5 4 8.4** 39.6** 19.1** 9 10 8 9 0 INSUFFICIENT DATA TO PUBLISH DAILY FLOWS 11 12 13 14 15 17.8** STATION DISCONTINUED AS OF 16 17 18 19 29.9** 2 2 2 3 2122232324 24 26 27 28 29 30 2 6 2 7 34.1** 28 29 30 31 MEAN MAX MEAN MAX MIN. AC.FT. MIN.

E - Estimated NR - Na Record

NN - No Record

* - Discharge measurement or abservation
of no flow made on this day.

- E and

** - Result of discharge
measurement.

WATER YEAR SU	JMMARY
---------------	--------

MEAN)) (MAXIMUM						MINIMUM							
ISCHARGE	DISCHARGE				TIME 0700		DISCHARGE	GAGE HT	МО	DAY	TIME				

TOTAL	
ACRE-FEET	
NR	

NEW.

	LOCATION	J	MAXII	MUM DISCH	HARGE	PERIOD O	F RECORD	DATUM OF GAGE			
LATITUDE	LONGITUDE	1/4 SEC T. 8 R.	OF RECORD		DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF	
LATITUDE	LONGITUDE	M. D. 8 8 M	C.F.S	GAGE HT.	DATE	0.00	ONLY	FROM	TO	GAGE	DATUM
36 55 25	120 41 19	NW 5 12S 12E		8.12	2/11/63	FEB 59-SEP 62	FEB 59-JUL 63	1959		0.00	LOCAL

Station located midway between outside and main canals 0.5 mi. S of main canal levee road, 5.6 mi. SW of Dos Palos. This is drainage returned to San Joaquin River. Gage sometimes affected by backwater due to inadequate drainage facilities. Station discontinued 7-2-63.

DAILY MEAN DISCHARGE

NORTH FORK MERCED RIVER NEAR COULTERVILLE IN SECONO FEET

WATER STATION NO YEAR 1963 852600

DAY	ост	NOV	DEC.	JAN	FE8	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OAY
2 3 4 5	0+3 0+2 0+2* 0+2 0+3	0 • 6 0 • 6 0 • 4 0 • 4	0.5 0.6 0.7* 0.8 0.7	0.6 0.6 0.5 0.5*	1100 E 151 49 26 17	6.7° 6.6 6.6 6.4 6.4	35 27 23 19 •	34 30 28 25 23	11 10 9.7 9.2* 9.1	2.8 2.6 2.7 2.6 2.4	1 • 4 1 • 4 1 • 4 1 • 4	1 • 1 1 • 1 1 • 0 0 • 8 *	1 2 3 4 5
6 7 8 9	0.3 0.4 0.5 0.5	1.0 0.9 0.8 0.8	0.7 0.9 0.9 0.9 1.0	0.4 0.4 0.4 0.5	13 10 9.2 11 25	6.3 6.1 5.9 6.8 6.3	24 39 38 34 31	23 * 22 30 32 29	8.9 8.7 8.2 7.6 7.9	2.4 2.3 2.4 2.3 2.1	1.4 1.3 1.3 1.3	1.0 0.9 0.8 0.9	6 7 8 9
11 12 13 14	0.7 0.8 1.0 1.0	0.5 0.4 0.4 0.4*	1.0 1.1 1.2 1.3 2.0	0 • 4 0 • 4 0 • 4 0 • 4	15 14 44 • 51	6.3 6.3 5.8 6.3 7.6	27 24 21 145 207	45 42 35 30 26	8 · 3 7 · 2 6 · 9 6 · 8 5 · 8	2 · 1 2 · 1 2 · 1 1 · 8 1 · 7	1.4 1.4 1.4 1.0E	0.9 0.8 1.0 1.0	11 12 13 14
16 17 18 19	0.6 0.8 1.1 1.4	0.6 0.7 0.9 1.1 1.2	8 • 0 1 • 9 1 • 5 • 1 • 3 1 • 0	0 • 4 0 • 4 0 • 4 0 • 3 0 • 3	20 16 13 11	9.0 11 9.9 11	122 74 55 79 94	24 21 20 19	5 • 4 5 • 0 4 • 6 4 • 3 3 • 9	1.6 1.5 1.5*	0.9E 0.9E 0.9E 0.8E 0.8E	0.8 0.8 0.8 0.9*	16 17 18 19
21 22 23 24 25	1.6 1.7 1.9 1.9 2.0	1.3 1.5 1.6 1.7 1.7	1.2 1.2 1.2 1.0	0.3 0.3 0.3 0.4 0.4	8 · 4 8 · 1 8 · 1 7 · 7 7 · 7	13 14 26 32 24	104 110 * 111 96 79	16 16 15 15	3 • 7 4 • 0 4 • 0 3 • 7 3 • 5	1.5 1.5 1.5 1.4 1.3	0.8E 0.8# 0.7E 0.7E	1.0 0.9 1.1 1.1	21 22 23 24 25
26 27 28 29 30 31	2 • 2 2 • 2 2 • 3 1 • 1 0 • 4 0 • 5	1.9 1.1 0.6 0.6 0.4	0.9 0.9 0.8 0.8 0.7	0.5 0.5 0.5 0.7 186 *	7.2 6.9 6.9	19 22 212 * 117 60 41	69 57 49 43 39	14 13 13 13 12	3 · 2 3 · 0 3 · 1 2 · 9 2 · 9	1.3 1.3 1.3 1.3 1.4	0.6# 0.6E 0.5# 0.8 1.0	1.2 1.2 1.1 1.1	26 27 28 29 30 31
IEAN IAX. VIIN. C.FT.	1.0 2.3 0.2 61	0.9 1.9 0.4 51	1 • 2 8 • 0 0 • 5 76	60.9 1690 E 0.3 3746	60+6 1100 E 6+9 3363	23+6 212 5+8 1449	63.1 207 17.0 3753	22.9 45.0 11.0 1406	6 · 1 11 · 0 2 · 9 362	1 · 8 2 · 6 1 · 3 114	1.0 1.4 0.5E 64	1 • 0 1 • 2 0 • 8 58	MEAN MAX MIN AC.FT.

E - Estimated
NR - No Record
- Oischarge measurement ar observation
at no flow mode on this day
- E and

DISCHARGE

MEAN MAXIMUM DISCHARGE GAGE HT MO DAY TIME 20.0 NR

OISCHARGE GAGE HT MO DAY TIME

WATER YEAR SUMMARY

NR

TOTAL ACRE-FEET 14500

	LOCATION	4	MAXII	NUM DISCH	JM DISCHARGE PERIOD OF RECORD				DATUM OF GAGE				
LATITUDE	LONGITUDE	1/4 SEC. T. & R.	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF		
LATITUDE	LONGITODE	M.O.B.&M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM		
37 44 51	120 02 12	NW19 2S 18E	3440	7,83	1-31-63	DEC 58-DATE		1958		0.00	LOCAL		

Station located 40 ft. above Greeley Hill Road Bridge, 9 mi. NE of Coulterville. Drainage area is 30.3 sq. mi. Altitude of gage is 2,360 ft. (from U.S.G.S. topographic map.)

DAILY MEAN DISCHARGE

MAXWELL CREEK AT COULTERVILLE IN SECONO FEET

STATION NO YEAR 1963 851250

OAY	OCT	NOV	OEC.	JAN	FE8.	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	DAY
-			0.0	0.2	279 E	1.5*	18	9.8	2.2	0.4	0.0	0.0	
1	0.0	0.0			14	1.4	15	9.4	2.3	0.4	0.0	0.0	2
2	0.0	0.1	0.0	0.2				8.5	2.0	0.3*	0.0		3
3	0.0*	0 • 1	0.0	0.2	5.0	1.5	12					0.0	4
4	0.0	0.1	0.0	0.2	3.0	1.3	8.0	7.9	2.0*	0.3	0.0	0.0	
5	0.0	0.0	0.0	0.2	2.3	1.4	6.5	7.0	1.9	0.3	0.0	0.0	5
6	0.0	0.0	0.0	0.2	1.8	1.5	8.5	6.8*	1.9	0.3	0.0	0.0	6
7	0.0	0.0	0.0	0.3	1.5	1.4	14	6.3	1.8	0.3	0.0	0.0	7
8	0.0	0.0	0.0	0.3	1.4	1.3	11	9.8	1.6	0.3	0.0	0.0	8
9	0.0	0.0	0.0	0.3	5.0	1.5	8.9	9.6	1.5	0.2	0.0	0.0	9
10	0.0	0.0	0.0	0.2	49	1.3	7.6	10	1.6	0.2	0.0	0.0	10
0	0.0	0.0	0.0	0.2	7.9	1.2	6.9	35	1.7	0.1	0.0	0.0	31
12	0.0	0.0	0.0	0.2	5.5	1.3	5.9	20	1.8	0.2	0.0	0.0	12
13	0.0	0.0	0.0	0.2	97	1.1	5.5	15	1.8	0.2	0.0	0.0	13
14	0.3	0.0	0.1	0 • 2	38	1.3	106	12	1.6	0.1	0.0	0.0	14
15	0.0	0.0	0.2	0.2*	11	1.7	139	9.9	1.3	0.1	0.0	0.0	15
13	0.0	0.0	0.2	0.2	**								
16	0.0	0.0	6.1	0.2	6+2	2 • 8	50	7.7	1.2	0.1	0.0	0.0	16
17	0.0	0.0	1.3	0.2	4.6	6.1	26	7.1	1.1	0.1	0.0	0.0	17
18	0.0	0.0	0.6*	0.2	3.4	6.3	18	6.3	1.0	0.1	0.0	0.0	18
19	0.0	0.0	0.5	0.2	2.9	6.3	56	5.2	0.9	0.1*	0.0	0.0	19
20	0.0	0.0	0.4	0.2	2.6	8.6	88	4.6	0.9	0.0	0.0	0.0	2.0
2 1	0.0	0.0	0.3	0.2	2.2	8 • 2	124	4.3	0.9	0.0	0.0	0.0	21
22	0.0	0.0	0.3	0.2	1.9	9.3	94 *	4.0	1.0	0.0	0.0	0.0	22
23	0.0	0.0	0.3	0.2	1.9	34	51	3.8	0.9	0.0	0.0	0.0	2 3
24	0.0	0.0	0.2	0.3	1.8	18	31	3.5	0.8	0.0	0.0	0.0	24
25	0.0	0.0	0.2	0.2	1.6	9.8	23	3.4	0.7	0.0	0.0	0.0	2.5
	0.0	0.0	0.2	0.2	1.00	7 6 0							
26	0.1	0.0	0.2	0.3	1.6	6.4	27	2.9	0.6	0.0	0.0	0.0	26
27	0.1	0.1	0.3	0.3	1.6	9.1	19	2.7	0.6	0.0	0.0	0.0	27
2.6	0.0	0.0	0.2	0.3	1.5	263 #	16	2.8	0.5	0.0	0.0	0.0	28
29	0.0	0.0	0.2	0.3		47	14	2.8	0.6	0.0	0.0	0.0	29
30	0.1	0.0	0.2	52 *		20	12	2.2	0.5	0.0	0.0	0.0	30
31	0.1	0.0	0.2	331 #		15		2.0		0.0	0.0		3 1
MEAN	0.0	0.0	0.4	12.6	19.8	15.8	34.1	7.8	1.3	0.1	0.0	0.0	MEA
MAX.				331 E	279 E	263 E	139	35.0	2.3	0.4	0.0	0.0	MAX
MIN.	0.3	0.1	6.1						0.5	0.0	0.0	0.0	MIN
AC.FT.	0.0	0.0	0.0	0.2	1.4	1.1	5.5	2.0	78	8	0.0	0.0	AC.F
46.F 1.	2	1	23	773	1101	973	2027	481	/ 6	8			1.0.1

E - Estimoted
NR - No Record
- Dischorge measurement or observation
of no flow made on this doy
- E and

MEAN MAXIMUM | MAXIMUM | | OISCHARGE | GAGE HT | MO DAY | TIME | 1300 E | 5.47 | 1 | 31 | 2330

MINIMUM | DISCHARGE | GAGE HT | MO | DAY | TIME | 10 | 1 | 0000

WATER YEAR SUMMARY

TOTAL ACRE-FEET 5466 EM HL (1) (1)

	LOCATION	N	MAXII	NUM DISCH	HARGE	PERIOD OF RECORD DATUM OF GAG				OF GAGE	
		1/4 SEC. T. & R.	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIO0		ZERO	REF
LATITUDE	LONGITUDE	M. D. B. & M.	C.F.S.	GAGE HT.	DATE	515 51111102	ONLY	FROM	TO	GAGE	DATUM
37 42 58	120 11 20	SE34 2S 16E	1720Eª	5.73	2- 8-60	DEC 58-DATE		1958		0.00	LOCAL

Station located below Dogtown Road Bridge, 0.5 mi. NE of Coulterville. Tributary to Merced River. Drainage area is 17.0 sq. mi. Altitude of gage is 1740 ft. (from topographic map.)

a-Previously reported as 956 cfs. After obtaining additional high flow discharge measurements, the stage-discharge relation for high flows was more closely defined. See Table B-1 for additional information.

TABLE 8-27

DAILY MEAN DISCHARGE MERCED RIVER BELOW SHELLING IN SECOND FEET

WATER STATION NO 805170 1963

DAY	OCT.	NOV	O € C.	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT.	OAY
1	61	8 • 6	7.5	9.9	177	1510	868	887	2880	132	84	65	
2	16	7.8	7.6	9.7	61	499	862	892	2900	140	85	70	2
3	8 . 8	8.6	7.8	9.2	38	67	875	882	3270	149	84	62	3
4	7.2	11	9.7	8.5	32	55	857	873	3000	164	86	61	4
5	6.1	11	9.4	10	31	48	631	780	1750	147	85	64	5
6	6.7	12	9.4	14	766	45	971	558	1740	84	76	68	6
7	8 • 4	12	9 • 2	17	552	42	1080	743	1490	72	73	61	7
8	8.0	11	8.8	18	1440	50	978	1540	987	76	84	60	6
9	7.1	10	9.9	18	1520	99	668	3150 *	1190	73	81	66	9
10	6.3	10	9 • 2	17	1630	107	679	4630	1060	72	82	61	10
11	6+3	9.9	9.6	17	1510	82	664	3930	203	80	85	59	1
12	6.4	9 • 2	11	16	1510	6.8	676	3420	165	61 *	85	56	12
13	7.7	6.8	9.3	17	1730	63	670	1970	145	77	85	75	13
14	11	7.9	11	16	1550	64	851	1250	145	77	87	66	14
15	11	6.90	29	17	1530 *	65	856	1090	139	78	91	66	15
16	13	6.9	45	17	1510	64	829	1190	792	80	85	67	16
17	15	6.8	33	18 *	1510	69	733 •	2440	3010	86	8.6	69 4	
18	14	7.4	25 *	19	1500	74	859	3530	2930	98	85	81	18
19	11 •	8.0	21	23	1500	62 *	990	3720	2940	104	73	76	(9)
2.0	12	7.6	20	24	1500	54	974	3960	2300 •	100	70	63	20
21	12	7.5	19	24	1500	48	946	4030	2230	101	56	60	21
22	11	7.6	18	24	1510	46	893	4110	1390	104	68	60	2.2
23	11	7.9	17	25	1490	42	896	4230	901	106	72 •	61	23
24	9.8	7 . 8	17	25	1490	42	1270	4120	758	112	76	63	2.4
25	9+3	6 • 3	16	25	1490	41	1450	2830	428	107	75	46	25
26	9•3	8.7	14	26	1500	42	1720	2730	262	107	70	45	26
27	8 • 6	10	12	25	1490	44	1580	3690	347	96	71	41	2.7
2 6	8 - 4	8 • 3	10	24	1500	311	1420	3990	447	92	61	42	2.8
29	8.6	7.4	10	25		1130	1180	3070	403	91	61	38	29
30	8.1	7.7	10	32		1020	1090	2890	195	97	64	38	30
31	8 • 7		10	100		875		2700		93	62		3 1
MEAN	11.2	8 . 8	14.7	21.6	1199	220	961	2575	1347	99.3	77+1	60.4	MEAN
MAX. MIN.	61.0	12.0	45 . 0	100	1730	1510	1720	4630	3270	164	91.0	81.0	MAX
MIN.	6.1	6 • 8	7.5	8.5	31.0	41.0	664	558	139	72.0	56.0	38.0	MIN.
AC,FT.	690	521	903	1330	66580	13540	58350	156300	80130	6105	4740	3594	AC.FT.

E — Estimated
NR - Na Recard

— Otecharge measurement ar abservation
af no flow made on this day

- E and #

MEAN	H
D:SCHARGE	Ш
545	Ц

MEAN		MAXIMU				١		MINIM			
SCHARGE	DISCHARGE	GAGE HT	MO	DAY	TIME	П	DISCHARGE	GAGE HT	MO	DAY	TIME
545	4910	12.51	5	10	0510		5 • 7	4 - 85	10	5	2400

WATER YEAR SUMMARY

1	TOTAL	
	ACRE-FEET	
-	394800	

	LOCATION	N .	MAXII	MUM DISCH	ARGE	PERIOD O	F RECORD	DATUM OF GAGE			
	LONGITUDE	1/4 5EC. T. & R.	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF
LATITUDE	CONGITUDE	M. O. B. & M.	C.F.S.	GAGE HT.	OATE		ONLY	FROM	TO	GAGE	DATUM
37 30 06	120 27 03	NE17 5S 14E	4910	12.51	5-10-63	NOV 58-DATE		1958		0.00	LOCAL

Station located 0.2 mi. below Merced-Snelling Highway Bridge, 1.4 mi. SW of Snelling. Plow regulated by Exchequer power plant and Lake McClure. Prior to November, 1958, records available for a site 3.6 mi. downstream. Altitude of gage is 221 feet, USGS datum.

-CACTS FICE 1 -1,0 "52"

TO TRAINED

R G WOMENT

THE LEGISLATE CHARGE PROPERTY OF THE CONTROL OF THE CONTR

* *	
was see	240

-455

a		As.	D,	-1	2.5	443	75	1016	* 04		5.6	4i
				3	6	* q	UN	~.	4 4	74	· q.	6
	13	á	4	3	46	-3	- 3	20	· ·	7	۵	D
	12	ds.		3	20	42	2.3	9 %	4 7		-0-	G
	74	4	4	-3	75	23		>2	24	of the second	-	4
	19	à		3	.7	-	8.2	9.2	900	3.05	-	-40
	20	4	4	3	4.7							
	-27	4	- 6	7	-	7	40	12	11 %	20	-	-0
	35	A.	i i	79	48	3 14	~ 13	-	20 44	6.43	75-	-
		4.		3	43	34	Off	100	D 43	6.3	1767	2
	9	26	7	- 2	127	3	ų.	3 "	1.00	-	100	8
	Z	Δ.	4	3	-27	7 6	4.0	-m es 10	143	ij.	~	-
	3	4	3	3	170	19	7.	- 26	70	٦	in.	4
	- 2	ě	6		3-7	79	700	70	6.2	(d) (q)	3.69	3
	9	5	4	3	1.7	20	7	2110 -	7%	A	2:	0
	4	2	L		342	t-m.	30-	7	Cl-4	114_	7.	4.
		ü	è	3	130	4.39	410	760	2~	12	-6-	127
						2.5	9=	2	- ~9	q-	24	-244
	4.	4	4		248		86	136	21	18	394	11
	E	9	7.76	3	3-4	7	4	7.7	424	2.	UL	11 .
	7	5	-2	3	253	3-	9.6	429	750	7	Li	.2
	7	5	2/	3	322		94	42.0	7-7	-3	3,4	16
	3-	-	5	4	200	14	74	4.4		-		
	-	*	4	161	340	2-4	-0	-429	-3.7	- 1	žu.	14
	2	4	3	-	550	3.6	706	-070 -	206		320 00	15
-	ó	-4	Z.	Z	546	3-0	93	-007	Ď ž.	1 -		13
2	ó	0	7	3	244	30	.06	-4-2	129	-7	The same	34_
-	7	4	3	3	544	22	3.90	730	0	7	200	34
· c	****		-6	9	549	12	249	257	73	20	Car.	14
		-	7	20	344	11	:59	2:2	144-	22	the	.3
2	- 2	-6	9	2	340	35	F0-4	416	-90		347	131
2	9	4	7	15	2 -4	30	126	770	69	3	781	12
-	7	9	ž.	- 9		100	112	311	-05	16	19.	10-
	±	2	7	13		-27		366		:0	"Bi	
4E3001	249	7=4	7920	601	340	31	105	71.	342	-45"	15144	-1-
AME.	77		72	-23	.442	153	355	3	3.2	.29	Bt	3-40
HISTO		4	504	3-4	7.4	12	2.7	12	.22.	To de	Street,	2n+D
		600			3420	9736	5779	36-30	5004	719	194451	5949
William .	535	200	-465	559	04450	2444	7773	30- 20	2000	7.7	744	

			WI THE	514	IST ISTANIARY					
MELDI		46.23 H.J		At Militerality						
i mage:	. sage	wife F	r6 and 46	- 2	BRADE	42E 5	HE IDS " ME			
43	~659	2 = = 5	2 .+99		Seed	- 66	- 99 LTM			

-C 73			4047	in in Inci-	GRE	-EMIL .		INTIN IF BUT		
	_MATTE	1 EC =		F FEEGBR		A PORTE	use + Eller	FPMO.	EST	F
TE DE		- U.S.See	-7.	MGE -	, Jack	, , , , , , , , , , , , , , , , , , ,	1,	THIS	afric.	DE

e see o . .

DAILY MEAN DISCHARGE

ORESTIMBA CREEK NEAR CROWS LANDING IN SECOND FEET

WATER STATION NO 808720 1963

DAY	ост.	NOV	DEC.	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG.	SEPT	DAY
,	2 • 8	0 • 0 ×	0.0	0.0	1880 #	0.0	60	68	29	8.7	14	10	1
2	1.8	0.0	0.0	0.0	359 #	0.0	39	21	22	6.4	13	24	2
3	1.8	0.0	0.0*	0.0*	101	0.0	71	9.6	12	13	11	12	3
4	1 • 3	0.0	0.0	0.0	27 .	0.0	55	6.7	1.9	9.4	16	12	4
5	1+1	0.0	0.0	0.0	5 • 6	0.0	23	4.4	2 • 8	8.4	26	12	5
6	1.7	2 • 1	0.0	0.0	0.9	0.00	26	5.2	1.9	11	12	23	6
7	0.7	0.1	0.0	0.0	0.0	0.0	264	16	1.4	15	11	29	7
8	0.4	0.0	0.0	0.0	0.0	0.0	158	6.3	2.1	27	12	31	8
9	0.4	0.0	0.0	0.0	0.0	0.0	96 ≉	11	4.0	25	9.7	18	9
10	0.3	6 • 1	0.0	0.0	57	12	67	6.4	10	8.5	9.9	8.9	10
-11	0.1	2 • 2	0 • 0	0.0	40	21	65	5.7	24	6.5	8 • 2	6.5	0
12	0 • 2	0 • 2	0.0	0.0	15	1.2	104	6.8	20	11	11	11	12
13	0.1	0.0	0.0	0.0	399	2 • 3	109	8.0	25	18	13	20	13
14	0.1	3+5	0 • 0.	0.0	314 *	4.4	113	8.4	7.1	14	13	16	14
15	0.0	2.9*	0.0	0.0	127	3 • 3	73	6.6	2.4	7.6	18	9.2	15
16	0.0	0.7	0.0	0.0	62	41	76	8.4*	2.5	8.4	12	5.7	16
17	0.0	0.1	0.0*	0.0	31	85	101	12	2.6	8 . 2 *	16	5.7	17
18	0.0*	0.0	0.0	0.0*	16	11	76	10	3.5	8 . 2	14	7.2*	18
19	0.0	0.0	0.0	0.0	6.8	1.7	74 *	8.5	2.2*	9.3	25	8.5	19
20	0.0	0.0	0+0	0.0	2 • 1	0.9*	88	8.5	1 • 0	13	16 *	7.8	5.0
21	0.0	0.0	0.0	0.0	1.5	13	141	9.5	1.9	13	12	8.8	21
22	0.0	0.0	0.0	0.0	0.0	49	1 23	13	2.5	13	12	8.1	23
23	0.0	0.8	0.0	0.0	0.0	101	128	6.5	3 • 0	13	11	6.4	
24	0.0	3 • 0	0.0	0.0	0.0	55	84	12	5 • 1	15	12	11	24
25	0.0	0.7	0.0	0.0	0.0	104	55	42	4 • 8	12	9.7	7.4	23
26	0.0	0+2	0.0	0.0	0.0	55	80	29	2.6	12	8 • 7	6.0	26
27	0.0	0.1	0.0	0.0	0.0	49	108	37	2.3	10	7.9	5.6	2.7
26	0.0	0.0	0.0	0.0	0.0	137	96	47	1.8	ii	9.4	7.7	2.8
29	0.0	0.0	0.0	0.0		251	105	22	2 • 2	13	14	6.6	2 9
30	0.0	0.0	0.0	0.0*		92	111	53	2.5	14	13	5.3	3.0
31	0.0		0.0	361		65		39		14	9.4		3 1
MEAN	0.4	0.8	0.0	11.6	123	37.3	92 • 3	17.7	6.9	12 • 1	12.9	11.7	MEAN
MAX	2 • 8	6 • 1	0.0	361	1880 E	251	264	68.0	29+0	27.0	26 • 0	31.0	MAX
MIN.	0.0	0.0	0.0	0.0	0.0	0.0	23.0	4.4	1.0	6.4	7.9	5.3	MIN.
AC.FT.	25	45		716	6833	2291	5492	1086	409	747	793	695	AC.FT.

E - Estimated
NR - Na Record
- Directorge measurement or observation
at na flow made on this day.
- E and

WATER YEAR SUMMARY

TOTAL ACRE-FEET 19130

	LOCATION	V	MAXI	MUM DISCH	ARGE	PERIOD (F RECORD	DATUM OF GAGE			
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PEF	100	ZERO ON	REF
LATITODE	EDIVOTIODE	M D.B.&M.	C.F.S.	GAGE HT. DATE			ONLY	FROM	TO	GAGE	DATUM
37 24 59	121 00 45	SW B 6S 9E	2650E	12.08	2- 1-63	DEC 57-DATE	Dec 57-DATE	1957		0.00	LOCAL

Station located 0.1 mi. below River Road Bridge, 3.7 mi. NE of crows Landing. This includes drainage returned to San Joaquin River. Daily flows are estimated during periods of backwater from San Joaquin River. Altitude of gage is approximately 50 feet (from USGS topographic map).

DAILY MEAN DISCHARGE

MERCED RIVER AT CRESSEY IN SECONO FEET

WATER YEAR STATION ND 805155 1963

DAY	ост	NOV	DEC.	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OAY
,	174	63	59	74	450	1530	906	991	3070	258	86	91	1
2	177	61	59	76	502	1320	916	923	3130	173	92	95	2
3	154	62	59	77	241	449	916	909	3270	187	95	92	3
4	134	62	55	78	162	255	922	895	3510	207	102	99	4
5	118	62	58	76	129	175	883	883	2440	218	114	97	5
6	109	61	60	78	97	170	914	735	2060	214 E	102	97	6
7	101	59	60	79	980	162	1090	520	2060	168 E	85	88	7
8	95	61	60	83	828	142	1080	1110	1590	128	66	85	6
9	96	62	73	82	1510	138	930	1810 *	1250	97	68	85	9
10	91	61	69	83 E	2270	151	822	4400	1820	90	79	84	10
11	93	62	63	83 E	1790	188	732	4150	796	91	94	86	- 11
12	89	60	62	84 E	1670	179	710	3700	445	83 *	100	76	12
13	89	58	62	83 E	2120	156	707	2890 *	354	81	76	95	13
14	88	59	61	84 E	2420	144	744	1770	304	82	71	94	14
15	86	60 *	62	83 E	1760 *	149	890	1590	261	89	72	105	15
16	86	59	94	84 E	1680	155	909	1520	256	90	82	101	16
17	81	56	122	83 #	1640	170	882 *	1950	2010	85	89	111	17
18	78	56	120 *	83	1630	164	827	3510	2950	85	102	111 *	
19	75 *	56	107	83	1610	159 *	919	3850	2990	70	101	123	19
20	74	54	92	84	1600	148	992	4090	2570 *	93	88	145	2.0
21	72	55	86	83	1590	141	1180	4250	2370 E	101	82	148	2 1
2.2	69	55	83	84	1580	139	1060	4300 *	2060 E	107	85 *	136	2 2
2.3	68	61	82	82	1560	140	993	4420	1790 E	113	87	133	2 3
24	68	60	87	82	1540	130	1060	4410	1450 E	109	92	141	24
2.5	70	60	81	74	1540	122	1300	3790	1180 E	101	104	142	2.5
26	72	61 *	80	89	1540	120	1490	2970	731 E	100	104	141	26
2.7	71	64	79	100	1540	121	1550	3520	444 E	105	118	130	2.7
2.8	69	60	78	82	1540	158	1430	4160	508	94	97	126	2.8
29	95	59	79	76		750	1280	3750	593	93	78	126	29
30	64	58	81	75		1100	1110	3210	458	88	74	114	30
31	65		78	123		927		3060		90	78		5 1
MEAN	92 • 6	59+6	75 . 8	82.9	1340	321	1005	2711	1624	119	89+1	110	MEAN
MAX	177	64 • 0	122	123	2420	1530	1550	4420	3510	258	118	148	MAX
MIN.	64.0	54 + 0	55.0	74 . 0	97.0	120	707	520	256	70+0	66+0	76.0	MIN.
AC.FT.	5695	3544	4663	5098	74420	19740	59790	166700	96640	7319	5480	6540	AC.FT.

WATER YEAR SUMMARY

E - Estimated
NR - No Record
- Oischarge measurement or observation
of no flow made on this day
- E and # MEAN MAXIMUM

| MINIMUM | DISCHARGE | DAGE NT | MO | DAY | TIME | 34.0 | 9.86 | 7 | 19 | 1740 015CHARGE GAGE HT MO DAY TIME 4590 19.56 5 10 1430 629

TOTAL 455600 25 27 28 23 30 31 WESN: WAX: WAX: WAX:

2

	LOCATION MAXIMUM DISCHARGE				HARGE	PERIOD O	F RECORD	DATUM OF GAGE			
		1/4 SEC. T, & R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PERIOO		ZERO	REF.
LATITUDE	LONGITUDE	M 0.B.8M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	MUTAO
37 25 28	120 39 47	SW 9 6S 12E	34400	22.67	12- 4-50	JUL 41-DEC 41 JUL 42-DATE	APR 41-DATE	1950		96.24	USCGS

Station located 150 ft. below McSwain Bridge, immediately N of Cressey. Prior to May 20, 1960, station located 250 ft. upstream. Altitude of gage is approximately 85 ft. (USC & GS datum)

DAILY MEAN DISCHARGE

ORESTIMBA CREEK NEAR CROWS LANDING

WATER STATION NO 808720 1963

		OKE ST I'M	IN SECONO	CAR CROWS	Pumping						08720	1463	
DAY	OCT.	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OAY
-	2.8	0.0*	0.0	0.0	1880 #	0.0	60	68	29	8.7	14	10	1
2	1.8	0.0	0.0	0.0	359 *	0.0	39	21	22	6.4	13	24	2
3	1.8	0.0	0.0*	0.0*	101	0.0	71	9.6	12	13	11	12	3
4	1.3	0.0	0.0	0.0	27 *	0.0	55	6.7	1.9	9.4	16	12	4
5	1+1	0.0	0.0	0.0	5.6	0.0	23	4.4	2.8	8.4	26	12	5
6	1.7	2 • 1	0.0	0.0	0.9	0.00	26	5.2	1.9	11	12	23	6
7	0.7	0 • 1	0.0	0.0	0.0	0.0	254	16	1.4	15	11	29	7
8	0.4	0.0	0.0	0.0	0.0	0.0	158	6.3	2.1	27	12	31	8
9	0.4	0.0	0.0	0.0	0.0	0.0	96 *	11	4.0	25	9.7	18	9
10	0.3	6.1	0.0	0.0	57	12	67	6 - 4	10	8.5	9.9	8.9	10
10	0 • 1	2 • 2	0.0	0.0	40	21	65	5.7	24	6.5	8 • 2	6.5	11
12	0 • 2	0 • 2	0.0	0.0	15	1.2	104	6.8	20	11	11	11	12
13	0.1	0.0	0.0	0.0	399	2.3	109	8.0	25	18	13	20	13
15	0.1	3 - 5	0.0.	0.0	314 *	4.4	113	8.4	7.1	14	13	16	14
15	0.0	2.9*	0.0	0.0	127	3.3	73	6.6	2 • 4	7.6	18	9 • 2	15
16	0.0	0 • 7	0.0	0.0	62	41	76	8.4*	2.5	8.4	12	5.7	16
17	0.0	0+1	0.0*	0.0	31	85	101	12	2.6	8.2*	16	5.7	17
18	0.0*	0.0	0.0	0.0*	16	11	76	10	3.5	8.2	14	7.2*	18
19	0.0	0.0	0.0	0.0	6.8	1.7	74 *	8.5	2.2*	9.3	25	8.5	19
20	0.0	0.0	0.0	0.0	2+1	0.9*	88	8.5	1.0	13	16 =	7.8	2.0
2)	0.0	0.0	0.0	0.0	1.5	13	141	9.5	1.9	13	12	8 . 8	21
22	0.0	0.0	0.0	0.0	0.0	49	123	13	2.5	13	12	8 • 1	22
23	0.0	0.8	0.0	0.0	0.0	101	128	6.5	3.0	13	11	6.4	23
24	0.0	3.0	0.0	0.0	0.0	55	84	12	5 - 1	15	12	11	24
25	0.0	0.7	0.0	0.0	0.0	104	55	42	4 - 8	12	9.7	7.4	2.5
26	0.0	0 • 2	0.0	0.0	0.0	55	80	29	2 • 6	12	8 • 7	6.0	26
27	0.0	0.1	0.0	0.0	0.0	49	108	37	2+3	10	7.9	5.6	2.7
28	0.0	0.0	0.0	0.0	0.0	137	96	47	1.8	11	9.4	7.7	2.8
29	0.0	0.0	0.0	0.0		251	105	22	2 • 2	13	14	6.6	29
30	0.0	0.0	0.0	0.0*		92	111	53	2.5	14	13	5.3	30
31	0.0		0.0	361		65		39		14	9 • 4		3 1
MEAN	0.4	0.8	0.0	11.6	123	37.3	92 • 3	17.7	6.9	12.1	12+9	11.7	MEAN
MAX.	2 • 8	1 • 6	0.0	361	1880 E	251	264	68.0	29.0	27.0	26+0	31.0	MAX
MIN.	0.0	0.0	0.0	0.0	0.0	0.0	23.0	4 . 4	1.0	6.4	7.9	5 . 3	MIN.
AC.FT.	25	45		716	6833	2291	5492	1086	409	747	793	695	AC.FT.

E - Estimoted
NR - No Recard
- Discharge measuremen
of no flow mode on ti
- E and

nf	ar	observotion
hı	5	day.

MEAN) (MAXIMU	М	_	
ISCHARGE	Ш	DISCHARGE	GAGE HT	MO	OAY	TIME
26.4	Ш	2650 F	12-08	2	1	0.730

MINIMUM
OISCHARGE GAGE HT MO DAY TIME
0+0 10 12 2210

WATER YEAR SUMMARY

TOTAL 19130

	LOCATION MAXIMUM DISCHARGE					PERIOD C	F RECORD	DATUM OF GAGE			
ATITUOE	LATITUDE LONGITUDE 1/4 SEC. T. & R.		OF RECORD			DISCHARGE	GAGE HEIGHT	PERIO0		ZERO	REF
LATITUDE	LONGITUDE	M. D. B. & M.	C.F,S,	GAGE HT.	DATE		ONLY	FROM	то	GAGE	OATUM
37 24 59	121 00 45	SW 8 6S 9E	2650E	12.08	2- 1-63	DEC 57-DATE	Dec 57-DATE	1957		0.00	LOCAL

Station located 0.1 mi. below River Road Bridge, 3.7 mi. NE of crows Landing. This includes drainage returned to San Joaquin River. Daily flows ame estimated during periods of backwater from San Joaquin River. Altitude of gage is approximately 50 feet (from USGS topographic map).

DAILY MEAN DISCHARGE SAN JOAQUIN RIVER AT GRAYSON

WATER STATION NO 807080 1963

IN SECOND FEET

YAO	OCT	NOV	OEC.	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	DAY
1	575	385	350	450	1580	2420	3040	3490	4370	1280	530	630	1
2	535	365	335	450	2070	2430	2590	3130	4260	1160	505	605	2
3	535	355	305	450	2750	2240	2310	2680	4210	1060	510	590	3
4	575	340	300	470	3430	1840	2260	2380	4170	1010	520	515	4
5	550	320	305	465	3770	1470	2120	2230	4030	1010	630	585	5
6	560	325	300	450	3890	1280	1940	2110	3690	995	665	585	6
7	525	325	295	445	3620	1160	2100	2000	3190	1010	585	630	
8	540	335	295	480	2620	1060	2390	1790	2870	1090	575	650	8
9	475	340	275	585	2390	900	2680	1720	2700	990	600	680	9
10	455	340	250	650	2510	960	2870	1960	2510	890	635	710	10
11	485	345	250	660	3190	920	2930	2760	2500	785	685	610	- 14
15	510	350	275	665	3520	845	3260	3750	2680	775	685	565	12
13	570	365	305	660	3530	775	3360	4180	1970	735	625	635	13
1A	560	365	330	635	4140	680	2710	4110	1540	715	630	690	15
15	570	370	310	630	4870	615	2660	3520	1380	710	610	715	13
16	650	365	325	625	4610	665	3300	2870	1360	655	560	890	16
17	540	365	330	600	4320	875	3170	2550	1310	660	520	945	17
18	445	365	365	565	4120	860	2700	2370	1370	655	510	925	18
19	400	360	465	5 2 5	3910	785	2810	2800	2420	590	515	960	19
50	375	355	525	505	3720	755	3010	3390	2840	575	505	980	5.0
21	345	355	525	490	3340	725	3300	3690	3280	600	465	905	21
2.2	340	355	585	490	3140	715	3360	3570	3370	665	515	1080	2.2
2.3	325	335	575	490	3010	825	3360	4040	3030	660	530	1100	2.3
24	340	320	540	475	2850	900	3400	4150	2550	560	540	1060	2.4
25	310	325	505	470	2700	915	3440	4190	2190	505	555	1010	a 25
2 6	320	330	490	460	2620	930	3570	4430	1890	500	565	990	e 26
27	340	335	460	455	2560	920	36 70	4260	2000	480	530	755	e 27
2.8	370	330	450	445	2490	1030	3700	4040	1690	495	510	675	28
29	380	315	430	440		1220	3550	4280	1250	530	590	700	a 29 a 30
30	380	330	415	460		2030	3510	4580	1280	525	600	685	
31	385		405	575	1	2680	-	4520	1	515	610		3 :
AEAN	460	346	383	523	3260	1175	2969	3275	2597	754	568	769	MEAN
MAX.	650	385	585	665	4870	2680	3700	4580	4370	1280	685	1100	MAX
MIN.	310	315	250	440	1580	615	1940	1720	1250	480	465	515	MIN
CFT.	28294	20559	23544	32162	181031	72248	176668	201402	154512	46383	34929	45729	AC.FT.

E - Estimoted
NR - No Record
- Oischarge measurement or observation
of no flow made on this day.
- E and

WATER YEAR SUMMARY

MEAN MAXIMUM MINIMUM DISCHARGE GAGE HT MO DAY TIME 34.10 2 15 1300 DISCHARGE GAGE HT MO DAY TIME DISCHARGE 1423 4950

TOTAL ACRE-FEET 1017000

	LOCATION			MUM DISCH	ARGE	PERIOD C	F RECORD	DATUM OF GAGE			
LATITUDE	LONGITUDE	1/4 SEC. T. & R		OF RECORD)	DISCHARGE	GAGE HEIGHT	PEF	RIOD	2ERO ON	REF
LATITOBE	LONGITUDE	M. O. B. B. M.	C.F.S.	GAGE HT.	DATE	o o o o o o o o o o o o o o o o o o o	ONLY	FROM	TO	GAGE	DATUM
37 33 47	121 09 06	NW25 4S 7E	23900	45.15	3- 8-41	JUL 28-DATE	JUL 28-DATE	1960 1960	1959	0.00 0.00 3.81	USED USCGS USED

Station located at Laird Slough Bridge, 5 mi. above the Tuolumne River. High flows bypassing this station through old channel of San Joaquin River are included in figures shown.

Records furn. by City of San Francisco.

BURKHARDT DRAIN NEAR GRAYSON

WATER YEAR 1963 STATION NO B00935

IN SECONO FEET

DAY	OCT.	NDV	DEC.	JAN	FE8	MAR	APR	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 2 3 4 5	6.0 11 12 17 8.7												1 2 3 4 5
6 7 8 9	8.2 7.2 5.3 4.0 3.2												6 7 8 9
11 12 3 14 15	4.7 4.7 5.8 3.4 4.1				STA	ATION DISC	ONTINUED A	S OF					11 12 13 14
16 17 18 19	3.0 3.7*					10-1	7~62						16 17 18 19 20
2 1 2 2 2 3 2 4 2 5													2 1 2 2 2 3 2 4 2 5
26 27 28 29 30 31													26 27 28 29 30 31
MEAN MAX MIN. ACFT.													MEAN MAX. MIN. AC.FT

E - Estimated
NR - No Record
- Discharge measurement or observation
of no flow made on this day.
- E and

WATER	YEAR	SUMMARY

MEAN	16		MAXIMU		MINIMUM							
CHARGE	Н	DISCHARGE	GAGE HT.	MO.	DAY	TIME		DISCHARGE	GAGE HT	MO	DAY	TIME
	11						Į					

TOTAL ACRE-FEET NR

	LOCATION MAXIMUM DISCHARGE					PERIOD O		DATUM OF GAGE			
LATITUDE	ATITUDE LONGITUDE 1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PERIOD		ZERD	REF.	
LATITODE	LONGITODE	M D.B.8.M	C.F.S.	GAGE HT.	DATE		DNLY	FROM	то	GAGE	DATUM
37 30 53	121 12 20	SW 4 4S 7E	105E	2.00	7/4/59	APR 57-SEP 62	APR 57-SEP 62	1959		0.00	LOCAL

Station located 1.2 mi. E.of El Solyo Ranch, 2.6 mi. N. of Grayson. This includes flow of Hospital Creek and drainage returned to San Joaquin River. Record available during irrigation season only. Station discontinued 10-17-62.

DAILY MEAN DISCHARGE

TUOLUMNE RIVER AT LAGRANGE BRIDGE IN SECONO FEET

WATER STATION NO B04175 1963

DAY	ост	NOV	DEC.	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AuG	SEPT	DAY
1	60	587	1040	470	2750	587	1090 *	1830	4650 E	1660 E	23	16	1
2	53	575	812	1200	6850 #	511	1020	1360	4700 E	259	22	12	2
3	13	564	1340	1060	6870	506	876	1330	4380 E	163	22	11	3
4	12	448	1390	669	6900	698	349	1340	2650 E	131	22	20	4
5	11	488	1610	479	6730	674	7.9	1230	1300	136	20	5.2	5
6	11	606	1800	378	5930	5 3 6	101	954	1290	540	19	6.8	6
7	10	595	1780	793	2520	544	1390	383	1300	823	20	5.0	7
8	11	607	1270	760	3150	547	3640	346	1890	454	19	8.0	8
9	23	630	1060	591	3420	526	3400	347	2440	1290	17	12	9
10	380	604	1800	791	3190	379	4750	772	3170 E	751	16	2.9	10
		***	1510	814	2230	470	5510	2210	4680 E	1220	20	8.2	
	602	582					3540 #	1510	628 #	924	19	16	12
15	611	635	1400	491	1810	82	1630	844	305	319	18	15	13
13	592	695	1130	481	4210	27							14
14	501	655	1020	480	4580	23	35 70	1710	1050	353	18	14	
15	419	702 +	796	501	2110	18	5760	2590	1290	285 +	19	13	15
16	571	642	522	572	1730	19	2140	2150	703	300	19 (13	16
17	562	622	1280	579 +	1690	17	1210	1560 *	297	72	16	11 *	
18	550	593	1270	589	2940	16	2400	1420	712	36	18	12	18
19	567	721	1230 *	538	2460	12	3240	1450	3340 E	34	30	15	19
2.0	563	639	1500	430	1970	12	3230	1230	5390 €	31	15	16	5.0
21	429	644	1640	484	2160	13 +	2770	1120	5070 €	29	14 +	19	1.5
2.5	423 *	593	1250	573	1980	16	2700	1130	2200	28	14	10	5.5
23	601	985	913	466	1380	9.4	2680	1550	2050	28	14	27	23
2.4	579 *	952	1120	582	991	11	2690	2500	820	25	48	29	24
2.5	610	699	707	575	1440	ii	2750	3070	445	25	9 • 4	20	25
26	613	1390	1330	550	1700	12	2890	3100	341	24	6+5	28	26
27	613	1370	950	313	1460	276	1710	3490	325	25	7.5	25	27
28	576	1500	968	447	1010	3530	1120	4330	834	23	16	24	28
29	558	1680	844	501		5640	3180	4710	1310	22	12	15	2.9
30						4930	2720	4690	1170	22	12	12	30
31	615	1590	446 739	512 473		4960	2,50	4670	11.0	22	12	12	3 1
MEAN		201	1174	500	2077	024	2469	1965	2024	324	18+0	15+3	MEAN
	399	786	1176	588	3077	826							MAX
XAM	617	1680	1800	1200	6900	5640	5760	4710	5390 E	1660 E	48+0	29.0	MIN.
MIN.	10.0	448	446	313	991	9 • 4	7.9	346	297	22.0	6+5	2.9	AC.FT.
AC.FT.	24510	46800	72330	36160	170900	50800	146900	120800	120500	19940	1110	910	MUPI

WATER YEAR SUMMARY

E - Estimated
NR - No Record
& - Discharge measurement or observation
of no flow made on this day.

I - E and #

MEAN		MAXIMU			
DISCHARGE	DISCHARGE	GADE HT	MD	DAY	TIME
1121	7190	75 • 28	2	3	1030

MINIMUM DISCHARGE GAGE HT MD DAY TIME 0.0 3 15 2030 TOTAL 811700 4 |

NEAN VAX NEX ACFT

	LOCATION			MUM DISCH	ARGE	PERIOD O	F RECORD	DATUM OF GAGE			
		1/4 SEC T.8 R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PEF	RIOD	2ERO ON	REF
LATITUDE	LONGITUDE	м 0.8 8м.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
37 39 59	120 27 40	NW20 3S 14E	48200	188.0	12- 8-50	OCT 36-SEP 60 OCT 61-DATE	OCT 36-SEP 60 OCT 61-DATE	1937		0.00	usgs

Station located at highway bridge, immediately N of La Grange. Flow regulated by reservoirs and power plants. Drainage area is 1,540 sq. mi. Altitude of gage is approximately 175 feet (from USGS topographic map.)

TABLE B-33

TUOLUMNE RIVER AT ROBERTS FERRY BRIDGE IN SECONO FEET

STATION NO WATER 804165 1963

DAY	OCT	NOV	OEC.	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	DAY
1	37	659	1630	859	1830	826	1730 •	2070	4140	1260	43	44	1
2	60	649	1330	1290	6880 *	733	1190	1470	4180	842	43	46	2
3	79	647	1500	1530	7150	672	1020	1420	4060	200	37	40	3
4	49	580	1880	1170	7020	696	764	1410	2860	151	37	40	4
5	39	475	2080	939	6990	907	88	1320	1340	144	43	44	5
6	40	642	2410	811	6630 *	819	59	1040	1300	275	41	46	6
7	39	642	2430	889	2620	700	940	416	1290	1060	39	40	7
8	34	643	1880	1220	3500	707	3130	408	1600	305	40	39	8
9	35	670	1600	1010	3760	701	3540	396	2220	1220	43	40	9
10	143	681	2090	1090	3630	560	4350	383	2380	1030	44	37	10
61	586	656	2150	1280	2790	555	5430	1950	4500	1050	47	40	1 11
12	723	643	1910	966	1950	334	4370	1690	1250 *	1080	46	43	12
13	679	731	1690	806	3350	101	1590	1030	339	572	39	48	13
14	618	793 •	1500	601	5210	72	2660	1230	805	429	40	54	4
15	496	790	1200	620	2580	65	5770	2270	1250	346 •		54	15
16	625	747	1040	731	2030	65	3030	2130	953	359	46	49	16
17	627	744	1370	724 •	2060	62	1300	1590 *		217	43	44	17
18	614 *	705	1800 *	746	2500	60	2420 *	1370	451	79	45	48	18
19	637	740	1720	737	3210	56	2830	1400	2200	51	46	55	19
2 D	643	756	1980	611	1980	53	3250	1280	4820	45	47	56	20
21	518	744	2160	566	2180	52 +	3110	1140	4810	42	42 *	58	21
22	455	736	1880	733	2100	53	2660	1140	2520	44	48	62	2.2
23	661	896	1470	605	1690	57	2720	1160	1930	42	50	61	2.3
24	631	1430	1530	717	1230	54	2700	2370	1190	45	48	58	2.4
25	651	1180	1270	733	1430	53	2750	2550	501	46	91	68	2.5
26	678	1540	1440	716	1830	54	2860	2810	452	46	52	73	2 6
27	671	1860	1590	428	1630	154	2300	3040	359	4.3	39	76	2.7
28	650	1950	1360	523	1440	2120	1310	3650	597	43	40	75	2.8
29	621	2270	1240	721		5150	2430	4210	1290	42	44	76	29
30	674	2240	1050	721		4780	3130	4180	1220	40	47	72	30
31	685		949	631		4970		4170		40	44		3 /
MEAN	442	948	1649	830	3257	847	2514	1829	1904	361	45 • 2	52.9	MEAN
MAX.	723	2270	2430	1530	7150	5150	5770	4210	4820	1260	91.0	76.0	MAX
MIN.	34.0	475	949	428	1230	52.0	59.0	383	318	40 • 0	37+0	37.0	MIN
AC.FT.	27170	56410	101400	51020	180900	52050	149600	112400	113300	22190	2779	3146	AC.FT.

E - Estimated
NR - No Record
- Otecharge measurement or observation
of no flow made an this day,
- E and

WATER YEAR SUMM	ARY
-----------------	-----

MEAN MAXIMUM MINIMUM D:50 HARGE 1205 OISCHARGE GAGE HT MD DAY TIME 16.04 2 2 2400 DISCHARGE GAGE HT MO DAY TIME 29.0 8.24 10 2 0640 7320

TOTAL 872400

	LOCATION	V	MAXII	MUM DISCH	ARGE	PERIOD O	F RECORD	DATUM OF GAGE			
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD)	OISCHARGE	GAGE HEIGHT	PER	8100	ZERO	REF
LATITODE	LONGITUDE	M. O. B. B. M.	C.F.S.	GAGE HT.	OATE	0.20	ONLY	FROM	TO	GAGE	DATUM
37 38 08	120 37 03	NW35 3S 12E	49800	128.2	12- 8-50	JUL 28-OCT 36 JAN 37-FEB 38 JUN 38-DATE				106.20	USCGS USCGS

Station located at highway bridge, 7.5 mi. E of Waterford. Flow regulated by reservoirs and power plants. Altitude of gage is approximately 110 feet (from USGS topographic map.)

DAILY MEAN DISCHARGE

TUOLUMNE RIVER AT HICKMAN BRIDGE IN SECOND FEET

WATER STATION NO YEAR 804150 1963

DAY	OCT	NOV	OEC.	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	DAY
2 3	98 93 118	618 619 612	1580 1230 1230	879 949 1480	1500 6270 * 6840	833 722 648	2360 * 1360 1190	2270 1610 1580	4270 4300 4180	1210 1140 288	103 105 102	107 109 101	2 3
5	100	567 469	1660 1720	1130 866	6730 6680	603 908	1030 253	1510 1440	3230 1480	231 217	101 106	94 91	5
6	89	631	1990 2120	717 715	6550 2850	816 693	192 883	1240 532	1370 1360	233	106 97	98	6 7
8	89 87	640 641	1800	1050	3310	706	3020	494	1530	1010	92	96 86	é
9	86	648	1470	924	3610	708	3840	482	2300	1060	97	89	9
10	88	654	1610	885	3600	611	4410	436	2320	1160	105	84	10
0	419	639	1920	1100	2930	544	5660	1790	4420	949	107	88	1 10
12	639	619	1650	920	1920	481	5070	1950	1840	1070	108	92	12
13	625 629	692 769	1560	743 563	2740 5350	182 154	1850 2520	1180 1140	436 742	659 462	102	100	14
15	497	757 *	1120	574	2670	124	5940	2370	1330	386 *	100 108	104	15
16	585	745	1020	644	1990	124	3750	2350	1160	385	111	96 *	16
17	594	701	1020	660	2040	121	1460	1760	414	315	110	92	17
18	585	671	1620	675	2140	121	2410 *	1470	417	173	112	92	19
19	599 597	689 744	1480 * 1610	697 584	3450 1930	118	2700 3440	1500 1400 *	1910	131 117	113	102	20
											104	102	
21	502	718	1780	526 *	2130	118 *	3470	1210	4820 *	109	105 *	102	2
22	433 *	711	1670	677 575	2120 1710	116	2740	1210	2950	107	110	106	2 2 2 3
24	611	705 1320	1360	660	1220	113 107	2890 2830	1180 2380	2040	103 101	111	99 94	24
2.5	619	1120	1250	676	1260	102	2860	2530	593	109	141	94	2.5
26	639	1210	1100	679	1770	95	2940	2920	557	108	128	101	26
2.7	631	1620	1490	486	1600	95	2640	3060	429	106	105	103	27
2.8	611	1680	1170	470	1510	1860	1460	3630	523	101	99	95	28
30	583	1910	1150	687		5340	2190	4280	1320	104	103	94	30
31	638 650	1930	1040 793	708 626		5170 5020	3410	4270 4270	1300	102 91	106 104	92	31
MEAN	427	868	1449	759	3158	886	2692	1918	1988	412	107	96.9	MEAN
MAX	650	1930	2120	1480	6840	5340	5940	4280	4820	1210	141	109	MAX
MIN.	86.0	469	793	470	1220	95.0	192	436	414	91.0	92.0	84.0	MIN.
AC, FT.	26260	51670	89100	46660	175400	54490	160200	117900	118300	25310	6571	5764	AC.FT.

E - Estimoted
NR - No Record
- Discharge measurement or observation
of no flow made on this day
- E and

	WATER	YEAR	SUMMARY
45.41		$\overline{}$	

MEAN		MAXIMU)		MINIM				
SCHARGE	DISCHARG	E GAGE HT	MO	OAY	TIME	1	DISCHARGE	GAGE HT	MD	DAY	TIME	
1212	6970	79.38	2	2	1950	J	17.0	71.31	3	26	1330	l.

TOTAL	
ACRE-FEET	
877600	

	LOCATION	١	MAXI	MUM DISCH	HARGE	PERIOD O	DATUM OF GAGE				
LATITUDE LONGITUDE 1/4 SEC. T. 8				OF RECORD)	OISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF
LATITUDE	LONGITUDE	M D.8 8.M.	C.F.S.	GAGE HT.	DATE	O S C I M NOE	ONLY	FROM	TO	ON GAGE	OATUM
37 38 10	120 45 14	NW34 3S 11E	59000	96.2	12- 8-50	JUL 32-OCT 36 JAN 37-MAR 37 JUL 37-FEB 38 JUL 38-DEC 38 MAR 39-DATE	JAN 37-MAR 37			0.00	USCGS

Station located at Hickman-Waterford Road Bridge, immediately SE of Waterford. Flow regulated by reservoirs and power plants. Altitude of gage is approximately 80 feet. USCAGS Datum

TABLE B-35

DAILY MEAN DISCHARGE IN SECOND FEET

DRY CREEK NEAR MODESTO

STATION NO WATER B04130 1963

OAY	OCT	NOV	OEC.	JAN	FEB	MAR	APR	MAY	JUNE	JULY	ΔUG	SEPT	OAY
1 2 3 4 5	48 45 47 58 66	23 24 22 21 20	15 14 14 14 14	11 11 12 12	465 * 1160 * 209 92 58	25 22 23 23 22	68 53 46 41 36	53 46 54 56 46	77 102 125 120 114	131 120 100 115 122	65 59 61 62 64	70 67 65 65 74	3 4 5
6 7 8 9	65 68 68 60 62	19 18 17 18 17	13 13 13 12 12	11 11 11 11	40 30 24 23 386	21 18 16 21 19	34 E 39 E 337 E 193	50 50 43 55 65	109 115 96 79 E 86 #	82 79 83 76 87	70 67 69 68 70	77 74 77 77 73	6 7 8 9
11 12 13 14 15	63 68 116 113 102	19 18 17 16 *	12 12 12 12 12	11 10 9.6 9.6 9.8	704 145 392 1620 *	20 19 20 20	116 102 92 88 336	65 75 74 71 74	86 79 75 76 83	79 74 74 73 93	64 70 60 59 58	67 73 74 72 80	11 12 13 4
16 17 18 19 20	94 45 35 30 *	18 16 16 16	21 39 * 43 27 20	9.6 9.4* 9.3 9.3	141 98 78 66 55	19 22 23 20 19	371 182 113 * 85 593	77 77 91 80 71 *	104 93 95 95 78	91 82 79 79 75	63 59 59 55 55	79 4 82 94 94 81	16 17 8 19 20
2 1 2 2 2 3 2 4 2 5	21 19 18 19	16 15 14 13	17 15 13 13	11 11 11 9.6 9.5	48 43 38 35 32	18 * 20 37 31 23	372 355 181 135 115	71 72 93 81 73	73 77 94 124 134	79 80 75 68 63	56 62 55 53 58	78 77 75 75 77	2 l 2 2 2 3 2 4 2 5
26 27 28 29 30 31	20 22 23 23 21 18	13 14 14 15 15	12 12 12 12 12 11	9 • 3 9 • 3 10 12 12	29 28 26	21 23 34 230 * 155	105 118 135 103 65	101 94 89 90 87 79	128 124 123 119 120	63 67 70 73 70 62	63 72 72 67 66 64	73 62 60 64 67	26 27 26 29 3D
MEAN MAX. MIN. AC.FT.	48+4 116 18+0 2975	17.0 24.0 13.0 1012	15 • 6 43 • 0 11 • 0 96 2	10.5 13.0 9.3 648	229 1620 23.0 12710	35+5 230 18+0 2180	159 593 34+0 9433	71+1 101 43+0 4370	100 134 73+0 5956	82 • 7 131 62 • 0 5086	62 • 7 72 • 0 53 • 0 3858	74.1 94.0 60.0 4409	MEAN MAX MIN. AC.FT.

WATER YEAR SUMMARY

E - Estimated
NR - No Recard
- Oischarge measurement or abservation
of no flow made on this day.
- E and

MEAN		MAXIMU	М		
) SCHARGE	DISCHARGE	GAGE HT	MO	DAY	TIME
74.0	2130	79.74	2	14	0750

| MINIMUM | DISCHARGE | GAGE HT | MO | DAY | TIME | 6.8 | 67.66 | 2 | 1 | 0000

ΤΩΤΔΙ ACRE FEET 53600

	LOCATION	1	MAXII	MUM DISCH	HARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
		1/4 SEC. T. & R.		OF RECORD		015 CHARGE	GAGE HEIGHT	PER	QOI	2ERO ON	REF
LATITUDE	LONGITUDE	LONGITUDE M O.B.8M		GAGE HT.	OATE	OID GITALLOC	ONLY	FROM	TO	GAGE	DATUM
37 39 26	120 55 19	SE24 3S 9E	7710	BB.04	12-23-55	MAR 41-DATE	MAR 41-DATE	1941		0.00	USCGS

Station located 0.1 mi. below Claus Road Bridge, 4 mi. E of Modesto. Tributary to Tuolumme River. Prior to Mar. 1941, records available for a site 2.5 mi. downstream. This is a Department of Water Resources—Modesto Irrigation District Cooperative station. Altitude of gage is approximately 80 feet. USC & GS datum.

TUOLUMNE RIVER AT TUOLUMNE CITY IN SECOND FEET

STATION NO YEAR B04105 1963

OAY	ост	NOV	OEC	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OAY
1	365	885	1870	1040	785	NR	3700	2760	3840	1350	430	405	
2	345	875	2370	1040	2510	NR	2030	2200	3810	1410	425	400	2
3	355	860	2630	1180	4870	NR	1570	1780	3810	1080	415	385	3
4	360	845	2600	1140	5140	NR	1400	1690	3680	735	415	385	4
5	375	810	2340	1340	5210	NR	1180	1640	2830	715	410	370	5
6	380	725	2230	1040	5230	NR	1130	1550	1970	640	405	385	6
7	380	800	2340	925	4740	NR	720	1330	1740	660	410	395	7
8	3.85	860	2000	950	2780	NR	1590	990	1630	1040	410	385	8
9	370	870	1770	985	2900	NR	2880	935	1800	755	425	400	9
10	360	875	1550	745	3130	NR	3160	930	2120	1126	425	385	10
- 11	365	875	1740	1080	3570	NR	3740	1030	2440	1100	425	375	10
12	505	865	1860	1090	2820	NR.	4350	2060	3150	1100	425	375	12
13	915	850	1720	1060	2370	NR.	3600	2240	1560	1110	405	385	13
14	1080	885	1610	895	4070	NR	2300	1910	960	850	405	415	-(4
15	1060	930	1500	760	4620	NR	2900	1830	1130	780	405	405	15
16	1010	945	1430	740	3110	NR	4550	2200	1410	720	415	410	16
17	935	950	1250	780	2590	NR	3010	2040	1230	675	390	390	17
18	915	915	1300	790	2430	NR	1970	1710	885	655	390	385	18
19	885	885	1610	795	2770	NR	2380	1610	960	550	390	405	19
2.0	875	890	1580	795	2680	405	2880	1690	2190	505	385	410	5.0
2 1	8 7 5	940	1660	730	2190	400	3340	1690	35 10	485	385	420	2 1
2.2	810	925	1790	690	2180	405	3100	1690	3580	475	390	420	2 2 2 3
2.3	720	915	1680	775	2070	410	2860	1780	2450	475	400	405	
2.4	760	950	1450	720	1750	420	2800	1960	2060	455	405	385	2.4
2.5	850	1330	1420	750	1460	410	2760	2510	1510	435	415	395	2.5
2 6	860	1250	1320	775	1560	395	2400	2810	1070	435	425	395	26
2.7	885	1400	1350	775	NR	390	2880	2840	990	435	425	385	2.7
28	890	1600	1450	660	NR	475	2500	3000	895	435	395	390	2.8
2.9	870	1720	1340	630		565	1960	3410	1000	450	400	390	29
3.0	840	1880	1270	765		3860	2610	3820	1370	445	410	385	3.0
3 1	860		1140	825		3810		3860		435	405		3 >
MEAN	692	1010	1715	880	NR.	NR	2608	2048	2053	726	408	394	MEAN
MAX	1080	1880	2630	1340	NR	NR	4550	3860	3840	1410	430	420	MAX
MIN	345	725	1140	630	NR	NP	720	930	885	435	385	370	MIN.
AC.FT.	42526	60109	105461	54079	NR NR	NR	155207	125207	122142	44648	25111	23445	AC.FT.

E - Estimated
NR - No Record

a - Oischarge measurement or observation
of no flow made on this day

- E and

MEAN 5480

WATER YEAR SUMMARY MAXIMUM GAGE HT MO DAY TIME 36.15 2 14 2350

MINIMUM DISCHARGE GAGE HT MO DAY TIME

TOTAL ACRE-FEET

	LOCATION	V	MAXII	MUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. 8 R.		OF RECORD		OISCHARGE	GAGE HEIGHT	PER	100	ZERO	REF
LATITODE	LUNGITUUE	M 0,8,8M,	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
37 36 12	121 07 50	NW 7 4S 8E				30-DATE	30-DATE	1960	1959	0.00	USED USCGS
								1960		3.50	USED

Station located at highway bridge, 3.35 mi. above mouth. Backwater at times affects the stage-discharge relationship. Records furn, by City of San Francisco.

TABLE B-37

SAN JOAQUIN RIVER AT HETCH HETCHY AQUEDUCT CROSSING IN SECONO FEET

WATER YEAR 1963 STATION NO 807060

			IN SECONO	PEET									
OAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	DAY
1	920	1120	1790	1450	1650	3520	7170	6720	10800	2400	725	860	1
5	890	1110	1720	1490	3620	3100	5480	4660	10500	2200	710	865	2
3	880	1090	1510	1430	7180	2860	4050	4610	9780	2060	700	865	3
4	925	1090	1520	1730	10300	2550	3670	4410	9290	1580	720	830	4
5	955	1060	1590	1680	10500	2100	3370	4540	7750	1510	780	850	5
6	955	1010	1670	1480	10500	1990	2680	4310	6040	1400	770	865	6
7	965	1000	1790	1350	9800	1850	2590	4100	5960	1360	755	920	7
8	955	1060	1870	1300	6590	1690	3970	3920	4280	1700	750	960	8
9	815	1080	1800	1530	5620	1620	6010	4070	4280	1600	760	960	9
10	805	1090	1590	1600	5720	1540	7390	4390	4560	1610	810	980	10
-11	820	1100	1550	1540	6900	1440	7380	5220	4660	1740	895	865	1
15	910	1100	1780	1860	7890	1300	9170	7740	5020	1570	920	885	12
13	1210	1090	1720	1620	6930	1230	10000	9250	4590	1620	845	890	13
14	1360	1100	1700	1450	8270	980	7590	8610	2430	1430	800	1000	14
15	1360	1130	1590	1920	11100	860	5980	6920	2140	1330	800	1030	15
16	1380	1150	1560	1290	9450	905	8320	5660	2700	1230	890	1170	16
17	1300	1160	1470	1290	8020	1130	8320	4810	3100	1220	770	1340	1.7
18	1180	1150	1390	1290	7400	1270	6050	4070	2620	1120	780	1320	- 8
19	1120	1130	1670	1260	7140	1130	5490	4240	3480	1030	765	1360	(9
20	1090	1120	1760	1250	7250	990	5940	5600	4120	920	755	1360	5.0
2 1	1060	1160	1830	1210	5890	940	7230	6600	6430	920	700	1380	2 1
2.2	1040	1150	1900	1150	5250	900	8000	6000	7470	920	725	1450	5.5
23	975	1140	1830	1190	4970	980	7890	7740	5830	880	890	1510	2.3
24	950	1110	1790	1190	5460	1070	7880	8230	4670	770	800	1450	2.4
25	1020	1300	1650	1170	4020	1140	7470	9220	3730	730	835	1430	2.5
26	1060	1370	1630	1190	3840	1120	7380	9710	2690	725	895	1390	2 6
27	1080	1350	1500	1190	3900	1080	7810	10100	2020	730	820	1160	27
2.8	1110	1560	1640	1140	3710	1220	7410	9670	1940	765	745	995	2.8
29	1120	1620	1530	1050		2110	6120	10400	1770	745	770	990	2.9
30	1110	1720	1520	1150		5570	6120	10600	2250	715	890	1000	3.0
31	1100		1460	1280		6750		11000		730	825		3 (
MEAN	1046	1181	1655	1359	6747	1795	6464	6675	4930	1266	793	1098	MEAN
MAX.	1380	1720	1900	1920	11100	6750	10000	11000	10800	2400	920	1510	MAX
MIN.	805	1000	1390	1050	1650	820	2590	3920	1770	715	700	830	MIN
AC.FT.	64304	70255	101792	83544	374717	110370	384655	410420	293355	77871	48783	65316	ACFT.

E - Estimated
NR - No Record
- Otecharge measurement or observation
at no flow made on this day
- E and

WATER YEAR SUMMARY

MEAN MAXIMUM MINIMUM DISCHARGE 2917 GAGE HT MO DAY TIME 27.94 2 4 1900 DISCHARGE GAGE HT MO DAY TIME 12250

TOTAL ACRE FEET 2085000

	LOCATIO	4			MAXII	MUM DISCH	ARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE	1/4 5	EC. T.	a.R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PEF	RIOD	2ERO ON	REF
LATITUDE	LONGITUDE	M D.B.8 M.		M.	C.F. S.	GAGE HT.	DATE	Disconding.	ONLY	FROM	TO	GAGE	DATUM
37 38 10	121 12 54	NE32	38	7E	38400	38.43	4- 2-40	MAR 33-DATE	MAR 33-DATE	1960	1959	0.00	USED

Station located 2.9 mi. above the mouth of the Stanislaus River. Records furn by City of San Francisco.

DAILY MEAN DISCHARGE IN SECOND FEET

STANISLAUS RIVER AT ORANGE BLOSSOM BRIDGE

WATER YEAR STATION NO 803175 1963

DAY	OCT	NOV	DEC.	JAN	FE8	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	DAY
			000	0	1.20				00.112	3021	700	3017	021
	32	172	77	108	3790	29	1680	1060	3580	113	31	38	1
2	2.8	86	75	104	9270 *	28	1440	1340	2860	59	30	36	5
3	29	161	75	100	4300	28	1430	2710	2180	49	29	33	3
4	31	168	75	100	3080	26	1100	2950	1180	48	33	35	4
5	36	171	75	100	2740	25	134	3150	831	47	29	44	5
6	34	171	76	100	1790 *	179	1240	3640	298	47	32	40	6
7	30	167	79	98	1740	90	4050	5090	858	46			7
8	29	143	77	97	1900	31	4390	5210			30	43	8
9									1530	43	31	48	9
10	28	139	80	100	1860	25	3460 *	6290	1560	38	35	43	10
10	28	129	82	102	3780	130	2930	7130 *	1820	37	34	45	10
- 11	32	127	87	98	3310	571	7740 *	6880	2250 *	33	32	71	-11
15	37	142	85	94	2830	502	6440	5730	2020	33	29	76	12
13	145	139	86	87	2740	464	2520	3930	1030	33	28	76	13
14	139	147	84	86	2620	388	2160	2750	982	30	31	73	14
15	122	178 *	100	68	2540	326	2930	1770	2820	30	34	73	15
16	119	172	135	60 *	2510	890	3880	1170	3070	31 *	37	71 *	16
17	83 *	157	128	58	2450	1520	2970	1300	3390	30	34	74	17
18	95	173	296 *	59	2090	492 *	1920	2900	3800			98	18
19		177	483	60	1630		1990		1970	31	31		19
20	105					76		5200		32	33 *	94	50
	96	193	473	51	1390	39	2800	5620	2100	33	31	89	1
2	71	173	444	49	919	36	4380	6080	2140	30	34	88	21
2.2	73	170	476	43	922	37	4250	6120	1750	30	34	91	2 2
2.3	146	174	484	3.8	923	361	3650	6120	311	29	33	97	
24	148	175	405	31	921	1000	2780	6070	181	29	33	95	2.4
2.5	157	175	125	30	678	411	2760	6030	174	34	36	98	2.5
2.6	164	177	107	29	76	60	2750	5370	111	31	38	98	2 6
27	160	159	108	29	40	36	2350	4500	109	32	35	99	27
28	158	106	455	29	31	3800	1780	4650					28
29	152	88	567	30	21	2730 *	1580	5100	384 525	31	32	98	29
30			495	33						30	36	96	30
31	154	78				1830	1200	4920	399	33	34	94	31
-	158		382	60		1730		4630		28	36		1,
MEAN	90.9	153	219	68.7	2245	577	2823	4368	1540	38.1	32.7	71.8	MEAN
MAX	164	193	567	108	9270	3800	7740	7130	3800	113	38.0	99.0	MAX
MIN	28.0	78.0	75.0	29.0	31.0	25.0	134	1060	109	28.0	28.0	33.0	MIN
AC.FT.	5591	9098	13440	4227	124700	35480	168000	268600	91660	2340	2013	4272	AC.FT.

E - Estimated
NR - No Record
- Discharge measurement or observation
of no flow made on this day
- E and

WATER YEAR SUMMARY

MEAN MAXIMUM

DISCHARGE GAGENT MO DAY TIME MINIMUM DISCHARGE GAGE HT MO DAY TIME DISCHARGE 1007 11100 15.69 2 2 0800 22.0 1.3 3 10 1810

TOTAL ACRE-FEET 729400

		LOCATION	N	MAXII	MUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
I	LATITUDE	ATITUDE LONGITUDE 1/4 SEC. T. 8 R			OF RECORD)	DISCHARGE	GAGE HEIGHT	PEF	RIOD	2ERO ON	REF
1	LATITUDE LONGITUDE		M 0.8 8 M	C.F. S.	GAGE HT.	DATE	0.00.111.02	ONLY	FROM	TO	GAGE	DATUM
-	37 47 18	120 45 41	SW 4 25 11E	52000	30.05		JUN 28-DEC 39 APR 40-DATE	JUN 28-DEC 39 APR 40-DATE			0.00	LOCAL

Station located at bridge, 5.0 mi. E of Oakdale. Flow regulated by reservoirs and power plants. Drainage area, 1,020 sq. mi. Altitude of gage is approximately 70 feet (from U.S.G.S. topographic map).

DAILY MEAN DISCHARGE

STANISLAUS RIVER AT RIVERBANK OFC IAN FER MAD ARE

WATER YEAR STATION NO 803145 1963

TOTAL

759200

DAY	OCT	NOV	OEC.	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	VAO
t	85	167	124	264	972	116	1780	1080	4160	299	86	99	1
2	88	175	121	157	9030 •	107	1540	882	3060	180	84	106	2
3	88	136	121	148	5510	101	1480	2540	2800	143	86	97	3
4	88	174	121	142	3050	97	1430	2750	1520	141	8.8	95	4
5	87	184	123	141	2950	93	529	3130	1320	128	90	98	5
6	94	186	123	136	2040 *	91	267	3130	605	124	83	104	6
7	91	188	124	135	1610	223	4010	4820	636	119	82	104	7
8	88	183	125	132	1900	115	3790	5180	1590	121	82	110	8
9	87	170	122	132	1780	96	4730	5750	1650	117	84	113	9
10	91	168	126	136	3260	87	2280	7330 •	1850	114	90	108	10
-11	93	159	127	134	3320	358	6340 +	7380	2180 +	109 E		113	10
+2	115	161	128	130	3060	469	7340	6560	2390	104 E		136	12
13	161	168	129	125	2680	445	3340	4720	1300 E	100 E		147	13
14	194	169	129	122	2760	392	2030	3160	626 E	96 E		152	-4
15	186	178	132	115	2530	312	2370	2230	2500	92 E	79	142	15
16	161	196	171	103	2480	378	3790	1480	3300	93 #	81	140	16
17	143 *	196	191	99	2450	1490	3360	1320	2860	94	82	142	17
18	123	188	173 *	97	2250	771	1860	2230	4260	96	85	148	18
19	129	199	452	96	1700	294 +	1840	4880	2170	100	84 #	165	, 9
30	132	206	565	94	1580	139	2130	5520	2170	96	8.2	161	2 0
21	124	210	472	88	901	112	4090	6140	2210	97	8.2	163	2 1
22	109	204	509	86	873	116	4160	6270	2050	89	83	161	2 2
23	116	202	520	80	854	131	3910	6290	745	88	83	164	2.3
	153	201	529	76	847	939	2790	6260	322	85	82	167	2.4
2.5	161	204	273	73	816	555	2690	6210	300	8.2	91	163	2.5
26	165	202	169	70	318	260	2680	5920	246	88	95	159	2 6
27	169	209	151	69	167	135	2530	4870	195	83	97	162	2.7
28	168	189	212	66	130	2000	1730	4610	289	86	95	162	2.8
29	167	149	604	68		3780 *	1620	5210	544	85	91	166	2.9
30	164	133	568	71		2000	1190	5100	547	82	93	165	3.0
31	165		526	78		1790		4950		85	94		3
MEAN	129	182	257	112	2208	580	2788	4449	1680	110	85+8	137	MEAN
MAX	194	210	604	264	9030	3780	7340	7380	4260	299	97.0	167	MAX
MIN	85 • 0	133	121	68.0	130	87.0	267	882	195	82 • 0	77 • 0	95.0	MIN
AC.FT.	7904	10820	15790	6877	122600	35690	165900	273500	99960	6776	5276	8156	AC.FT.
					1				.,,,,	3.10	72.0	0170	

E - Estimoted
NR - No Record
- Discharge measurement or observation
of no flow mode an this day
- E and

WATER	YEAR	SUMMARY

MAXIMUM GAGE HT MO DAY TIME 88.73 2 2 1340 MEAN DISCHARGE 1048 10100

	LOCATION	٧			MAXII	MUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
LATITUDE	1 CHICITURE	ONGITUDE 1/4 SEC. T. 8 R. M O. B. 8 M		8 R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	0018	ZERO	REF
LATITUDE	LUNGITUUE			C.F.S.	GAGE HT.	OATE		ONLY	FROM	TO	GAGE	DATUM	
34 44 31	120 56 21	sw24	25	9E	85800	103.18	12-23-55	JUL 40-DATE	JUL 40-DATE	1940		0.00	USCGS

Station located at Burneyville Bridge, immediately N of Riverbank. Drainage area 1,055 sq. mi.

STANISLAUS RIVER AT KOETITZ RANCH IN SECONO FEET

WATER STATION NO B03115 1963

DAY	ост	NOV	OEC.	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT.	DAY
2 3 4 5	263 236 220 211 210	245 246 246 225 243	205 195 187 183 182	665 470 367 327 306	149 1970 5240 5170 * 3490 *	363 324 295 272 253	2120 E 1840 E 1710 1680 1410	1760 1570 1830 E 2540 E 2900 E	5170 4380 3560 2700 1890	691 E 500 E 428 E 403 E 436 E	209 210 242 258 283	258 270 239 216 234	2 3 4 5
6 7 8 9	220 240 213 199 207	253 256 257 254 244	181 181 181 180 178	299 291 285 279 277	2860 2100 1980 2030 2240	243 246 312 250 226	809 1690 3590 4120 * 3820	3070 E 3530 E 4410 E 5050 E 5740 E	1490 1050 1360 1780 1840	409 E 385 E 368 E 348 E 332 E	241 215 222 216 219	233 262 282 305 254	6 7 8 9
11 12 13 14	233 311 331 358 383	239 233 232 234 234	179 180 179 179 181	277 275 272 269 265	3400 3300 3000 3030 2810	218 443 526 516 466	3340 5190 * 5840 * 3610 2510	6410 6750 6640 5850 E 4300 E	2000 2300 2080 # 1310 E 1430	298 E 276 E 279 E 288 E 288 E	219 233 216 202 208	262 286 340 387 338	11 12 13 14
16 17 18 19 20	377 315 254 229 222	239 * 254 257 250 256	196 238 254 239 400	259 * 246 239 235 233	2630 2570 2490 2200 1850	415 706 1280 749 451	3050 3690 3070 2310 2280	2780 E 2000 E 2300 E 3720 E 4860 #	2650 2840 3240 3360 2240	257 # 284 300 289 273	219 203 204 219 210 *	305 * 294 298 299 318	16 17 18 19 20
21 22 23 24 25	219 213 205 205 227	263 265 262 256 255	509 494 526 538 523	230 224 218 212 208	1580 1210 1140 1100 1080	334 280 265 367 895	3060 4130 4310 3940 3220	5570 6010 6220 6240 6210	2250 2300 1880 969 758	281 262 252 226 213	196 202 239 215 239	339 336 376 324 304	2 2 2 2 2 2 2
26 27 28 29 30	236 242 246 248 249 246	258 262 263 249 222	369 282 * 247 309 551 574	202 199 197 194 194	931 559 427	624 418 426 2420 E 2400 E 2250 E	3120 3120 2710 2320 2080	6170 6000 5450 5130 5320 5340	669 568 489 606 759	199 200 236 233 235 222	233 230 225 220 233 226	297 304 312 316 343	26 27 28 29 30 31
MEAN MAX MIN AC.FT.	251 383 199 15410	248 265 222 14780	290 574 178 17850	271 665 194 16690	2233 5240 149 124000	620 2420 218 38150	2990 5840 809 177900	4570 E 6750 1570 281000E	1997 5170 489 118800	313 691 199 19220	223 283 196 13700	298 387 216 17710	MEAN MAX MIN. AC.FT.

E - Estimated
NR - No Record
- Oischarge measurement or observation
of no flow mode on this day
- E and

| MEAN | MAXIMUM | DISCHARGE | GAGE HT | MO | DAY | TIME | DISCHARGE | GAGE HT | MO | DAY | TIME | DISCHARGE | GAGE HT | MO | DAY | TIME | 138 | 27.60 | 2 | 1 | 0000

WATER YEAR SUMMARY

TOTAL ACRE-FEET 855,210

	LOCATION	N	MAXII	MUM DISCH	ARGE	PERIOD C	F RECORD	DATUM OF GAGE			
LATITUOE	LONGITUDE	I/4 SEC T.B.R		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	RIOO	ZERO	REF
LATITOOL	CONSTITUTE	M D.B. B.M C.F.S. GAGE HT. DATE			ONLY	FROM	то	GAGE	DATUM		
37 41 57	121 10 08	SW 2 3S 7E					MAR 50-DATE	1950 1951 1951	1951	0.00 0.00 3.60	USCGS

Station located 0.6 mi. NW of Bacon and Gates Road Junction, 3.7 mi. SW of Ripon.

DAILY MEAN DISCHARGE

SAN JOAQUIN RIVER MEAR VERNALIS IN SECONO FEET

STATION NO	WATER
807020	1963

OAY	ост	NOV	OEC.			MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OAY
1 2 3 4 5	1160 1190 1200 1220 1260	1570 1570 1570 1570 1570 1550	2520 2480 2160 1970 * 2180	2190 2180 * 1940 2270 2270	1920 3830 9220 12100 *	4390 3950 3620 3300 2720 *	8730 7720 6120 * 5610 5190	8380 7540 6500 6750 6840	13000 12500 11600 10800 9410	3490 3130 * 2970 2370 2240	1020 E 1020 E 1000 E 1020 E 1100 E	1210 1200	1 2 3 4 5
6 7 8 9	1260 1330 1300 * 1140 1050	1470 1400 1420 1450 1470	2310 2480 2620 2570 2290	2000 1720 E 1670 E 1960 2090	11700 * 11000 8700 7500 E 7700 F	2620 2450 2290 2180 2060	4120 3870 6260 8360 9860	6930 6800 * 6910 7190 7720	7810 6430 5810 6050 6370 *	2130 2020 2360 2350 2210	1120 E 1080 E 1080 E 1080 E 1120 E	1200 1190 1220 1270 1290	6 7 8 9
11 12 13 14 15	11 10 1260 1650 1940 2070	1480 1490 1500 * 1510 1540	2120 2480 2450 2430 2290	2000 2090 2130 1910 1690 E	9100 E 9700 E 8700 E 9700 # 11900	1930 E 1750 E 1860 E 1610 E 1460	9440 11200 12500 10700 8350	8650 10800 12200 11600 9790	6540 7780 7000 4550 3540	2410 2180 2210 2050 1900	1220 E 1280 E 1150 E 1100 E 1050 E	1280 1240 1260 1340 1450 E	11 12 (3 14 15
16 17 18 19 20	2100 1970 1760 1630 1550	1570 1600 1600 1590 1550	2240 2130 1980 2360 2590	1630 E 1630 E 1640 E 1590 E 1590 E	11200 9970 9280 8660 * 8650	1450 1790 2440 2150 1780 E	9810 * 10600 8940 7810 7970	8150 6910 6050 6490 8310	4760 5510 4940 6060 6410	1760 E 1640 E 1580 E 1460 E 1350 E	1080 E 1100 E 1100	1630 E 1780 1780 1800 1800	16 17 18 19 20
21 22 23 24 25	1520 1480 1370 1300 1320	1580 1590 1610 1580 1720	2790 3010 3110 2890 2670	1530 E 1470 E 1470 E 1500 E 1470 E	7550 6690 6350 5950 5420	1570 1420 1450 1560 1910 E	9100 10300 10400 10400 9840	9490 10200 10900 11200 11900	8080 9010 8330 6350 5070	1320 E 1350 E 1300 E 1200 E 1080 E	1060 1090	1840 1920 2060 1980 1920	2 1 2 2 2 3 2 4 2 5
26 27 28 29 30 31	1380 1430 1480 1520 1550 1560	1930 1890 2200 2310 2420	2590 2260 2430 2260 2400 2420	1500 E 1500 E 1410 E 1300 F 1440 E 1590 E	5100 4930 4670	1930 * 1760 1790 3480 7680 8480	9600 9690 9550 8400 8030	12500 12700 12300 12000 12700 13100	3910 3360 2910 2740 3260	1080 E 1050 E 1080 E 1100 E 1080 E 1020 E	1060	1860 1770 1630 1520 1470	26 27 28 29 30 31
MEAN MAX MIN. AC.FT.	1454 2100 1050 89380	1643 2420 1400 97790	2435 3110 1970 149700	1754 2270 1300 E 107800	8185 12100 1920 454600	2607 8480 1420 160300	8616 12500 3870 512700	9339 13100 6050 574200	6663 13000 2740 396500	1822 3490 1020 E 112000	1095 1280 E 1000 E 67360	1515 2060 1140 90150	MEAN MAX MIN. AC.FT.

- Estimated

E - Estimated
NR - No Record

- Olecharge measurement or observation
of no flow made on this day.

- E and *

WATER YEAR SUMMARY

MEAN DISCHARGE MAXIMUM MINIMUM GAGE HT MO DAY TIME 23.80 5 31 1400 DISCHARGE GAGE HT MO DAY TIME 3885 13100

TOTAL	
ACRE-FEET	
2812000	

	LOCATION	1	MAXIM	NUM DISCH	IARGE	PERIOD C	F RECORD	DATUM OF GAGE			
		1/4 SEC. T. B. R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PEF	RIOD	ZERO	REF
LATITUDE	LONGITUDE	M. O. B. & M	C.F.S.	.F.S. GAGE HT. DATE		O S CHARGE	ONLY	FROM	TO	GAGE	DATUM
37 40 34	121 15 51		79000	27.75	12-9-50	JUL 22-DEC 23 JAN 24-FEB 25				8.4	USED
1			,			JUN 25-DCT 28	JUN 25-OCT 28	1050	1959		USCGS

Station located on left bank 30 ft. above the Durham Ferry Highway Bridge, 3 mi. below the Stanislaus River 3.4 mi. NE of Vernalis. Drainage area is approx. 14,010 sq. mi. Natural flow of stream affected by storage reservoirs, power development, ground water withdrawals and diversions for irrigation. Low flows consist mainly of return flow from irrigation. This station is operated under the Federal-State Cooperative Program. The records are furnished by the U.S.G.S.

DAILY MEAN DISCHARGE IN SECOND FEET

SOUTH FORK KINGS RIVER BELOW EMPIRE WEIR #2

WATER YEAR 1963 STATION NO C01120

DAY	ост	NOV	DEC.	JAN	FE8	MAR	APR	MAY	JUNE	JULY	AUG	SERT.	OAY
1	44	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	53	42	322	1
2	42	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	77	41	334	2
3	43	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	77	41	328	3
4	25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	60	8	334	4
5	25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	66	29	351	5
6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	68	20	370	6
7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	47	20	429	7
8	19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33	35	443	8
9	27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	35	49	443	9
10	22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29	52	443	10
10	16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	27	52	406	- 11
12	9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25	50	391	12
13	2	0.0	0.D	0.0	0.0	0.0	0.0	0.0	0.0	25	50	381	13
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	23	50	370	14
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	23	50	324	15
16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16	50	339	16
17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15	61	356	17
1.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15	70	374	18
19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7	16	67	352	19
20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	60	17	66	339	20
2 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	103	17	66	338	21
2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	127	17	66	338	2.2
2.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	138	17	67	198	2.3
24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	150	17	89	285	2.4
2.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	147	17	96	280	25
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	145	17	95	200	26
27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	83	30	103	100	2.7
2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50	42	105	142	2.6
29	0.0	0.0	0.0	0.0		0.0	0.0	0.0	47	49	189	99	29
30	0.0	0.0	0.0	0.0		0.0	0.0	0.0	66	51	258	123	30
31	0.0		0.0	0.0		0.0		0.0		48	310		3 1
MEAN	8.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	37.4	34.5	75.7	318	MEAN
MAX.	44	0.0	0.0	0.0	0.0	0.0	0.0	0.0	150	77	310	443	MAX
MIN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15	8	99	MIN.
AC,FT.	543								2227	2120	4655	18910	AC.FT.

E - Estimated
NR - No Record
- Diecharge measurement or observation
of no flow made an this day
- E and

WATER	TEAR	SUMMART	

MEAN MAXIMUM MINIMUM DISCHARGE GAGE HT MO DAY TIME DISCHARGE GAGE HT MO DAY TIME 39.5

TOTAL ACRE-FEET 28450 :

	LOCATION			MUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUOE	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PERIOD		ZE RO ON	REF
LATITODE	LONGITUOE M. D.B.&M	M. D. B. & M	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
36 10	119 50	20S 19E									

Station located 1.0 mi. SW of Stratford. So. Fork Kings River, composed of Kings River water, is a tributary to the Tulare Lake area. Records furn, by Kings River Water Association.

DAILY MEAN DISCHARGE IN SECOND FEET

CROSS CREEK BELOW LAKELAND CANAL #2

WATER YEAR STATION NO C02602 1963

AX. 0.0 0.0 0.0 0.0 0.0 223 0.0 0.0 0.0 0.0 0.0 82 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	AY	OCT.	NOV	OEC.	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OAY
3														1 2
1											0.0			3
5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	4						0.0	0.0	0.0		0.0			
7	5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5
8 0.0 0.0 0.0 0.0 0.0 185 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.														
9 0.0 0.0 0.0 0.0 188 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0									0.0					
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0														
12	10	0.0	0.0	0.0	0.0	223	0.0	0.0						"
13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		0.0	0.0	0.0										
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					0.0									
15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		0.0	0.0	0.0										
16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		0.0	0.0	0.0										
17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	75	0.0	0.0	15
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0														
19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.														
21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.														
21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.														
22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	/9	0.0	0.0	
22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.				0.0	0.0	0.0	0.0							
25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		0.0	0.0	0.0										
26 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		0.0	0.0	0.0										
27 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25
28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.														
29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.														
30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	28					0.0								
31 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.														
EAN 0.0 0.0 0.0 0.0 38 0.0 0.0 0.0 0.0 27 0.0 0.0 MAA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MA MAN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.			0.0					0.0		0.0			0.0	
AX 0.0 0.0 0.0 0.0 0.0 223 0.0 0.0 0.0 0.0 82 0.0 0.0 MA) IIN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	_	0.0		0.0	0.0		0.0		0.0		0.0	0.0		-
IIN. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0														MEAN
	AX.													
		0.0	0.0	0.0	0.0	0.0 2132	0.0	0.0	0.0	0.0		0.0	0.0	AC.FT.

E - Estimated
NR - Na Record
- Ovechorge measurement or observation
at no flow made on this day.
- E and

WATER YEAR SUMMARY

MINIMUM DISCHARGE GAGE HT MD DAY TIME MEAN MAXIMUM DISCHARGE GAGE HT MO DAY 5.4

TOTAL ACRE-FEET 3816

	LOCATION			NUM DISCH	ARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
LATITUOE	LONGITUOE	1/4 SEC, T, B R.		OF RECORD		015 CHARGE	GAGE HEIGHT	PER	100	ZERÔ ON	REF
LATITUDE	LONGITUDE	M D.B.B.M.	C.F.S.	GAGE HT.	OATE	0.00.111.02	ONLY	FROM	TO	GAGE	DATUM
36 12 42	119 34 05	NE10 20s 22E				21-DATE					

Station located below Cross Creek Weir, 4 mi. E of Guernsey. Tributary to Tulare Lake area. At times the flow is a combination of water from Kaweah River, Kings River, and Cottonwood Creek. Records furn. by Corcora Irrigation District.

ELK BAYOU NEAR TULARE

IN SECOND FEET

STATION NO C03130 1963

DAY	ост	NOV	O E C.	JAN	FE8	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	DAY	327
-	0.0	0.0*	0.0	0.0	60 *	0.0	0.0*	0.0	0.0	0.0	NR	NR	1	
2	0.0	0.0	0.0	0.0	176 *	0.0	0.0	0.0	0.0	0.0	NR	NR	2	
3	0.0	0.0	0.0*	0.0	174	0.0	0.0	0.0	0.0	0.0*	NR	NR	3	
4	0.0	0 + 0	0.0	0.0*	210	0.0	0.0	0.0	0.0	0.0	NR	NR	4	1
5	0.0	0.0	0.0	0.0	243	0.0*	0.0	0.0	0 • 0 *	0.0	NR	NR	5	
6	0.0	0.0	0.0	0.0	223	0.0	0+0	0.0*	0.0	0.0	NR	NR	- 6	
7	0.0	0.0	0.0	0.0	215	0.0	0.0	0.0	0.0	0.0	NR	NR	7	
8	0.0	0.0	0.0	0.0	223	0.0	0.0	0.0	0.0	0.0	NR	NR	8	ALC: U
9	0.0*	0.0	0.0	0.0	224	0.0	30	0.0	0 • 0	0.0	NR	NR	9	
10	0.0	0.0	0.0	0.0	235	0.0	9 • 8	0.0	0 • 0	0.0	NR	NR	10	ı
11	0.0	0.0	0 • 0	0.0	209	0.0	4.7	0.0	0.0	0.0	NR	NR	11	
12	0.0	0.0	0.0	0.0	76	0.0	3 • 1	0.0	0 • 0	0.0	NR	NR	12	
3	0.0	0.0	0.0	0.0	7.6	0.0	3 • 0	0.0	0.0	0.0	NR	NR	13	
14	0.0	0.0	0.0	0.0	2 • 3	0.0	0.0	0.0	0 • 0	0.0	NR	NR	+4	
15	0.0	0.0	0.0	0.0	0.0	0.0	0 • 0	0.0	0.0	0.0	NR	NR	15	
16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NR	NR	16	
17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NR a	NR	NR	17	
18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NR	NR	NR	18	All at
19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 • 0 *	NR	NR	NR	19	1 1
2.0	0.0	0 • 0	0.0	0.0	0.0	0.0	0.0	0.0*	0.0	NR	NR	NR	5.0	8
21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NR	NR	NR	2 1	
2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NR	NR	NR	2.2	1 22
23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NR	NR	NR	2.3	
2.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NR	NR	NR	24	74
2.5	0.0	0.0	0.0	0 • 0	0.0	0.0	0.0	0.0	0.0	NR	NR	NR	2.5	25
2 6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 • 0	NR	NR	NR	2 6	26
27	0.0	0.0	0.0	0.0	0+0	0.0	0.0	0.0	0.0	NR	NR	NR	27	
2.8	0.0	0.0	0.0*	0 • 0	0+0	0.0	0.0	0.0	0.0	NR	NR	NR	2.8	32
29	0.0	0.0	0 + 0	0.0		0.0	0.0	0.0	0.0	NR	NR	N.U	29	7.7
30	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	NR	NR	NR	a 30	30
31	0.0		0 • 0	0.0		0.0		0.0		NR	NR		3 1	
MEAN	0.0	0+0	0.0	0.0	81.4	0.0	1.7	0.0	0.0	NR	NR	NR	MEAN	1E1/
MAX	0.0	0.0	0.0	0.0	243	0.0	30.0	0.0	0.0	NR	NR	NR	MAX	WAL
MIN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NR	NR	NR	MIN.	84
AC,FT.					4518		100						AC.FT.	1257

E - Estimated
NR - No Record
- Discharge measurement or observation
of no flow mode on this day
- E and

a - See Note (a) below.

WATER YEAR SUMMARY

	MEAN)		MINIM								
ı	DISCHARGE	DISCHARGE	GAGE HT	MD	DAY	TIME	1	DISCHARGE	GAGE NT	MO	DAY	TIME	
	6.4	261	2.35	2	5	2020	-	0.0		10	1	0000	

TOTAL	
ACRE-FEET	
4619	

8 6 :

1		LOCATION	N	MAXI	MUM DISCH	ARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
	LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	RIOO	ZERO	REF
1	LATITUDE	LONGITODE	M. D. B. & M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	то	GAGE	DATUM
	36 08 37	119 19 48	SW36 20S 24E	261	2.35	2- 5-63	OCT 58-DATE	MAR S7-DATE	1959		0.00	LOCAL

Station located 1.8 mi. W of U.S. Highway 99, 5.8 mi. S of Tulare. Prior to Mar. 4, 1960, station located 700 feet W of U.S. Highway 99, 4.5 mi. S of Tulare. Tributary to Tule River. Prior records, 1942 to July 1953, available at a site 1 mi. E of Elk Bayou Ave. 3.6 mi. below Old Highway 99 Bridge. Recorder installed March 6, 1957. Altitude of gage is approximately 250 ft. (from U.S.G.S. topographic

(a) Work on control to install a gate created a condition, from 7-17-63 to 9-30-63, making it impossible to record low flows if such flow did occur.

DAILY MEAN DISCHARGE

FRIANT KERN CANAL DELIVERY TO PORTER SLOUGH IN SECONO FEET

WATER YEAR STATION NO C03913 1963

YAC	ост	NOV	OEC.	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG.	SEPT	OAY
1 2 3 4 5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	14 10 10 10	20 20 20 20 20	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	20 20 20 20 20	1 2 3 4 5
6 7 8 9	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	3 0.0 0.0 0.0 0.0	20 20 20 17 15	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	7 0.0 0.0 0.0 0.0	6 7 8 9
11 12 13 14 15	0.0 0.0 0.0 0.0	0.0 0.0 0.0 17 25	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	6 10 10 10	15 15 15 15 15	0.0 0.0 0.0 0.0	0 • 0 0 • 0 0 • 0 0 • 0	0.0 0.0 0.0 0.0	11 12 13 14 15
16 17 18 19 20	0.0 0.0 0.0 0.0	25 24 18 11	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	7 10 11 12 14	10 10 15 20	15 15 12 10 5	0.0 0.0 0.0 0.0 0.0	0 • 0 0 • 0 0 • 0 0 • 0	0.0 0.0 0.0 0.0	16 17 18 19 20
2 1 2 2 2 3 2 4 2 5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	13 20 23 25 25	0 • 0 0 • 0 0 • 0 0 • 0 0 • 0	15 15 15 15	20 20 20 20 20	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	6 9 8 11 16	0 • 0 0 • 0 0 • 0 0 • 0	2 I 2 2 2 3 2 4 2 5
26 27 28 29 30 31	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	25 25 25 0•0	0.0 0.0 0.0 0.0 0.0	22 22 21 22 22	20 20 20 23 25 22	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	18 18 19 20 20	0 • 0 0 • 0 0 • 0 0 • 0 0 • 0	26 27 28 29 30 31
EAN IAX IIN. C.FT.	0.0	4.2 25 0.0 248	0.0 0.0 0.0	0.0 0.0 0.0	6.5 25 0.0 359	0.0 0.0 0.0	8 • 1 22 0 • 0 484	13.2 25 0.0 809	10.8 20 0.0 643	0.0	5.3 20 0.0 327	3.6 20 0.0 212	MEAN MAX MIN AC.FT.

- Estimated

H → E stimuted

NR → No Record

→ Discharge measurement or observation
of no flow mode on this day.

→ E and

MEAN DISCHARGE DISCHARGE MAXIMUM GAGE HT MO DAY TIME 4.3

MINIMUM DISCHARGE GAGE HT MO GAY TIME

WATER YEAR SUMMARY

TOTAL 3082

	LOCATIO	V	MAXI	MUM DISCH	IARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. 8 R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	100	ZERO	REF
LATITODE	LUNGITUDE	м 0.В.8 м	C.F.S.	GAGE HT.	OATE	0.00.1111.00	DNLY	FROM	TO	GAGE	DATUM
36 05 00	119 04 50	SW20 21S 27E									

These flows are deliveries from Friant-Kern Canal into Porter Slough under contract agreement with the U.S.B.R. Delivery is at the intersection of Porter Slough with the Friant-Kern Canal approx. 4 mi. W of Porterville. Records furn. by U.S.B.R.

DAILY MEAN DISCHARGE

FRIANT KERN CANAL DELIVERY TO TULE RIVER IN SECONO FEET

WATER STATION NO C03923 1963

OAY	OCT.	NOV	OEC.	NAL	FE8	MAR.	APR	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	251	276	0.0	0.0	140	1 2
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	260 265	276 276	0.0	0.0	140 140	3
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	267	276	0.0	0.0	140	4
s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	273	276	0.0	0.0	140	5
	0.0										0.0		
6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	276	276	0.0	0.0	157	6 7
7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	276	276	0.0	0.0	183	8
8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	276	276	0.0	10	190	9
9	0.0	0.0	0.0	0.0	0.0	0.0	67	276	276	0.0	15	177	10
10	0.0	0.0	0.0	0.0	0.0	0.0	200	276	276	0.0	26	170	" }
- 11	0.0	0.0	0.0	0.0	0.0	0.0	249	276	276	0.0	32	170	11
12	0.0	0.0	0.0	0.0	0.0	0.0	317	276	276	0.0	32	158	12
13	0.0	0.0	0.0	0.0	0.0	0.0	351	276	276	0.0	32	151	15
14	0.0	0.0	0.0	0.0	0.0	0.0	351	276	276	0.0	32	151	14
15	0.0	0.0	0.0	0.0	0.0	0.0	310	276	276	0.0	32	151	15
16	0.0	0.0	0.0	0.0	0.0	0.0	178	276	276	0.0	32	151	16
17	0.0	0.0	0.0	0.0	0.0	0.0	201	276	276	0.0	32	151	17
1.8	0.0	0.0	0.0	0.0	0.0	0.0	201	276	276	0.0	37	151	18
19	0.0	0.0	0.0	0.0	0.0	0.0	201	276	253	0.0	40	151	19
20	0.0	0.0	0.0	0.0	0.0	0.0	216	276	206	0.0	40	151	20
21	0.0	0.0	0.0	0.0	12	0.0	225	276	112	0.0	23	151	21
22	0.0	0.0	0.0	0.0	20	0.0	225	276	60	0.0	14	151	22
2.3	0.0	0.0	0.0	0.0	20	0.0	225	276	55	0.0	14	151	2.3
2.4	0.0	0.0	0.0	0.0	20	0.0	225	276	17	0.0	14	151	24
2.5	0.0	0.0	0.0	0.0	20	0.0	242	276	0.0	0.0	14	151	25
26	0.0	0.0	0.0	0.0	20	0.0	251	276	0.0	0.0	14	151	26
2.7	0.0	0.0	0.0	0.0	20	0.0	251	276	0.0	0.0	14	175	27
26	0.0	0.0	0.0	0.0	23	0.0	241	276	0.0	0.0	95	185	2.6
29	0.0	0.0	0.0	0.0		0.0	251	276	0.0	0.0	140	185	29
30	0.0	0.0	0.0	0.0		0.0	251	276	0.0	0.0	140	185	30
31	0.0		0.0	0.0		0.0		276		0.0	140		3
MEAN	0.0	0.0	0.0	0.0	5.5	0.0	174	274	189	0.0	32	158	MEAN
MAX.	0.0	0.0	0.0	0.0	23	0.0	351	276	276	0.0	140	190	MAX
MIN.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	251	0.0	0.0	0.0	140	MIN.
AC.FT.	3.0	0.0	0.0	0.0	307	0.0	10372	16844	11248	0.0	2011	9420	AC.FT.
											50.1	,,,,,	

E - Estimated
NR - No Recard
- Discharge measurement or observation
of no flow mode on this day
- E and

WATER YEAR SUMMARY

MAXIMUM MEAN MAXIMUM MINIMUM
DISCHARGE DISCHARGE GAGE HT MD DAY TIME DISCHARGE GAGE HT MO DAY TIME 69.4

TOTAL ACRE-FEET 50202 をを

2

	LOCATIO	N	MAXI	MUM DISCH	ARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	QOIS	ZERO	REF
LATITODE	LONGITUDE	м. 0.8 8 м	C.F.S.	GAGE HT.	DATE	Dio di lanoc	ONLY	FROM	то	GAGE	DATUM
36 04 25	119 05 15	NW29 21S 27E									

These flows are deliveries from Friant-Kern Canal into Tule River under contract agreements with the U.S.B.R. Delivery islocated on the Tule River approximately 4 mi. W of Porterville. Record furnished by U.S.B.R.

DAILY MEAN DISCHARGE IN SECOND FEET

NORTH FORK TULE RIVER AT SPRINGVILLE

WATER YEAR 1963 STATION NO

YAC	OCT.	NOV	DEC.	JAN	FE8	MAR	APR	MAY	JUNE	JULY	AUG	SEPT.	OAY
1	0.6	0.5*	0 • 3	1.4	2000 *	25	88 *	187 *	47	9.9	0+8	0.4	1
2	0 • 3	0.3	0 • 3	1.3	396	24	80	179	44	8.0	1+0	0 • 3	2
3	0.4	0 • 3	0.3*	1 • 1	153	24	73	185	41	7.3*		0.3	3
4	0.9	0.3	0.9	0.7	92	2.2	74	173	40	7.7	0 • 5	0.44	4
5	0.7	0.3	0.9	0+6	72 *	18	76	151	36 *	7.9	0+7*	0.6	5
6	0 • 3	0 • 2	0 • 6	0.5	60	18 *	76	143	37	1.2	0+8	0.7	6
7	0.3	0 • 2	0.9	0 • 5	50	1.7	287	135	37	6.1	0 • 7	0.6	7
8	0 • 4	0.3	0.9	0.5	43	17	305	123	34	5 • 6	1.0	0.5	8
9	0.9	0.6	0.9	0.5	42	20	203	170	31	5.2	1.0	0.5	9
10	0 • 3	0.6	0•6	0.5	183	2.2	157	133	30	4 • 1	1.0	0.7	10
11	C • 3	0 • 5	0.4	0.5	104	20	123	130	32	2.7	0.6	0.5	. 11
12	0 + 3	0.5	0.5	0.5	83	20	110	113	40	2 . 3	0.5	0.5	12
13	0.3	0.5	1.0	0.5	/3	18	100	106	40	2 . 3	0 • 8	0 • 5	13
14	0.6	0.5	1.0	0.5	75	17	148	100	33	1.6	0 • 8	0.6	14
15	0 • 4	0 • 4	0 • 8	0.5	72	25	321	95	30	1.0	0.6	0.6	15
16	0 • 4	0 • 4	1.3	0.5	60	27	214	91 *	28	1.2	0.7	0.6	16
17	0.4	0 • 4	1 - 1	0.5	54	4 3	1 75	89	23	0 • 8	0 • 4	0 • 8	17
18	0 • 2	0 • 4	0.7	0.5	48	36	145	88	21	0.8	0.4	1.0	18
19	0.5	0 • 6	0.5	0.5	45	31	131	86	19	1+1	0.4	0.9	19
20	0 • 3	0 • 3	0.5*	0.8	42	37	137	8 3	18	1.0	0 • 4	0.9	20
21	0.3	0+3	0.9	1.0	41	46	169	80	18	0.9	0+6	1.0	21
22	0.3	0 • 3	0.9	1.0	38	49	139	80	18	0.8	0.5	1.1	2.2
23	0.3	0 • 3	0 • 8	1.1	35	56	136	78	16	0 • 8	0 • 4	1.0	2.3
24	0.3	0.3	0.9	0.9*	34	51	1 36	74	15	0.8	0.3	1.0	24
25	0 • 4	0 • 3	1.0	0.7	32	48	136	68	13	0.9	0 • 4	0.8	2.5
26	0.4	0.3	1.1	0.6	30	47	176	66	12	0.9	0 • 4	0.7	26
27	0.2	0 • 3	1.2	0.6	29	48	146	62	1.1	0.9	0.4	0.7	27
28	0.5	0.3	1.6	0.6	21	167	129	61	1.1	0.6	0.4	0.7	2.8
29	0 • 4	0 • 3	1.5	0.7		116	141	63	11	0.8	0.4	0.8	29
30	0.5	0.3	1.5	127		89	165	56	12	0.7	0.5	1.0	30
31	0 • 6		1.4	1770		8.2		49		0.8	0.5		3 1
EAN	0.4	0 • 4	0.9	61.8	143	41.3	150	106	26.6	3.0	0.6	0.7	MEAN
AX.	0.9	0.6	1.6	1770	2000	167	321	187	47.0	9.9	1.0	1.1	MAX
AIN.	0.2	0.2	0.3	0.5	27.0	17.0	73.0	49.0					MIN.
C.FT.									11.0	0.6	0 • 3	0 • 3	

E = Estimoted
NR = No Record
= Orscharge measurement or observation
of no flow mode on this day.
- E and

MEAN 43.8

1		MAXIMU	М		
1	DISCHARGE	GAGE HT	MO	DAY	TIME
}	4600 E	10.29	1	31	1550

| MINIMUM | DISCHARGE | GAGE HT | MO | OAY | TIME | O+2 | 3+93 | 10 | 2 | 1550

WATER YEAR SUMMARY

TOTAL ACRE-FEET 31700

	LOCATION MAXIMUM DISCHARGE			ARGE	PERIOD OF RECORD DATU				OF GAGE		
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PEF	NOD	ZERO ON	REF
LATITODE	LONGITUDE	M. O. B. & M	C.F.S.	GAGE HT.	DATE	5.50.1141.02	DNLY	FROM	TO	GAGE	OATUM
36 08 23	118 48 16	SE35 2DS 29E	4600E	10.29	1-31-63	FEB 57-DATE	FEB 57-DATE	1957		0.00	LOCAL

Station located at State Highway 190 Bridge, 0.8 mi. NE of Springville. Drainage area is 97.9 sq. mi. Altitude of gage is approx. 990 ft. (from U.S.G.S. topographic map.)

DAILY MEAN DISCHARGE

TULF RIVER BELOW PORTERVILLE IN SECONO FEET

STATION NO	WATER YEAR
C03169	1963

DAY	ост	NOV	DEC.	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT.	DAY	ı
(0.0	0.0	0.0	0.0	330 E	0.0	120	237	256	0.0	0.0	135	1	ı
5	0.0	0.0	0.0	0.0	132 *	0.0	113 +		258	22	0.0	134	2	ш
3	0.0	0.0	0.0*	0.0	233	0.0	112	256	258	26	0.3	125	3	ш
4	0.0	0.0	0.0	0.0	211	0.0	113	254	258	4.9	0.0	125 *		ж
5	0.0	0.0	0.0	0.0	185	0.0*	113	257	259 *	5.0	0 • 0*	126	5	я
6	0.0	0.0	0.0	0.0	193	0.0	110	256	261	0.0	0.0	138	6	а
7	0.0	0.0	0.0	0.0	201	0.0	125	256	261	0.0	0 • 8	163	7	ш
8	0.0	0.0	0.0	0.0	205	0.0	114	256	258	0.0*	127	170	8	я
9	0.0*	0.0	0.0	0.0	216	0.0	118	256	256	0.0	192	160	9	ш
10	0.0	0.0	0.0	0.0	195	0.0	214	263	258	0.0	212	152	10	я
11	0.0	0.0	0.0	0.0	188	0.0	239	270	261	0.0	191	150	11	а
12	0.0	0.0	0.0	0.0	183	0.0	290	265	258	0.0	192	137	12	л
13	0.0	0.0	0.0	0.0	200	0.0	325	263	256	0.0	192 +	133	13	ш
14	0.0	0.0	0.0	0.0	192 *	0.0	329	256	258	0.0	187	135	14	ш
15	0.0	0.0	0.0	0.0	200	0.0	302	258	261	0.0	197	133	15	л
16	0.0	0.0	0.0	0.0	227	0.0	169	256	263	0.0	200	132	16	я
17	0.0	0.0	0.0	0.0	215	0.0	195 +	252	263	0.0*	193	129	17	а
18	0.0	0.0	0.0	0.0	135	0.0*	198	258	261	0.0	194	132	18	а
19	0.0	0.0	0.0	0.0	0.7	0.0	196	258	239	1.1	202	133	19	ш
2.0	0.0	0.0	0.0	0.0	0.1	0.0	206	258	200	0.0	189 *	136	2.0	П
2 1	0.0	0.0	0.0	0.0	4.2	0.0	216	258	105	0.0	133	132	1.5	я
2.2	0.0	0.0	0.0	0.0*	0.0	0.0	214	256	53	0.0	125	132	2.2	ш
2.3	0.0	0.0	0.0	0.0	0.0	65	214	256	47	0.0	124	132	2.3	а
24	0.0	0.0	0.0	0.0	0.0	116 *	211	254	14	0.0	119	137	2.4	ш
2.5	0.0	0.0	0.0	0.0	0.0	94	224	252	0.0	0.0	122	136	2.5	я
2.6	0.0	0.0	0.0	0.0	0.0	87	234	254	0.0	0.0	123	133	26	я
2 7	0.0	0.0	0.0	0.0	0.0	78	233	254	0.0	0.0	121	157	2.7	а
2.8	0.0	0.0	0.0*	0.0	0.0	107 *	230	256	0.0	0.0	110	164	2.8	ж
29	0.0*	0.0	0.0	0.0	0.0	94 *	232	254	0.0	0.0	138	166	29	ж
30	0.0	0.0	0.0	0.0		114	234	254	0.0	0.0	137	170	30	ш
31	0.0	0,0	0.0	384 E		122	234	256	0.0	0.0	135	170	31	я
MEAN	0.0	0.0	0.0	12.4	130	28.3	198	256	177	1.9	124	141	MEAN	н
MAX	0.0	0.0	0.0	384 E	330 E	122	329	270	263	26.0	212	170	MAX	п
MIN	0.0	0.0	0.0	0.0	0.0	0.0	110	237	0.0			125	MIN.	ø
AC,FT.	0.0	0.0	0.0	762	7232	1740	11790	15740	10560	0.0 117	0 • 0 76 48	8404	AC.FT.	а
				102	1232	1740	11/90	13740	10200	117	7648	8404	- w. I.	яŧ

E - Estimoted
NR - No Record
- Discharge measurement or observation
of no flow mode on this day
- E and

WATER YEAR SUMMARY

MINIMUM DISCHARGE GAGE HT MO DAY TIME 0.0 1 1 0000

TOTAL 63980

2

١		LOCATION	N	MAXII	NUM DISCH	HARGE	PERIOD O	FRECORD		DATUM	OF GAGE	
	LATITUDE	LONGITUDE	1/4 SEC. T. 8 R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	RIOD	ZERO	REF
ı	LATTIONS	LONGITODE	M. D. B. B. M	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
	36 04 40	119 06 22	NW30 215 27E	5170	8.17	5-19-57	FEB 57-DATE	FE8 57-DATE	1957 1959	1959	0.00	LOCAL LOCAL

Station located 330 ft. above Rockford Road Bridge, 5.1 mi. W of Porterville. Flows regulated by Success Reservoir and spill from Friant-Kern Canal. Altitude of gage is approx. 400 ft. (from U.S.G.S. topographic map). Flows include C.V.P. releases from Friant-Kern Canal to Tule River.

DAILY MEAN DISCHARGE

CAMPBELL-MORELANO DITCH ABOVE PORTERVILLE IN SECOND FEET

WATER STATION NO C03970 1963

YAC	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	DAY
1	12	0.0	0.0	10	0.0	0.0	0.0	0.0*	26	22 *	18 *	13	
3	3.5	0.0	0.0	10	0.0	0.0	0 • D*	0.0	30	23	20	12 •	2
4	1.5	0.0	0 • 0*	12	0.0	0.0	0.0	0.0	32 +	23	20	12	3
5	1.3	0.0	0.0	14	0.0	0.0	0.0	0.0	33	20	21	12	4
3	3 • 1	0.0	5.9	14	20	0.0	0.0	0.0	33	18	21	14	5
6 7	5.4	0.0	15	14	31	0.0*	0.0	0.0	33	17	21	14	6
	7.8	0.0	16	13	32	0.0	0.0	0.0	33	17	24	14	7
8	7.8	0.0	16	12	32	0.0	0.0	0.0	34	16	25	14	8
9	9+3	0.0	18	11	27	0.0	0.0	0.0	34	17	25	13	9
10	9 • 6	3.5	19	11	23	0+0	0.0	0+0	34	17	24	13	10
11	11	10	19	12	23	0+0	0+0	0.0	33	17	24	13	11
12	7.5	11	18	11	24	0.0	0.0	0.0	32	16	25	13	15
13	5.6	12	16	11	24	0.0	0.0	15	32	16	25	11	13
14	7.2	12	15	11	24	0.0	0.0	26	31	16	25	12	14
15	15	13	14	10	20	0+0	0+0	26	31	16	25	15	15
16	19	14	14	11	17	0.0	0.0	26	31	16	25	14 •	
17	14	15	14	10 *	17	0.0	0.0*	25	31	16	27	14	17
18	12	15	14	11	18	0.0	0.0	24	32	16	34	15	18
19	12	15	11	12	21	0.0*	0.0	22	32	16	30	15	19
20	11	17	10 *	12	22	0.0	0.0	22 •	27	16	24	15	20
2 1	10	18	12	12	18	0.0	0.0	21	22	16	24	16	21
2.5	8 • 4	18	12	12	8 • 6	0.0	0.0	20 +	22	16	19	13	2.2
2 3	5.4+	20	12	12	0.0	0.0	0.0	20	22	16	15	11	2.3
2 4	5 - 1	20	13	12	0.0	0.0	0+0	20	22	16	15	16	2.4
25	4 • 4	20	13	12	0.0	0.0	0.0	19	22	16	16	17	25
2 6	3.9	19	12	13	0.0	0.0	0.0	20	21	16	16	18	2.6
2.7	1.4	9.0	10	13	0.0	0.0	0.0	19	21	16	15	17	2.7
5.8	0.0	0.0	10	13	0.0	0.0	0.0	18	21	16	15	17	2.6
2.9	0.0	0.0	11	14		0.0	0.0	18	21	16	14	18	29
30	0.0	0.0	10	12		0.0	0.0	17	21	15	13	19 *	3.0
31	0.0		10	5.7		0.0		14		16	13		3
EAN	6.9	8 • 7	11.6	11.7	14 • 3	0.0	0.0	12.6	28.3	17.0	21.2	14.3	MEAN
IAX	19.0	20.0	19.0	14.0	32.0	0.0	0.0	26.0	34.0	23.0	34.0	19.0	MAX
AIN.	0.0	0.0	0.0	5.7	0.0	0.0	0.0	0.0	21.0	15.0	13.0	11.0	MIN
CFT	425	519	714	719	797			778	1684	1043	1305	853	AC.FT.
									2001	3443	1303	0,7,3	

- Estimated

MEAN)		MAXIMU) f	MINIM	
DISCHARGE	DISCHARGE	GAGE HT	MO	OAY	TIME	DISCHARGE	GAGE HT	MO
12.2	38.0	3 . 34	8	18	1130	0.0		10

WATER YEAR SUMMARY

	(MINIM)
1	DISCHARGE	GAGE HT	MO	GAY	TIME	٦
Н	0.0		10	27	2400	J

TOTAL ACRE-FEET 8836

	LOCATION	ų .	MAXII	NUM DISCH	ARGE	PERIOD O	F RECORD		DATUM	OF GAGE	-
		1/4 SEC. T, & R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PEI	RIOO	ZERO	REF
LATITUDE	LONGITUDE	M. D. B. & M	C. F. S.	GAGE HT.	DATE		ONLY	FROM	ТО	GAGE	DATUM
36 02 48	118 56 54	NW 4 22S 28E				AUG 42-DATE		Det 62	oct 62	0.00	LOCAL

Station located 3.9 m. SE of Porterville approximately 2600ft, below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association.

PORTER SLOUGH AT PORTERVILLE IN SECOND FEET

WATER STATION NO C03182 1963

OAY	OCT.	NOV	OEC.	JAN	FE8	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OAY
	0.0	0.0*	0.0	0.0	142 *	0.0	0.0*	35	0.0	43	40 =	39	1
2	0.0	0.0	0.0	0.0	132 *	0.0	0.0	36 *	0.0	42	27	38	2
3	0.0	0.0	0.0 *	0.0*	141	0.0	0.0	36	0.0	41 *	23	39	3
4	0.0	0.0	0.0	0.0	137	0.0	0.0	33	0.0	43	25	37 4	4
5	0.0	0.0	0.0	0.0	144	0.0	0.0	33	0.0*	43	24	30	5
6	0.0	0.0	0.0	0.0	143	0.0*	0.0	34	0.0	42	24	29	6
7	0.0	0.0	0.0	0.0	143	0.0	0.0	34	0.0	42	23	28	7
8	0.0	0.0	0.0	0.0	144	0.0	0.0	35	3.9	48	20	28	8
9	0.0*	0.0	0.0	0.0	143	0.0	0.0	37	34	54	16	28	9
0	0.0	0.0	0.0	0.0	139	0.0	0.0	34	38	57	1 • 8	27	10
11	0.0	0.0	0.0	0.0	136	0.0	0.0	31	40	54	0.3	27	- 11
12	0.0	0.0	0.0	0.0	137	0.0	0.0	3.0	39	53	0.0	27	15
13	0.0	0.0	0.0	0.0	142	0.0	0.0	31	31	53	0.0	17	13
14	0.0	0.0	0.0	0.0	144	0.0	0.0	32	35	54	0.0	1.6	14
15	0.0	0.0	0.0	0.0	145	0.0	0.0	21	48	54	0.0	0.3	15
16	0.0	0.0	0.0	0.0	145	0.0	0.0	1.2	46	54	3.2	0.0	16
17	0.0	0.0	0.0	0.0 *	145	0.0	0.0*	0.2	47	54	31	0.0	17
18	0.0	0.0	0.0	0.0	94	0.0*	0.0	0.0	49	54	34	0.0	18
19	0.0	0.0*	0.0	0.0	23	0.0	0.0	10	50	49	34	0.0	19
20	0.0	0.0	0.0	0.0	20	0.0	0.0	25	48	48	41	0.0	5.0
21	0.0	0.0	0.0	0.0	13	0.0	0.0	0.9	50	47	38	0.0	21
2.2	0.0	0.0	0.0	0.0	0.7	0.0	0.0	0.0	48	47	39	0.0	22
23	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	45	47	38	0.0	2.3
24	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	46	47	38	0.0	24
2.5	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	45	47	38	0.0	2.5
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	47	46	37	0.0	5.6
27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	45	46	37	0.0	27
2.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	44	47	39	3.6	2.8
29	0.0	0.0	0.0	0.0	V.0	0.0	8.6	0.0	42	47	38	30	29
30	0.0	0.0	0.0	4.3		0.0	38	0.0	42	47	38	36	3.0
31	0.0	3.0	0.0	124 E		0.0	,,	0.0	-12	46	38	36	31
MEAN	0.0	0.0	0.0	4+1	91.2	0.0	1.6	17.1	32.1	48.3	25.3	15.5	MEAN
MAX	0.0	0.0	0.0	124 E	145	0.0	38.0	37.0	50.0	57.0	41.0	39.0	MAX
MIN.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	41.0	0.0		MIN.
AC.FT.	(/#(1	0.0	0.0	254	5064	0.0	92	1050	1910	2967	1558	0 • 0 923	AC.FT.

E - Estimated
NR - No Record
- Oiechorge measurement ar abservation
of no flow made on this day
- E and

MEAN		UMIXAN				1 (MII				
DISCHARGE	OISCHARGE	GAGE HT	MO	YAC	TIME	U	DISCHARGE	GAGE	HT	мо	DAY	TIME
19.1	224 €	3.70	1	31	1900	l	0.0			10	1	0000

WATER YEAR SUMMARY

TOTAL ACRE-FEET 13820

	LOCATION	V	MAXII	MUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
		1/4 SEC. T. & R.		OF RECORD		OISCHARGE	GAGE HEIGHT	PER	100	ZE RO ON	REF
LATITUDE	LONGITUOE	M D.8.8M.	C.F.S.	GAGE HT.	OATE	O D O HANGE	ONLY	FROM	TO	GAGE	DATUM
36 03 29	118 59 08	SE31 21S 28E				JAN 42-DATE	JAN 42-DATE	1957		0.00	LOCAL

Station located at "B" Lane Bridge, immediately E of Porterville. This is regulated diversion from Tule River. Altitude of gage is approx 465 ft. (from U.S.G.S. topographic map).

DAILY MEAN DISCHARGE PORTER SLOUGH DITCH AT PORTERVILLE

STATION NO WATER
YEAR
C03984 1963

		PUNIER 3	IN SECOND		RVILL						7704	203	
DAY	ост	NOV	DEC.	JAN	FEB	MAR.	APR	MAY	JUNE	JULY	AUG	SEPT.	DAY
1 2 3 4 5	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0* 0.0 0.0	0.0 0.0 0.0* 0.0 0.0	14 13 13 13 14	0.0 0.0 0.0 0.0	0.0 0.0* 0.0 0.0 0.0	10 13 * 10 11 12	0.0 0.0 0.0* 0.0	22 * 21 19 17 17	14 * 14 13 12 13	9.6 9.4* 8.2 6.2 5.3	1 2 3 4 5
6 7 8 9	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	14 14 15 15	0.0* 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	13 13 14 14 14	0.0 0.0 0.0 0.4	17 17 16 15	14 14 12 9•9 0•0	6.1 5.9 6.0 8.9	6 7 8 9
11 12 13 14 15	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0 • 0 0 • 0 0 • 0 0 • 0 0 • 0	0.0 0.0 0.0 0.0	14 * 15 15 * 16 16 *	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	14 14 12 * 5.8 0.0	19 19 15 14 15	16 15 15 15 14 *	0 • 0 0 • 0 0 • 0 0 • 0	10 10 2.5 0.0 0.0	11 12 13 14 15
16 17 18 19 20	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0* 0.0*	0.0 0.0 0.0 0.0 0.0	0.0 0.0* 0.0 0.0 0.0	16 16 11 0.0 0.0	0.0 0.0 0.0* 0.0 0.0	0.0 0.0* 0.0 0.0 0.0	0.0 0.0 0.0 0.0	14 16 15 14	14 14 13 * 12 9.8	0 • 0 0 • 0 0 • 0 7 • 1 12	0.0* 0.0 0.0 0.0	16 17 18 19 20
21 22 23 24 25	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	14 14 12 * 13 17	7.8 8.0 8.0* 9.9	12 14 13 12 12	0.0 0.0 0.0 0.0	2 I 2 2 2 3 2 4 2 5
26 27 28 29 30 31	0.0 0.0 0.0 0.0* 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 2.4	0.0 0.0 0.0 0.0 0.0	19 19 20 21 21	13 13 13 13 13	12 13 10 9.4 9.5 9.5	0.0 0.0 0.0 0.0 5.5*	26 27 28 29 30 31
MEAN MAX MIN. AC.FT.	0.0 0.0	0.0	0.n 0.0 0.0	0.2 5.6 0.0 11	9•2 16•0 0•0 512	0.0 0.0 0.0	0.1 2.4 0.0 5	5.5 14.0 0.0 337	11.2 21.0 0.0 669	14.1 22.0 7.8 870	8 • 4 14 • 0 0 • 0 518	3.5 10.0 0.0 205	MEAN MAX MIN AC.FT.

E - Estimated
NR - No Record
- Discharge measurement or observation
at no flow mode on this day.
- E and

MEAN		MAXIMU				П		MII				
ISCHARGE	DISCHARGE	GAGE HT	MO	YAC	TIME	Ш	DISCHARGE	GAGE	нТ	MO	OAY	TIME
4.3	NR	i				Ш	NR				1	

WATER YEAR SUMMARY

TOTAL 3127

	LOCATION	N	MAXI	MUM DISCH	HARGE	PERIOD O	F RECORD		DATUM	OF GAGE	:
		1/4 SEC. T. & R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PER	RIOD	ZERO	REF
LATITUDE	LONGITUDE	M.O.B & M	C.F.S.	GAGE HT.	DATE	DISCHAROL .	ONLY	FROM	TO	GAGE	MUTAO
36 04 06	119 01 06	SE26 218 27E				JAN 43-DATE		1943		0.00	LOCAL

Station located in Porterville 0.5 mi. W of Porterville Post Office, approximately 150 ft. below head. This is regulated diversion from Tule Raver via Porter Slough. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association.

DAILY MEAN DISCHARGE

PORTER SLOUGH NEAR PORTERVILLE IN SECOND FEET

WATER STATION NO C03187 1963

OAY	ост	NOV	OEC.	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT.	DAY
2 3	0.0	0.0* 0.0 0.0	0.0	0.0 0.0 0.0*	73 76 • 98	0.0	0.0* 0.0 0.0	0.0 0.0* 0.0	0 • 0 0 • 0	2.5 1.8 4.0*	7.4 0.0 0.0	10 10 11	2
4	0.0	0.0	0.0	0.0	93	0.0	0.0	0.0	0.0	5.9	0.0	13 *	4
5	0.0	0.0	0.0	0.0	95 *	0.0	0+0	0.0	0.0*	6.3	0+0*	8 • 8	5
6	0.0	0.0	0.0	0.0	101	0.0*	0.0	0.0	0.0	6.0	0.0	7.0	6
7	0.0	0.0	0.0	0.0	111	0.0	0 • 2	0.0	0.0	5.6	0.0	6.4	7 8
8	0.0*	0.0	0.0	0.0	108	0.0	0.0	0.0	0.0	9+1	0.0	6.3	9
9	0.0	0.0	0.0	0.0	111	0.0	0.0	0.5	0.0	17	0.0	4.4	10
10	0.0	0.0	0.0	0.0	111	0.0	0.0	1.1	0.0	20	0.0	3.5	10
ti I	0.0	0.0	0.0	0.0	91 •	0.0	0.0	0.0	0.0	19	0.0	2 . 8	11
12	0.0	0.0	0.0	0.0	93	0.0	0.0	0.0	0.8	19	0+0	2.7	
13	0.0	0.0	0.0	0.0	97 •	0.0	0.0	0.5*	0 • 1	19	0.0	4.9	13
14	0.0	0.0	0.0	0.0	94	0.0	0 - 1	8.4	1.0	20	0.0	0.0	15
15	0.0	0.0	0.0	0.0	96	0.0	0.0	12	11	20	0.0	0.0	15
16	0.0	0.0	0.0	0.0	102	0.0	0.0	0.0	12 E	19	0.0	0+0	16
17	0.0	0.0	0.0	0.0	99	0.0	0.0*	0.0	12 E	19	0 • 2	0.0	17
18	0.0	0.0	0.0	0.0	61	0.0*	0.0	0.0	12 E	21	10	0.0*	18
19	0.0	0.0	0.0	0.0	18	0.0	0.0	0.0	11 *	18	5 - 4	0.0	
20	0.0	0.0	0.0	0.0	16	0.0	0.0	11	11	17	7 • 3	0.0	5.0
21	0.0	0.0	0.0	0.0	11	0.0	0.0	0.0	13	19	6+1	0.0	21
2.2	0.0	0.0	0.0	0.0	2 • 6	0.0	0.0	0.0	15	18	5.9	0.0	5.5
23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14	20	6 • 4	0.0	2.3
24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14	18	7.4	0.0	2.4
2.5	0 + 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	15	7 • 1	0.0	25
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.6	13	6.9	0.0	5.6
27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5 . 8	12	7.1	0.0	27
2.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4 • 2	11	9 • 2	0.0	2.8
29	0.0	0.0	0.0	0.0		0.0	0.0	0.0	3.0	12	9.7	0.0	29
30	0.0	0.0	0.0	0.0		0.0	0.0	0.0	2 • 3	11	9.9	0.0	30
31	0.0		0.0	28 E		0.0		0.0		11	10		3 1
MEAN	0.0	0.0	0.0	0.9	62.8	0.0	0.0	1.1	5.3	13.8	3.7	3.0	MEAN
MAX	0.0	0.0	0.0	28.0E	111	0.0	0 • 2	12.0	15.0	21.0	10.0	13.0	MAX
MIN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.8	0.0	0.0	MIN.
AC, FT.				56	3486		1	66	313	851	230	180	AC.FT,

E - Estimated
NR - No Record
& - Oischarge measurement or observation
of no flow made on this day.

- E and

WATER YEAR SUMMA

SCHARGE OISCHARGE GAGE HT MO DAY TIME DISCHARGE GAGE HT MO DAY TIME TO 1 1 1 1 1 1 1 1 1 1	MEAN	1			MAXIMU				i		MINIM			
7-2 153 6 3-67 2 9 1900 0-0 10 1000	SCHARGE	11	DISCHAR	GE	GAGE HT	MO	DAY	TIME	1	DISCHARGE	GAGE HT	MO	DAY	TIME
102 1 1000	7+2	Л	153	Ε	3.67	2	9	1900		0.0		10	1	0000

TOTAL ACRE-FEET 5183

ĺ		LOCATION	V	MAXI	MUM DISCH	HARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
	LATITUOE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PER	RIOD	ZERO	REF
	LATITUDE	LONGITODE	M. D B. B.M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	то	GAGE	DATUM
	36 04 00	710 03 08	NE28 218 27E	364	5.14	4- 3-58	JAN 57-DATE	JAN 57-DATE	1957		0.00	LOCAL

Station located at Newcomb Drive Bridge, 2.0 mi. W of Porterville. Tributary to Tulare Lake Basın via Tule River. Altitude of gage 1s approx. 425 ft. (from U.S.G.S. topographic map).

DAILY MEAN DISCHARGE VANDALIA DITCH NEAR PORTERVILLE

WATER STATION NO C03965 1963

IN SECONO FEET

			IN SECONO										
OAY	ост	NOV	OEC.	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OAY
1	0.0	0.0	0.0	0.0	3.9	0.0	0.0	0.0*	3.8	0.0*	5.04	0.0	1
2	0.0	0.0	0.0	0.0	0.2	0.0	0.0*	0.0	4.0	3.4	5.0	0.0=	2
3	0.0	0.0	0.0*	0.0*	0.2	0.0	0.0	0.0	4.1*	5.8	5.0	0.0	3
4	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	4.1	5.8	4.9	2.3	4
5	0.0	0.0	0.0	0.0	2.3E	0.0	0.0	0.0	4.1	6.0	5 • 2	4.3	5
6	0.0	0.0	0.0	0.0	6.5E	0.0*	0.0	0.0	4.1	6.1	5.4	4.3	6
7	0.0	0.0	0.0	0.0	6.7	0.0	0.0	0.0	4.2	6.1	2.0	4.3	7
8	0.0	0.0	0.0	0.0	6.9	0.0	0.0	0.0	4.1	6.2	0 • 2	4.3	8
9	0.0	0.0	0.0	0.0	6.8	0.0	0.0	0.0	3.9	6.4	0 • 1	4.3	9
10	0.0	0.0	0.0	0.0	6.6	0.0	0.0	0.0	3.9	6.8	0.1	4.5	10
31	0.0	0.0	0.0	0.0	6.5	0.0	0.0	0.0	3.8	7.1	0.1	4.6	11
12	0.0	0.0	0.0	0.0	6.6	0.0	0.0	0.0	3.4	7.2	0+0	4.6	12
13	0.0	0.0	0.0	0.0	6.7*	0.0	0.0	0.0	3.3	7.2	0.0	4.4	+3
14	0.0	0.0	0.0	0.0	6.6	0.0	0.0	0.0	3.0	7.2	0.0	4.1	14
15	0.0	0.0	0.0	0.0	6.9	0.0	0.0	2.5	3.1	7.1	0.0	4.0	15
16	0.0	0.0	0.0	0.0	7+1	0.0	0.0	3.9	3.1	7+1	0.0	4.0=	16
17	0.0	0.0	0.0	0.0*	7.0	0.0	0.0*	3.9	3.1	7.2*	0.0	3.9	17
18	0.0	0.0	0.0	0.0	5.5	0.0	0.0	3.9	3.3	7.4	0.0	4.0	18
19	0.0	0.0	0.0	0.0	4.8	0.0*	0.0	3.9	3.5	7.3	0.0	4.0	19
20	0.0	0.0	0.0	0.0	5.2	0.0	0.0	3.5	3.7	7.2	0.0	3.9	2 0
2 1	0.0	0.0	0.0	0.0	5.0	0.0	0.0	3.3	3,4	7.2	0.0	3.9	21
22	0.0	0.0	0.0	0.0	4.5	0.0	0.0	3.3*	3.0	7.1	0.0	3.9	2.2
23	0.0*	0.0	0.0	0.0	2.0	0.0	0.0	3.3	3.3	7.3	0.0	3.9	2.3
24	0.0	0.0	0.0	0.0	0.1	0.0	0.0	3.3	3.7	7.3	0.0	4.0	24
25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.8	1.6*	7.2	0.0	3.9	2.5
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.1	0.0	6.9	0.0	3.8	2 6
27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.1	0.0	6.3	0.0	3.7	2.7
28	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0	6.0	0.0	3.8	2.8
29	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0	5.8	0.0	3.9	29
30	0.0	0.0	0.0	0.0		0.0	0.0	4.1	0.0	5.8	0.0	4.0*	30
31	0.0	0.0	0.0	8.7E		0.0	•••	4.0	0.0	5.4	0.0	4.0*	3
EAN	0.0	0.0	0.0	0.3	4.1	0.0	0.0	2.0	3.0	6.4	1.1	3+6	MEAN
AAX.	0.00	0.0	0.0	8.7E	7.1	0.0	0.0	4.1	4.2	7.4	5.4	4.6	MAX
MIN.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				MIN
CFT	0.0	0.0	0.0	17	228	0.0	0.0	125	176	0.0 391	0 • 0 65	0.0	AC.FT
W. I.				1,	220			123	1/6	391	62	215	1

E - Estimated
NR - No Record
- Discharge measurement or observation
of no flow made on this day
- E and

WATER YEAR SUMMARY

MEAN		MAXIMU					MINIM			
1 . 7	OISCHARGE NR	GAGE HT	MO	YA(TIME	OISCHARGE NR	GAGE HT	мо	DAY	TIME

TOTAL 1217

	LOCATION	V	MAXI	MUM DISCH	ARGE	PERIOD O	FRECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	QOIS	2ERO ON	REF
LATITUDE	LONGITUDE	M. D. B. & M.	C.F.S.	GAGE HT.	OATE		ONLY	FROM	то	GAGE	DATUM
36 03 00	118 58 18	NE 5 22S 28E				1948-DATE		1948		0.00	LOCAL

Station located 2.8 mi. SE of Porterville approximately 1000 ft, below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association.

POPLAR DITCH NEAR POPTERVILLE IN SECONO FEET

WATER STATION NO C03960 1963

OAY	ост	NOV	OEC.	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OAY
1 2 3 4 5	0.0 0.0 0.0 0.0	0.0* 0.0 0.0 0.0 0.0	3 • 3 F 3 • 4 F 3 • 3 # 3 • 3 F 3 • 2 F	0.1 0.1 0.0* 0.0	48 72 76 75 75	0.0 0.0 0.0 0.0	0.0* 0.0 0.0 0.0	0.0* 0.0 0.0 0.0	0.0 9.2 23 * 26 29	0.0 0.0 0.0 0.0	103 104 102 103 102	85 84 84 83 82	1 2 3 4 5
6 7 8 9	0.0 0.0 0.0* 0.0 0.0	0.3 0.4 0.3 0.3 0.3	1.2F 0.5 0.5 0.3 0.3	0.0 0.0 0.0 0.0	75 76 76 77 76	0.0* 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 9.4 25	29 * 26 23 24 24	0.0 0.0 14 55	99 99 99 98 97	81 80 81 82 82	6 7 8 9
11 12 13 14 15	0.0 0.0 0.0 0.0	0.4 0.4 0.3 0.2 0.1	0.4 0.2 0.2 0.2 0.2	0.0 0.0 0.0 0.0	74 70 73 75 *	7 • 3 26 32 32 *	0.0 0.0 0.0 0.0	27 27 29 * 26 23	24 24 12 0.0 0.0	109 4 104 4 108 108	97 96 95 96 95	82 83 47 1.9	11 12 13 14 15
16 17 16 19 20	0.0 0.0 0.0 0.0	0.1 0.0 0.0 0.0 0.0	0.7 0.2 0.1 0.0 0.0	0.0 0.0 0.0 0.0	75 76 37 0•2 0•0	39 38 36 31 *	0.0 0.0* 0.0 0.0 0.0	23 23 23 24 24	0.0 0.0 9.8 36 46	105 106 107 105 103	94 94 94 95 95	0.6* 0.6 0.6 0.6	16 17 18 19 20
2 1 2 2 2 3 2 4 2 5	0.0 0.0 0.0 0.0 0.0	0.5 1.1 1.4 0.9 1.2	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	24 14 1.5 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	48 50 48 47 47	101 99 96 93 92	98 100 100 100 100	0.7 0.7 0.7 0.7 0.7	2 I 2 2 2 3 2 4 2 5
26 27 28 29 30 31	0.0 0.0 0.0 0.0 0.0	1.3 1.1 3.2E 3.2E 3.2E	0.0 0.1 0.1 0.1 0.1 0.1	0.0 0.0 0.0 0.0 0.1	0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.1 0.2 0.0 0.0	46 45 42 22 0•0	94 95 97 98 101 103	100 98 86 85 85	0.8 0.8 3.2 15	26 27 28 29 30
MEAN MAX MIN. AC.FT.	0.0	0.7 3.2F 0.0 41	0.7 3.4F 0.0 43	0.6 19.0 0.0 38	45.8 77.0 0.0 2541	11.0 39.0 0.0 676	0.0	9.6 29.0 0.0 588	25.3 50.0 0.0 1507	74.1 109 0.0 4558	96.6 104 85.0 5939	36 • 0 85 • 0 0 • 6 2141	MEAN MAX MIN. AC.FT.

E - Estimated
NR - No Record
- Otechorge measurement or observation
of no flow made on this day.
- E and

WATER	YFAR	SHMMARY	

MEAN		MAXIMU				1		MINIM			
SCHARGE	DISCHARGE	GAGE HT	MO	DAY	TIME	0	SCHARGE	GAGE HT	MO	DAY	TIME
25.0	114	3.42	7	10	2220		0.0		10	1	0000

TOTAL 18070

	LOCATIO	N	MAXII	MUM DISCH	ARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	100	ZERO	REF
CATTOOL	LONGITODE	M 0.8 8 M	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
36 03 18	119 00 54	SW36 21S 27E				APR 42-DATE		1942		0.00	LOCAL

Station located 1.0 mm. S of Porterville approximately 4750 ft. below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association.

DAILY MEAN DISCHARGE

HUBBS-MINOR DITCH AT PORTERVILLE

IN SECONO FEET

STATION NO	#ATER YEAR
C03925	1963

DAY	OCT	NOV	DEC.	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	YAO
1	NR	NR	NP	NR	NR	0.0	0.0*	0.0*	12	12 *	16 *	6.6	2
2	NR	NR	NP	NR	0.0	0.0	0.0	0.0	12	14	16	7.6*	3
3	NR	NR	NP	NR	0.0	0.0	0.0	0.0	13 •	14	15	17	4
4	NR	NR	N₽	NR	0.0	0.0	0.0	0.0	12	14	15	19	5
5	NR	NR	NP	NR.	0.0	0.0	0.0	0.0	10	14	14	18	
6	NR	NR	NP	NR	NR	0.0*	0.0	0.0	6.3*	14	11	16	6 7
7	NR	NR	NR	NR	NR	0+0	0.0	0.0	2.7	14	5 • 6	13	6
8	NR	NR	NR	NR	NR	0.0	0.0	0.0	2.8	13	8.1	9.2	9
9	NR	MR	NR	NR	NR.	0.0	0.0	0.0	2.0	12	7 • 1	5.7	(0)
ID	NR	NR	N/P	NR	NR	0.0	0.0	0.0	2.1	1 2	7.1	5.1	10
n l	NR	NR	NP	NR	2.5*	0.0	0.0	0,0	2.7	12	6.0	4.8	-11
12	NR	NR	NP	NR	10	3 €	0.0	0.0	2.6	13	4 • 5	9.6	12
13	NR	NR	NR	NR.	12 #	5 ε	0.0	0.0	2.8	13	4.8	15	13
14	NR	NR	N.P.	NR	13	17 #	0.0	0.5	2.3	13	6.6	14	15
15	NR	NR	NP	NR	14	10 €	0.0	4.0	8.7	14	2 . 8 *	13	,,
16	NR	NR	NP	NR	14	10 €	0.0	5.1*	12	15	0.0	13 *	16
17	NR	NR	NP	NR	14	5 €	0.0*	5.7	14	15	2.5	13	8
18	NR	NR	NR	NR.	5.8	5 F	0.0	6.2	13	16	5 • 1	16	19
19	NR	NR	NP	NR	0.0	6 #	0.0	7.8	13	15	5.7	18	20
20	NR	NR	QΝ	NR	0.0	0.5	0.0	14	13	14	4.7	17	10
2+	NR	NR	NP	NR	0.0	0.0	0.0	22	14	14	7 • 1	16	2 ! 2 2
22	NR	NR	NP	NR	0.0	0.0	0.0	22	17	14	9.9	16	23
2.5	NR	NR	NP	NR	0.0	0.0	0.0	22	20	14	10	17	24
24	NR	NR	NP	NR	0.0	0.0	0.0	22	15	13	11	14	25
25	NR	NR	NP	NR	0.0*	0.0	0.0	22	8.6	14	11	13	
26	NR	NR	NP	NR	0.0	0.0	0.0	17	13	14	9.6	13	26
27	NR	NR	NP	NR	0.0	0.0	0.0	9.0	13	14	5.2	13	28
28	NR	NR	NP	NR	0.0	0.0	0.0	8.0	13	14	3.3	16	29
29	NR	N.R.	NR	NR		0.0	0.0	8.0	13	14	6.5	15	30
30	NR	NR.	NP	NR		0.0	0.0	8.6	12	15	6 • 1	16 *	31
31	NP		aN	NR		0.0		1.1*		16	6.7		-
MEAN	NR	NR	NP	NR	NR	2.0€	0.0	6.6	9.9	14	7.9	13	MEAN
MAX.	NR	NR	NP	NR	NR	17 €	0.0	22	20	16	16	19	MIN.
MIN	NR	NR.	NP	NR	NR	0.0	0.0	0.0	2.0	12	0.0	4.8	ACFT.
AC.FT.	NR	NR	NP	NR	NR	122 E		407	590	851	483	793	MCFI.

F - Estimated

E - Estimoted

NR - No Record

- Orecharge measurement or observation of no flow mode on this day

E - E and #

- See note (a) below

WATER YEAR SUMMAR	RΥ	SUMMA	R	YF	FR	WATE
-------------------	----	-------	---	----	----	------

MEAN	1	MAXIMUM						MINIMUM						
SCHARGE	Ì	DISCHARGE	GAGE HT	MO	OAY	TIME	1	DISCHARGE	GAGE HT	MO	DAY	TIME		

TOTAL
ACRE-FEET
a 3415

	LOCATION	V	MAXI	MUM DISCH	ARGE	PERIOD O	DATUM OF GAGE				
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PERIO0		ZERO ON	REF
LATITODE	LUNGITUUE	M 0.8 8 M	C.F.S.	GAGE HT.	OATE	o o o minoc	ONLY	FROM	TO	GAGE	DATUM
36 03 27	119 02 02	NW35 21S 27E				DEC 42-DATE		1942		0.00	LOCAL

Station located 1.1 mi. SW of Porterville, approximately 3400 ft. below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association.

(a) During periods of no record the recorder at this station was deactivated. This recorder was activated prior to anticipated diversion periods upon notification from the Tule River Association. It is assumed there was no flow during the "no record" periods.

DAILY MEAN DISCHARGE

RHODES-FINE DITCH NEAR PORTERVILLE IN SECOND FEET

WATER STATION NO. C03940 1963

DAY	OCT	NOV	OEC	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	DAY
	NR	NR	NR	NR	NR	0.0	NR	18 *	7.7	12 *	NR	NR	
2	NR	NR	NR	NR	NR	0.0	NR	22	2 • 4	14	NR	NR	2
3	NR	NR	NP	NR	NR NR	0.0	NR	19	8.7*	19	NR	NR	3
4	MR	NR	NP	NR	NR NR	0.0	NR	19	16	12	NR	NR	4
5	MR	NR	NR	NR	NR	0.0	NR	16	18	12 7.0	NR	NR	5
6	NR	NP	NR	NR	NR.	NR	NR	20	18	7.4	NR	NR	6
7	NR	NR	NP	NR	NR	NR	NR	19	18	4 • 1	NR	NR	7
8	NR	NR	NP	NR	NR	NR	NR	20	18	2.6	NR	NR	8
9	NR	NR	NP	NR	NR	NR	NR	25	16	0.0	NR	NR	9
0	NR	NR	NR	NR	NR	NR	NR	28	16	0.0	MR	NR	10
11	NR	NR	ND	NR	NR	NR	NR	27	19	0.0	NR	NR	-11
12	NR	NR	NR	NR	0.0	NR	NR	27	18	0.0	NR	NR	12
1.3	NR	NR	NP	NR	0.0*	NR	NR	27	20	0.0	NR	NR	13
14	NR	NR	N D	NR	0.0	NR	NR	27	16	0.0	NR	NR	14
15	NR	NR	NΩ	NR	0.0	NR	NR	26	16 7•2	0.0	NR	NR	15
16	NR	NR	ND	NR	0.0	NR	NR	22 *	8 • 2	0.0	NR	NR	16
17	NR	NR	NP	NR	0.0	NR	NR	21	6.5	0.0	NR	NR	17
18	NR	NR	NP	NR	0.0	NR	0.0	17	5.6	0.0	NR	NR	18
19	NR	NR	Nρ	NR	0.0	NR	0.0	6.8	7.2	0.0	NR	NR	19
20	NR	NR	NP	NR	0.0	NR	0.0	0.0	15	0.0	NR	NR	2 0
21	NR	NR	NP	NR	0.0	NR	0.0	4.9	18	0.0	NR	NR	21
2.2	NR	NR	N P	NR	0.0	NR	0.0	13	18	0.0	NR	NR	5.5
2.3	NR	NR	ND	NR	0.0	NR	0.0	13	16	0.0	NR	NR	2.3
24	NR	NR	NP	NR	0.0	NR	2 • 1	13	18	0.0	NR	NR	2 4
2.5	NR	NR	NR	NR	0.0*	NR	9.5	12	17	0.0*	NR	NR	2.5
26	NR	NR	NP	NR	0.0	NR	13	13	19	0.0	NR	NR	2 6
2.7	NR	NR	NP	NR	0.0	NR	14	19	19	0.0	NR	NR	27
2.8	NR	NR	NP	NR	0.0	NR	10	18	18	0.0	NR	NR	2.8
29	NR	NR	NR	NR		NR	15	16	17	0.0	NR	NR	29
30	NR	NR	NR	NR		NR	15	16	17	0.0	NR	NR	30
31	NR		NR	NR		NR		17		0.0	NR		3 1
MEAN	NR	NR	NP	NR	NR	NR	NR	18	15	2.5	NR	NR	MEAN
MAX	NR	NR	NP	NR	NR	NR	NR	2.8	20	19	NR	NR	MAX.
MIN.	NR	NR	NP	NR	NR	NR	NR	28	20	19	NR	NR	MIN.
AC, FT.	NR	NR	NP	NR	NR	NR	NR	1120	872	155	NR	NR	AC.FT.

E - Estimoted

E - Estimoteu
MR - No Record
& - Otechorge measurement or observation
of no flow mode on this day

- E and
a - See note (a) below

WATER	YEAR	SUMMARY	
-------	------	---------	--

														_	
EAN	М	MAXIMUM						MINIMUM							
HARGE	lÌ	DISCHARGE	GAGE HT	MO	CAY	TIME	l	DISCHARGE	GAGE	нТ	мо	DAY	TIME		

TOTAL ACRE-FEET a 2303

MESS! WAX MIS LCFT

	LOCATION	V	MAXII	NUM DISCH	IARGE	PERIOD C	DATUM OF GAGE				
LATITUDE	LONGITUDE	1/4 5EC. T. & R.		OF RECORD		015 CHARGE	GAGE HEIGHT	PERIO0		ZERO	REF
	LONGITUDE	M.O.B B M	C.F.5.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
36 03 26	119 04 13	SE32 21S 27E				DEC 42-DATE		1942		0.00	LOCAL

Station located 3.1 mi. SW of Porterville, approximately 3100 ft. below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between Department of Water Resources and the Tule River Association.

(a) During periods of "no record" the recorder at this station was deactivated. This recorder was activated prior to anticipated diversion periods upon notification from the Tule River Association. It is assumed there was no flow during the "no record" periods.

M

DAILY MEAN DISCHARGE IN SECOND FEET

WOODS-CENTRAL DITCH NEAR PORTERVILLE

WATER YEAR STATION NO C03948 1963

ΑY	ост	NOV	DEC.	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT.	DAY
1	NR	NR	No	NR	45 E	NR	NR	NR	NR	0.0*	188 *	NR	1
5	NR	NR	NP	NR	80	NR	NR	NR	NR	4.5	188	NR	2
3	NR	NR	No	NR	89	NR	NR	NR	NR	107	187	NR	3
4	NR	NR	NP	NR	101	NR	NR	NR	NR	149	189	NR	4
5	NR	NR	NR	NR	98 *	NR	NR	NR	NR	150 *	190	NR	5
6	NR	NR	NR	NR	104	NR	NR	NR	NR	153 *	190	NR	6
	NR	NR	40	NR	107	NR	NR	NR	NR	155	195	NR	7
8	NR	NR	NP	NR	108	NR	NR	NR	NR	155 *	66 *	NR	8
9	NR	NR	NP	NR	108	NR	NR	NR	NR	147	0.0	NR	9
0	NR	NR	NR	NR	100	NR	NR	NR	NR	137	0 • 0	NR	10
li .	NR	NR	NR	NR	91	NR	NR	NR	NR	155	0.0	NR	- 10
2	NR	NR	NR	NR	88	NR	NR	NR	NR	155 *	0.0	NR	12
3	NR	NR .	NP	NR	90	NR	NR	NR	NR	149	0.0	NR	13
4	NR	NR	NR	NR	86 *	NR	NR	NR	NR	149	0.0	NR	14
5	NR	NR	ND	NR	89	NR	NR	NR	NR	150	0.0*	NR	15
6	NR	NR	NR	NR	94	NR	NR	NR	NR	149 *	NR	NR	16
	NR	NR	NP	NR	95	NR	NR	NR.	NR	161 *	NR	NR	17
8	NR	NR	NR	NR	54	NR	NR	NR	NR	179 *	NR	NR	18
9	NR	NR	NP	NR	0.0	NR	NR	NR	NR	185 *	NR	NR	19
0	NR	NR	NP	NR	0.0	NR	NR	NR	NR	170	NR	NR	5.0
1.5	NR	NR	No	NR	0.0	NR	NR	NR	N.R.	169	NR	NR	2 1
2	NR	NR	ay.	NR	0.0	NR	NR	NR	NP	179	NR	NR	5.5
: 3	NR	NR	NP	NR	0.0	NR	NR	NR	0.0=	179	NR	NR	2.3
4	NR	NR	NP	NR	0.0	NR	NR	NR	0.0	178	NR	NR	2.4
: 5	NR	NR	NΡ	NR	0.0*	NR	NR	NR	0.0	178 •	NR	NR	2.5
6	NR	NR	NP	NR	NR	NR	NR	NR	0.0	179 *	NR	NR	2.6
7	NR	NR	No.	NR	NR	NR	NR	NR	0.0	180	NR	NR	2.7
8 '8	NR	NR	NP	NR	NR	NR	NR	NR	0.0	184	NR	NR	2.8
9	NR	NR	NP	NR		NR	NR	NR	0.0	183	NR	NR	2.9
5 O	NR	NR	No	NR		NR	NR	NR	0.0	185	NR	NR	30
51	NR		NP	12 E		NR		NR		187 *	NR		3 +
ΑΝ	NR	NR	No	NR	NR	NR	N/R	NR	NR	154	NR	NR	MEAN
ΔX.	NR	NR	NP	NR	NR	NR	NR	NR	NR	187	NR	NR	MAX
IN FT.	N.R.	NR	No	NR	NR :	NR	NR	NR	NR	0.0	NR NR	NR	MIN
FT.	NR	NR	NP	NR	NR	NR	NR	NR	NR	9483	NR	NR	AC.FT.

E	_	FSI	imat	het

NR - Na Record

NR - Na Record \star - Dischorge measurement or abservation of no flow made on this day \pm a - See note (a) below

MEAN		MAXIMU	М		
OISCHARGE	DISCHARGE	GAGE HT	MO	DAY	TIME

MINIMUM													
DISCHARGE	GAGE HT	МО	OAY	TIME									

WATER YEAR SUMMARY

TOTAL ACRE-FEET a 15500

	LOCATION	٧	MAXII	MUM DISCH	ARGE	PERIOD O	F RECORD	DATUM OF GAGE			
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PERIO0		ZERO	REF
LATITUDE	LONGITODE	M D.B.&M.	C.F.S.	GAGE HT.	DATE]	ONLY	FROM	TO	GAGE	DATUM
36 04 18	119 05 48	SE30 21S 27E				DEC 42-DATE		1942		0.00	LOCAL

Station located 4.5 mi. W of Porterville, approximately 100 ft. below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association.

(a) During periods of no record the recorder at this station was deactivated. This recorder was activated prior to anticipated diversion periods upon notification from the Tule River Association. It is assumed there was no flow during the "no record" periods.

DAILY MEAN DISCHARGE

KERN RIVER NEAR BAKERSFIELD IN SECOND FEET

STATION NO	WATER YEAR
C05150	1963

DAY	OCT	NOV	DEC.	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT.	DAY
1	363	254	183	191	493	4 36	609	620	780	2203	2120	1233	1
2	378	254	183	192	429	440	603	664	714	2160	2061	1226	2
3	378	215	197	190	38.6	441	618	629	718	2192	2021	1280	3
4	386	216	220	195	384	439	668	669	735	2204	2005	1347	4
5	362	218	216	184	376	421	677	710	773	2199	1995	1124	5
6	337	213	210	195	381	437	684	740	831	2086	1936	975	6
7	382	210	216	192	377	460	723	888	867	2042	1982	900	7
8	388	205	201	193	379	432	687	953	940	2087	2002	849	6
9	385	203	202	188	385	440	721	1119	941	2062	1982	934	9
10	407	208	213	189	435	440	702	1011	970	2011	1950	1097	10
-11	415	210	211	192	456	472	662	925	940	1998	1945	1081	11
12	465	206	219	194	453	513	644	882	761	1943	1885	1087	12
13	454	208	186	174	472	515	624	846	753	2002	1942	1060	13
14	428	210	191	153	463	533	641	801	869	2016	2011	1035	14
15	408	219	198	184	454	656	737	774	970	2007	2105	1031	15
16	417	210	211	188	454	634	770	781	1011	2026	2103	1028	16
17	411	202	222	182	447	599	665	792	1232	2012	2053	1012	1.7
1.8	417	204	218	175	457	573	625	803	1533	2044	2015	1036	18
19	416	195	209	179	453	579	620	813	1630	2054	1992	1047	19
20	415	194	211	178	458	578	635	809	1760	2015	1942	1149	2.0
21	407	210	180	180	453	577	645	887	1896	2017	1981	1154	2 1
2.2	380	216	189	187	445	587	624	1011	1927	2031	2029	1183	2 2
2.3	341	210	191	186	451	573	624	1044	1748	2022	1977	1237	2 3
24	339	203	189	177	456	574	624	1006	1959	2035	1808	1284	2 4
2.5	3 3 6	196	176	176	450	552	651	1082	2118	2076	1669	1281	2.5
2.6	299	195	136	177	449	555	647	1155	2157	2105	1762	1336	5.6
27	289	198	133	170	447	613	625	1191	2143	2176	1742	1365	27
2.8	268	200	161	178	445	681	624	1079	2150	2194	1738	1359	2.6
29	250	201	165	186		640	621	980	2277	2150	1648	1340	29
30	248	193	179	308		619	619	983	2262	2119	1655	1399	30
3 1	237		188	451		608		959		2099	1526	_	3 1
MEAN	368	209	194	197	435	536	654	891	1346	2077	1922	1149	MEAN
MAX	465	254	222	451	493	681	770	1191	2277	2204	2120	1399	MAX
MIN	237	193	133	153	376	421	603	620	714	1943	1526	849	MIN.
AC.FT.	22623	12448	11909	12067	24175	32959	38914	54756	80063	127710	118179	68368	AC.FT.

E - Estimoted
NR - No Record
- Diecharge measurement or observation
of no flow mode on this day.
- E and

WATER YEAR SUMMARY

MEAN MAXIMUM MINIMUM DISCHARGE GAGE HT MO DAY TIME DISCHARGE GAGE HT MO DAY TIME 832

TOTAL 604171

Γ		LOCATION	N	MAXI	NUM DISCH	ARGE	PERIOD O	F RECORD	DATUM OF GAGE			
r			1/4 SEC. T. & R.	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF
	LATITUDE	LONGITUDE	M D.B & M	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
	35 26 9 118 56 8 SW 2		SW 2 29S 28E	36000	14.2	11-19-50	93-DATE					

Also known as "Kern River at First Point." Station located 5 mi. NE of Bakersfield. Tabulated discharge is the computed regulated flow and is computed from noon to noon beginning at noon of day shown. Records furn. by Kern County Land Company. Drainage area is 2,420 sq. mi.

DAILY MEAN GAGE HEIGHT

TULARE LAKE

STATION NO WATER YEAR CO3110 1963

			IN F	133							003110	1 1 30 3	′
DAY	ост	NO V.	DEC	JAN	FE8	MAR	APRIL	MAY	JUNE	JULY	AUG	SEPT	OAY
						DR	Y						
'													
						-	ı						
1													

						CREST	STAGES					
E - Estimated	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	T:ME	STAGE	DATE	TIME	STAGE
NR - No Record NF No Flow	}											
145 140 F10M												
	1											

	LOCATION	1	MAXI	MUM DISCH	ARGE	PERIOD O	F RECORD	DATUM OF GAGE			
	LONGITUDE 1/4 SEC. T. B.R OF RECORD					DISCHARGE	GAGE HEIGHT	PER	IIOD	ZERO	REF
LATITUDE	LONGITUDE	M D.8 8 M	C.F.S.	C.F.S. GAGE HT. DATE			ONLY	FROM	TO	GAGE	DATUM
30 03 10	119 49 35			196.8	6-28-41		FEB 37-DATE	1937		0.00	USCGS

Station located 2.2 mi. SW of Chatom Ranch, 6 mi. SW of Corcoran on south end of El Rico Bridge. Tulare Lake receives water from Kings, Kaweah, and Tule Rivers during high-water periods and occasionally from Kern River, Deer Creek, and several small intermittent streams. Elevation at lowest point of lake bed is now about 180 ft. U.S.G.S. datum. Records furn. by Tulare Lake Basin Water Storage District.

DAILY MEAN GAGE HEIGHT

SAN JOAQUIN RIVER BELOW FRIANT

STATION NO WATER YEAR B07885 1963

DAY	ост	NOV	DEC	JAN	FEB	MAR	APRIL	MAY	JUNE	JULY	AUG	SEPT.	DAY
1	2.18	2.05	2.08	1.95	1.85	2 • 05	2 • 04	1.93	2.38	2.45	2.45	2 • 36	1
2	2.18	2.09	2 • 08	1.95	1.62	2.08	2.03	1.92	2.37	2.41	2 • 49	2 • 36	2
3	2.19	2.10	2.08	1.95	1.60	2 • 10	2.03	1.91	2.37	2.38	2 • 48	2 • 35	3
4	2.18	2 • 10	2 • 0 6	1.95	1.59	2.09	2.02	1.90	2.37	2.37	2.48	2 • 35	4
5	2 • 17	2.10	2 • 0 2	1.94	1.70	2.09	2.02	1.89	2.37	2.37	2.43	2.32	5
6	2 • 23	2 • 09	2.01	1.94	1.76	2.08	2 • 06	1.87	2.37	2 • 37	2.40	2.27	6
7	2.29	2.10	2.01	1.94	1.90	2.07	2 • 14	1.85	2.37	2.37	2 • 39	2.25	7
8	2.29	2 - 14	2 • 02	1.95	1.95	2.08	2.03	1.86	2.37	2.40	2.39	2.25	8
9	2 • 29	2 • 12	2.03	1.95	2 • 0 4	2.09	1.86	1.89	2.37	2 • 44	2 • 38	2.18	9
10	2 • 25	2 • 11	2 • 0 5	1.95	2 • 12	2.08	1.84	1.87	2.37	2.45	2.38	2.10	10
11	2 • 20	2.11	2 • 05	1.95	1.93	2 + 1 1	1.83	1.87	2.29	2.44	2.38	2.10	11
12	2.20	2.11	2.05	1.95	1.92	2.16	1.82	1.86	2.23	2.55	2.38	2.10	12
13	2.21	2.11	2.05	1.96	2 • 00	2.16	1.82	1.85	2.19	2.54	2.38	2.10	13
14	2.22	2.11	2.05	1.96	1.85	2 • 17	1.98	1 - 88	2.13	2.54	2 • 38	2 • 10	14
15	2 • 16	2 • 11	2 • 0 6	1.96	1.70	2 • 19	1.99	1.99	2.15	2.54	2.38	2.10	15
16	2.13	2.11	2.06	1.96	1.66	2.22	1.91	2 • 09	2 • 15	2.49	2.40	2.08	16
17	2 • 12	2.11	2 • 02	1.96	1.65	2.21	1.87	2.17	3 • 26	2.45	2.45	2.06	17
18	2.05	2.11	1.97	1.96	1.70	2 • 04	1.85	2 • 25	4.64	2 • 4 4	2.39	2.06	18
19	1.99	2 • 11	1.97	1.96	1.80	2 • 05	1.88	2 • 3 2	5 - 40	2 • 44	2 • 40	2.06	19
20	1.95	2.09	1.97	1.96	1.80	2 • 10	1.90	2 • 34	5.60	2 • 4 3	2 • 40	2.06	20
21	1.95	2 • 06	1.9/	1.96	1.83	2 • 09	2.07	2.41	5.57	2.43	2.40	2.06	21
22	1.97	2.06	1.97	1.99	1.90	2.10	1.96	2 • 4 3	5.03	2 • 4 3	2 • 40	2.06	22
23	2.12	2.06	1.98	2.03	1.95	2.10	1.91	2.43	3.99	2.42	2 • 40	2.06	23
24	2.19	2.06	1.98	2.03	2.02	2.10	1.89	2 • 4 3	2.98	2 • 36	2 • 39	2.06	24
25	2 • 18	2 • 06	1.98	2.03	2.03	2 • 10	1.88	2 • 4 2	2.20	2 • 28	2 • 39	2.06	25
26	2 • 04	2.06	1.99	2.03	2.04	2.11	2.21	2 • 4 2	2.45	2.28	2 . 38	2.05	26
27	2.12	2.07	2.01	2 • 0 3	2.04	2.11	2 • 06	2 • 4 1	2.45	2 • 28	2.37	2.05	27
28	2.13	2.07	2 • 0 2	2.03	2.05	2 • 36	1.98	2 • 42	2.46	2 • 34	2.37	2.07	28
29	2 • 12	2.07	2 • 02	2.04		1.96	1.97	2 • 42	2.45	2.37	2.37	2.10	29
30	2.07	2.08	2.02	2.02		1.87	1.95	2 • 42	2.45	2.39	2.36	2 • 11	30
31	2.07		NR	2.00		1.93		NR		2.40	2 • 36		31

						CREST	STAGES					
- Estimated	OATE	.TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
to Record to Flow	6-20-63	1300	5.73									

	LOCATION	J	MAXII	NUM DISCH	IARGE	PERIOD O		DATUM OF GAGE			
LATITUOE	LONGITUOE	1/4 SEC. T. 8 R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	OOI	ZERO	REF
LATTIOUE	LONGITUDE	M. D. B. & M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	то	GAGE	DATUM
36 59 04	119 43 24	SW7 11S 21E	77,200	23.8	12/11/37	OCT 07-DATE	OCT 07-DATE	1938		294.00	USGS

Station located 0.5 miles W of Friant Dam. Flow regulated by Millerton Lake.
Records furnished by U.S.G.S. Drainage area is 1,675 sq. mi.

CHOWCHILLA RIVER NEAR RAYMOND

STATION NO WATER YEAR B64200 1963

DAY	ост.	NOV.	DEC.	JAN	FEB	MAR	APRIL	MAY	JUNE	JULY	AUG	BEPT.	DAY
1	NR	NR	NR	NR	78.19	NR	70.46	70.94	NR	NR	NR	NR	1
2	NR	NR	NR	NR	NR	NR	70.37	70.83	NR	NR	NR	NR	2
3	NR	NR	NR	NR	NR	NR	70.23	70.75	NR	NR	NR	NR	3
4	NR	NR	NR	NR	NR	NR	70.20	70.65	NR	NR	NR	NR	4
5	NR	NR	NR	NR	NR	NR	70 • 22	70.56	NR	NR	NR	NR	5
6	NR	NR	NR	NR	NR	NR	70.24	69.93	NR	NR	NR	NR	6
7	NR	NR	NR	NR	NR	NR	71.60	70.55	NR	NR	NR	NR	7
8	NR	NR	NR	NR	NR	NR	72.58	70.52	NR	NR	NR	NR	8
9	NR	NR	NR	NR	NR	NR	71.19	71.20	NR	NR	N.R	. NR	9
10	NR	NR	NR	NR	72.23	NR	70.95	70.69	NR	NR	NR	NR	10
11	NR	NR	NR	NR	70.98	NR	70.78	70.66	NR	NR	NR	NR	11
12	NR	NR	NR	NR	70.42	NR	70.71	70.61	NR	NR	NR	NR	1.2
13	NR	NR	NR	NR	71.18	NR	70.67	70.46	NR	NR	NR	NR	13
14	NR	NR	NR	NR	71.15	NR	72.78	70.41	NR	NR	1/R	NR	14
15	NR	NR	NR	NR	70.41	NR	73.43	70.37	NR	NR	NR	NR	15
16	NR	NR	NR	NR	70.24	NR	72.11	70.29	NR	NR	NR	NR	16
17	NR	NR	NR	NR	70.09	70.13	71.55	70+23	NR	NR	NR	NR	17
18	NR	NR	NR	NR	70.00	70.13	71.27	70 - 17	NR	NR	NR	NR	18
19	NR	NR	NR	NR	NR	NR	71.55	70.12	NR	NR	NR	NR	19
20	NR	NR	NR	NR	NR	NR	71.97	70.06	NR	NR	NR	NR	20
21	NR	NR	NR	NR	NR	NR	73.33	NR	NR	NR	NR	NR	21
22	NR	NR	NR	NR	NR	NR	12.43	NR	NR	NR	NR	NR	22
23	NR	NR	NR	NR	NR	NR	72.02	NR	NR	NR	NR	NR	23
24	NR	NR	NR	NR	NR	70.85	71.70	NR	NR	NR	NR	NR	24
25	NR	NR	NR	NR	NR	70.07	71.49	NR	NR	NR	NR	NR	25
26	NR	NR	NR	NR	NR	69.83	72.14	NR	NR	NR	NR	NR	26
27	NR	NR	NR	NR	NR	69.68	71.82	NR	NR	NR	NR	NR	27
28	NR	NR	NR	NR	NR	71.65	NR	NR	NR	NR	NR	NR	28
29	NR	NR	NR	NR		71.55	71.18	NR	NR	NR	NR	NR	29
30	NR	NR	NR	NR		70.79	71.03	NR	NR	NR	NR	NR	30
31	NR		NR	NR		70.53	1	NR		NR	NR		31

Ε	-	Est	imated
NR	-	No	Recard
NF	-	No	Flow

ı						CREST	STAGES					
١	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
	1-31-63 2- 1-63 2-10-63	1850 0600 1125	B3.9	2-13-63 3-28-63 4-7-63	1410 1045 2100		4-14-63 4-21-63	1100 0100	78.6 75.1			

	LOCATION	V	MAXII	MUM DISCH	ARGE	PERIOD O		DATUM OF GAGE			
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	100	ZERO ON	REF
CATTIONE	LONGITOBE	M.O.B.&M.	C.F.S.	GAGE HT.	OATE	0.50	ONLY	FROM	TO	GAGE	MUTAO
37 15 36	119 56 42	SE 1 8S 22E	8497E	83.9	2- 1-63	NOV 59-DATE	NOV 59-DATE	1959		0.00	USCGS

Station located 6.0 mi. NW of Raymond on Raymond Road. Elevation of station is approximately 600 ft. USCGS datum. This station was installed in cooperation with Madera County and Chowchilla Water District. It is a flood control warning station, equipped with a Stevens Surface Detector and Telemark. Low flows are not recorded. Prior to 1962, high flow records were insufficient for publication. Discharge measurements and partial flow records are available in DWR files. In order to machine process this station, the recorder datum was changed. To obtain true elevations add 500 feet to all of the above gage heights.

DAILY MEAN GAGE HEIGHT IN FEET

SAN JOAQUIN RIVER ABOVE SAND SLOUGH NEAR EL NIDO

WATER STATION NO YEAR B07575 1963

DAY	OCT.	NO V.	DEC	JAN	FEB	MAR	APRIL	MAY	JUNE	JULY	AUG	SEPT.	OAY
1	NR	NR	NR	NR	NR	0.65	01.88	2.32	0.99	NF	NF	NF	1
2	NR	NR	NR	NR	4.69	0.61	01.52	2.11	0.87	NF	NF	NF	2
3	NR	NR	NR	NR	5.39	0.58	01.65	2.08	0.60	NF	NF	NF	3
4	NR	NR	NR	NR	4.41	0.61	02.10	2.01	0.45	NF	NF	NF	4
- 5	NR	NR	NR	NR	3.02	0.58	02.09	1.71	NF	NF	NF	NF	5
6	NR	NR	NR	NR	2.21	0.54	01.93	1.42	NF	NF	NF	NF	6
7	NR	NR	NR	NR	1.79	0.55	01.96	1.27	NF	NF	NF	NF	7
8	NR	NR	NR	0.78	1.77	0.58	01.97	1.42	NF	NF	NF	NF	8
9	NR	NR	NR	1.56	1.85	0.63	02.40	1.06	NF	NF	NF	NF	9
10	NR	NR	NR	1.85	2 • 02	0.65	03.23	0.92	NF	NF	NF	NF	10
11	NR	NR	NR	1.90	2 • 34	0.67	01.96	0.96	NF	NF	NF	NF	11
12	NR	NR	NR	1.81	3.30	0.57	01.65	2 • 25	NF	NF	NF	NF	12
13	NR	NR	NR	1.47	2.78	0.56	01.57	3.05	NF	NF	NF	NF	13
14	NR	NR	NR	1.24	2.24	0.60	01.41	3.16	NF	NF	NF	NF	14
15	NR	NR	NR	1 • 15	2.78	0.55	01.29	2.94	NF	NF	NF	NF	15
16	NR	NR	NR	1.11	2.79	0.55	02.52	2.82	NF	NF	NF	NF	16
17	NR	NR	NR	1.07	2.30	0.51	04.25	3.17	NF	NF	NF	NF	17
18	NR	NR	NR	1.04	1.98	0.49	03.51	3.03	NF	NF	NF	NF	18
19	NR	NR	NR	0.99	1 • 78	0.52	02.64	2.90	NF	NF	NF	NF	19
20	NR	NR	NR	0.91	1.66	0.55	02.36	2 • 64	NF	NF	NF	NF	20
21	NR	NR	NR	0.79	1.69	0.58	02.51	2.23	NF	NF	NF	NF	21
22	NR	NR	NR	0.65	1 • 45	0.63	03.31	1.78	NF	NF	NF	NF	22
23	NR	NR	NR	0.49	1 • 26	0.58	04.33	1.30	NF	NF	NF	NF	23
24	NR	NP	NR	NR	1.13	0.57	03.90	1.06	NF	NF	NF	NF	24
25	NR	NR	NR	NR	1.00	0.52	03.22	0.87	NF	NF	NF	NF	25
26	NR	NR	NR	NR	0.84	0.50	02.80	0.65	NF	NF	NF	NF	26
27	NR	NR	NR	NR	0.75	0.55	02.68	0.61	NF	NF	NF	NF	27
28	NR	NR	NR	NR	0.71	0.63	03.35	0.72	NF	NF	NF	NF	28
29	NR	NR	NR	NR		0.61	03.11	0.84	NF	NF	NF	NF	29
30	NR	NR	NR	NR		2.67	02.61	0.92	NF	NF	NF	NF	30
31	NR	l	NR	NR		2.48		0.90		NF	NF		31

Ε	-	Est	mated
NR	-	No	Record
NF	_	No	Flow

					CREST	STAGES					
DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
2- 2-63 2-12-63 3-30-63	1750 1310 1510		4-10-63 4-17-63 4-23-63	0430 0950 1410	4.36 4.40 4.36	5-14-63 5-17-63	0820 1240	3.23			

	LOCATION	J	MAXII	MUM DISCH	IARGE	PERIOD C	F RECORD	DATUM OF GAGE			
LATITUDE	LONGITUDE	1/4 SEC. T, & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	100	2ERO ON	REF
LASTIONE	LUNGITUUE	M. D. B. & M.	C.F.S. GAGE HT. DATE			ONLY	FROM	то	GAGE	DATUM	
37 06 36	120 35 24	NE31 9S 13E	2110	6.55	2/12/62	OCT 61-DATE	OCT 61-DATE	1961		0.00	USCGS

Station located 5 mi. NW of Santa Rita Bridge and 5 mi. W of El Nido. Flows sometimes affected by operation of control structures below station. During this period flows are not computed. Partial flow records and discharge measurement are available in the office of the San Joaquin Valley Branch of the Department of Water Resources. In order to machine process this station, the recorder datum was changed. To obtain true elevations add 100 feet to all of the above gage heights.

TABLE B-63

DAILY MEAN GAGE HEIGHT SAN JOAQUIN RIVER NEAR STEVINSON IN FEET

STATION NO WATER YEAR B07400 1963

DAY	OCT.	NOV	OEC	JAN	FE8	MAR	APRIL	MAY	JUNE	JULY	AUG	SEPT.	DAY
1	60.97	60.70	60.74	60.82	-63.25	62.18	65.34	65.85	62.10	61.31	61.17	61.12	1
2	61.03	60.71	60.67	60.82	65.14	62.09	65.09	64.95	62.21	61.39	61.15	61+15	2
3	60.99	60.72	60.64	60.82	67.87	61.99	64.59	64.45	62.25	61.56	61.10	61.15	3
4	60.95	60.94	60.64	60.82	68.84	61.90	64 • 11	64.01	62.25	61.69	61.18	61.14	4
5	61.16	61.14	60,63	60.78	67.99	61.85	63.44	63.95	62.17	61.85	61.24	61.14	5
6	61.23	61.14	60,64	60.74	66+69	61.74	63.39	63.53	62.16	61.89	61.32	61.14	6
7	61.17	60.99	60,63	61.29	65.43	61.64	64.08	63.19	62.26	61.89	61.40	61.13	7
8	61.09	60.88	60.64	62.00	64.26	61.56	64.22	62.84	62.33	61.76	61.44	61.08	8
9	60.99	60.77	60.64	62 • 11	63.41	61.49	64.12	62.61	62.45	61.71	61.43	61.02	9
10	60.87	60.75	60,64	62.02	64.74	61.44	63.96	62.47	62.35	61.78	61.39	60.96	10
11	60.88	60.78	60.64	61.83	65.88	61.38	64.21	62.44	62.46	61.70	61.32	60.95	11
12	60.88	60.81	60.64	61.53	66.74	61.33	64.42	63.54	62.37	61.56	61.36	60.97	12
13	60.94	60.83	60.64	61 • 65	67.16	61.29	64.38	63.65	62.49	61.43	61.39	61.03	13
14	60.88	60.82	60.64	61.68	67.70	61.27	64.26	63.14	62.70	61.36	61.35	61.25	14
15	60.81	60.81	60.66	61.64	68.54	61.27	64.17	63.06	62.70	61.42	61.37	61.48	15
16	60.81	60.81	60.81	61.43	68.47	61.30	65.09	62.92	62.55	61.40	61.32	61.56	16
17	60.79	60.80	60.88	61.24	67.44	61.29	65.90	62.71	62.54	61.26	61.25	61.55	17
18	60.79	60.78	61.12	61.13	66.44	61.43	66.43	62.43	62.47	61.22	61.21	61.49	18
19	60.78	60.70	61.19	61.05	65.63	61.58	66.30	62.21	62.21	61.18	61.17	61.71	19 '
20	60.76	60.67	61.21	61.02	64.97	61.53	65.90	61.98	61.89	61.22	61.23	61.87	20
21	60.75	60.71	61.21	61.00	64.51	61.46	65.87	61.89	61.67	61.26	61.18	62.12	21
22	60.73	60.76	61.19	60.97	64.12	61.44	66.40	61.84	61.55	61.26	61.14	62.32	22
23	60.72	60.75	61.14	60.95	63.39	61.42	67.26	61.79	61.51	61.14	61.09	62.36	23
24	60.73	60.72	61.12	60.96	63.03	61.80	67.59	61.77	61.55	61.11	61.13	62.34	24
25	60.74	60.69	61.10	61.10	62.81	62.11	67.38	61.86	61.72	61.12	61.22	61.96	25
26	60.75	60.69	61.06	61.02	62.63	61.88	66.96	61.84	61.79	61.15	61.32	61.97	26
27	60.75	60.72	60.95	60.94	62.44	61.92	66.60	61.92	61.74	61.18	61.44	61.67	27
28	60.74	60.73	60.87	60.89	62.31	62.06	56.57	62.04	61.59	61.15	61.51	61.52	28
29	60.73	60.73	60.86	60.91		63.44	66 • 53	62.18	61.52	61.12	61.32	61.42	29
30	60.71	60.75	60.83	61.02		65.67	66.33	62.25	61.40	61.13	61.21	61.38	30
31	60.71	(60.81	61.52		65.70		62.24		61.19			31

Ε	-	Est	imated
NR	-	No	Record
NF		No	Flow

					CREST	STAGES					
DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	OATE	TIME	STAGE
2- 4-63 2-16-63 3-30-63	1040 0000 2120	68.9 68.8 66.1	4-18-63 4-24-63 5- 1-63	1800 1600 0000	66.6 67.6 66.2	6-14-64	2400	62.8			

	LOCATION	4			MAXII	MUM DISCH	IARGE	PERIOD C	F RECORD	DATUM		OF GAGE	
LATITUDE	LONGITUDE 1/4 SEC. T. & R.		T. & R.	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF.	
LATITODE	TUDE LONGITUDE M.D.B.8.M.		В.М.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	70	GAGE	DATUM	
37 17 42	120 51 00	26	7S	10E	6060	73.04	2-17-62	OCT 61-DATE	MAY 61-DATE	1961		0.00	USCGS

Station located on bridge 2.3 miles south of Stevinson on Lander Avenue.

0-1

The first season of the

- - 192 - - 252

Was and the second of the seco

		-	45.		-01	-	ALL:		Option	LME		-	52	74
		-	-	~	-	15-70		100			-	98,39	4-	
		The same	~~	The same	-		Section 1	-	-	- ~		-		
		-	~~~	-	100		-		95.00					
		-	-	2000	-		1			-	-			-
		The same	~~	Total .	-	4.7	776-27		-	4.74	Police			~
		Name .	-	~~	100		1000		Aller .	2000	-	~		-
		Times	-	-		4			-	-	-	40.00		
			-	Name :					-	-			~	-
		-	~	×		- =	-		-	=	3		-	
		Total	Magazine.	100	-	- Carolina		1000	-	The same	3	-		
										-				
		-	~	- 10				-		-	-	- man		
		Townson	-	-				-		The same		70-0		
		-					-					-		
				100	100							-		
														2
The state of the s								-						
	_											The state of the s		-

	-	THE STATE OF
-	300	THE COLUMN
300	401	130~

ATT -			 ME	T-E		746		 ety:	
			 	-		-		 	12.3
	-075		 -			residence .	Sec. (6)		
		-	 -	-	-				

			fra.	an Island	25-5		-	- 10 F ==			
-		-E		7			-				-
		0	_ =====================================		-		DIL	====		70	SATUR SATUR
						= -=	-	-		33	

DET 3-

34 _ * # E40 BAGE -E G-T

******** * *** ** *** *** ***

- -

20"	20	4C	SEC	980	755	MED.		46.5	»NE	_		504	
	5.67	THE		SE	-	5 76	Par	-	200			-	
7	2	Mary Street	-,25	mu 266	=	- E	25	and and	-			-60-	
9	4.05	4.35	- pro	- On	= =	5420	75	1 -		-	200	100	
	4 97	=_ ~-	m , 34		= ,	==	78-3-	7 75	1000		9 .000	****	
*	4-65"	=			2_40	Euro	70, 13	4	200	-	-3-	-	
4	4.25	=	4,00	Teats	- ==	2,00	75	0		100		100	-
-	4. 34	5.75	4.37	=	7.35	= ==	P and		Tagen.	- 9	1000		-
9	4.05	5.50	4,35	= -	3		The same	2	ALC: N		- 30	Appen	
=	4.35	= 27	40.00	n . =	2,75	2-	*P_*		100	944		_	
7.0	4-5	=_30	4.5	=	2,000	3	-8-			1	- 220		
77	4.5	100	4.00	=		5 00		25			32		
77	88.4	400	4,74	Earlin	0.31	= 70		April 100		~ 20	200	-	
13	0.5	4,36	2.5	=	0,=0	2 ~~			-	- 3-	1000	-50	
14	5.07	4 20	E . SE	20.00	* .30	5,74	75	9.427	100		-		
54.	5.00	Aug ST	= .73	= =	B 3F			000	200	-			
16	5-36		==	=	2	=	D TE				1,000	700	
	5.38	4.00	4,20	= =	= =	5-		- 2-	100			-30	
	5-3e	4.5	E STATE	=	2 3E	2,30	E		- 3-		= 3 ₀	15-20	
23	4.00	4,22	1,1	5-25	= =	= =	TH with	4.000	394	50.70	-	wellto	
70	5.33	44 27	5.1-	= = =0	= " = = =	To make	TE TE	+d_			1 300		
T:	5.00	4-=	= -	=	α	= =a	TE	- Tree	10.00	-	-		=
===	= 30	4.5	E	= _ ==	2 37	= ==	200	100	1000	40,000	- 300		=
	5.00	40-	E . "	=	C _ 700	3.9	-2-		-	10,200	- Y		
7a	at a state	400	5	2,00	2 38	2,0	_38			Time			-
76	day they	-	= _ ~p	= = ==	0.79			- 10	-		= 325		1000
25	4- 4-	Manage 2017	5,75	E 14	3 78	= = =			200	~	2 3m		-
1000	4.000	40 ==	4.38	2,00	0.07	8,80	= ==			-	2 252		-
and a	4. 34	day -	7.2=	I	=	~~~	TE TE		~ ~				54.7
70	4.05	4 38	and the	25,000		3. 70	THE . THE		2.50	- 200	0.000	_ =	-
27	4-07	4,50	44,36	8		3-7	TELP.		- 7		100		
77	4-25		To	= 0		9-				T	-		

						CEEE	ET-IES				
- Est mated	34 =	- ME	2 44.	フムモ	- WE	三小王	-	66-		 - ee_	
भव निरम्पार्य	2-21-21				=	-			-		
AC = DM	5-1-62		9.1				Trans.	-			
		~2~									

	LICAT CN		90 mg	Mum 353	-D=GE	= <u>=</u> ==02 3		220	JF 3-3	E
170.000.000	***	4 551 7 4 4	OF PERCOPE			3153-4762	3-5-	2000	70.	=
-4 -41/2	a al Philip and the	N CESAL	2-3	54Œ	37	Jacob Miller	716_		WE	757 0
77 7 %	2 2 0 1	ME_" 55 _42					F -2 T			

SAN JOAQUIN RIVER AT FREMONT FORD BRIDGE

STATION NO | WATER | YEAR | 807375 | 1963

DAY	ост	NOV	OEC	JAN	FEB	MAR	APRIL	MAY	JUNE	JULY	AUG	SEPT.	DAY
1	54.59	54.51	54.55	NR	56.79	56.68	58.68	59.26	57.10	55.45	55.15	55.10	1
2	54.78	54.53	54.52	NR	57.82	56.55	58.56	58.57	57.06	55.46	55.06	55.12	2
3	54.71	54.43	54.51	NR	59.88	56.42	58.18	58 • 05	57.11	55.56	55.09	55.17	3
4	54.58	54.37	54.47	NR	61.36	56.28	57.83	57.69	57.15	55.71	55.25	55.22	4
5	54.54	54.53	54.37	NR	61.28	56.19	57.37	57.43	57.24	55.80	55.37	55.27	5
6	54.68	54.53	54.23	NR	60.20	56.08	57.21	57.23	56.65	55.84	55.42	55.29	6
7	54.70	54.46	54.16	NR	59.20	55.95	57.57	56.88	56.40	55.84	55.20	55.42	7
8	54.66	54 • 38	54.09	NR	58.22	55.86	57.82	56.66	56.35	55.84	55.07	55.28	8
9	54.62	54.32	NR	NR	57.58	55.88	57.72	56.46	56.31	55.76	55.06	55.23	9
10	54.38	54.41	NR	NR	58.27	55.96	57.61	56 • 46	56.29	55.71	55.28	54.98	10
11	54.29	54.46	NR	NR	59.30	56.01	57.76	57.50	56.32	55.63	55.26	54.94	11
12	54.29	54.57	NR	NR	60.10	56.02	57.94	58.11	56.25	55.56	55.27	55.04	12
13	54.27	54.60	NR	N.R	60.68	55.93	57.92	58.26	56.26	55.36	55.46	55.18	13
14	54.46	54.62	NR	NR	61.12	55.90	57.81	57.64	56.44	55.28	55.37	55.38	14
15	54.38	54 • 61	NR	NR	61.74	55.95	57.64	57.07	56.55	55.38	55.26	55.57	15
16	54.33	54.60	NR	NR	61.98	55.90	57.93	56.86	56.47	55.43	55.18	55.63	16
17	54.27	54.60	NR	NR	61.52	55.79	58.70	56.69	56.39	55.31	55.12	55.59	17
18	54.24	54.63	NR	NR	60.68	55.86	59.23	56.58	56.38	55.14	55.13	55.56	18
19	54.28	54.60	NR	NR	59.84	55.95	59.38	56.90	56.52	55.10	55.13	55.67	19
20	54.21	54.59	NR	NR	59.17	55.99	59.04	57.18	56.49	55.10	55.13	55.70	20
21	54.17	54.59	NR	NR	58.69	55.85	58.94	57.38	56.17	55.13	55.17	55.74	21
22	54.17	54.61	NR	NR	58.35	55.84	59.18	57.59	55.96	55.18	55.14	55.84	22
23	54.18	54.63	NR	NR	57.89	55.99	59.92	57.65	55.75	55.09	55.00	55.82	23
24	54.17	54.67	NR	NR	57.51	56.10	60.47	57.74	55.58	55.00	55.11	55.71	24
25	54.22	54 - 70	NR	NR	57.32	56 • 33	60.52	57.17	55.57	55.02	55.26	55.59	25
26	54.28	54.68	NR	NR	57.12	56.34	60 • 21	57.30	55.71	55.04	55.29	55.48	26
27	54.40	54.62	NR	NR	56.95	56.34	59.88	56.83	55.70	55.06	55.33	55.36	27
28	54.43	54.55	NR	NR	56.79	56.43	59.81	57.26	55.66	55.00	55.51	55.22	28
29	54.43	54.57	NR	NR		56.85	59.78	57.79	55.54	55.18	55.38	55.11	29
30	54.54	54.57	NR	NR		58.30	59.65	57.64	55.51	55.28	55.24	55.06	30
31	54.53		NR	NR		59.02		57.33		55.27	55.23		31

Ε		Est	mated
NR	-	No	Record
NF	-	Νo	Flow

						CREST	STAGES					
	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
2	2- 3-63 2- 4-63 2- 5-63	2400 2400 1200	61.53	2- 6-63 2-12-63 2-13-63	1200 2400 2400	60.43	2-14-63 2-15-63 2-16-63	2400 2400 0900	61.47 61.98 62.04	2-17-63	1200	61.55

	LUCATION	1	MAXI	MUM DISCH	IARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PEF	COIS	ZERO	REF.
CATITODE	LONGITODE	M. D. 8. 8 M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
37 18 35	120 55 45		5910	71.14	4- 6-58	FEB 37-DATE	APR 37-DATE	1944	1957 1959	-3.73 -3.77	USCGS USCGS
							,	1959		0.00	USCGS

Station located 30 ft. below Fremont Ford Bridge, 4.5 mi. W of Stevinson, 6.7 mi. above the Merced River. During periods of high flow, some water bypasses station through Mud Slough. Maximum discharge of record is for period 1944 to date. Records furn. by U.S.G.S. Drainage area is approx. 8,090 sq. mi. Flow records are published in U.S.G.S. report, "Surface Water Records of California."

DAILY MEAN GAGE HEIGHT IN FEET

MERCED RIVER BELOW SNELLING

WATER STATION NO B05170 1963

DAY	OCT.	NOV.	OEC	JAN	FEB	MAR	APRIL	MAY	JUNE	JULY	AUG	SEPT.	DAY
1	5.67	4.95	4.88	4.95	6.46	9.29	08.26	8.27	10.90	6.27	5.94	5.79	1
2	5.11	4.92	4.89	4.96	5.74	7.09	08.25	8.28	10.92	6.31	5.94	5 - 84	2
3	4.95	4.95	4.89	4.94	5.51	5.80	08.27	8.26	11.22	6.35	5.94	5.76	3
4	4.90	5.01	4.94	4.92	5.44	5.69	08.24	8.25	10.97	6.43	5.95	5.75	4
5	4.87	5.02	4.93	4.97	5.43	5.61	08.19	8.07	9.75	6.32	5.94	5.78	5
6	4.89	5.02	4.93	5.06	7.55	5 • 58	08 • 43	7.59	9.73	5.94	5.87	5.81	6
7	4.94	5.03	4.92	5.14	7.36	5.55	08.60	7.87	9.41	5.84	5.85	5.75	7 1
8	4.93	5.02	4.90	5.14	9 • 21	5.62	08 • 43	9.24	8.67	5.87	5.94	5.73	8
9	4.90	5.00	4.93	5.15	9.33	6.02	08 • 25	11.02	8.94	5.84	5.92	5.79	9
10	4.87	5.00	4.9]	5.15	9.46	5.07	07.82	12.33	8.52	5.83	5.93	5.74	10
11	4.87	4.99	4.93	5.14	9.31	5.90	07.79	11.85	6.73	5.88	5.95	5.73	11
12	4.88	4.97	4.94	5.14	9.31	5.79	07.82	11.45	6.54	5.89	5.95	5.69	12
13	4.91	4.96	4.91	5.16	9.59	5.73	07.81	10.10	6.44	5.86	5.95	5 . 84	13
14	5.01	4.93	4.95	5.14	9.38	5.74	08.14	9.20	6.43	5.86	5.97	5.78	14
15	5.00	4.90	5.23	5.15	9.35	5 • 75	08.15	8.98	6.40	5.87	5.99	5.78	15
16	5.06	4.90	5.45	5.17	9.32	5.74	08.09	9.11	7.82	5.88	5.95	5.79	16
17	5.08	4.90	5,33	5.19	9.32	5.77	07.93	10.52	10.92	5.93	5.97	5.80	17
2.8	5.06	4.91	5.21	5.20	9.30	5.81	08.22	11.51	10.85	6.02	5.96	5.90	18
19	4.99	4.93	5.15	5.26	9.31	5.72	08.44	11.65	10.86	6.06	5.87	5 . 86	19
20	5.03	4.92	5.14	5.30	9.30	5.64	08+35	11.82	10.26	6.03	5.85	5.75	20
21	5.02	4.91	5.12	5 • 30	9.30	5.58	08.33	11.86	10.18	6.04	5.71	5.73	21
22	5.00	4.91	5.11	5.30	9.30	5.55	08.21	11.92	9.18	6.06	5.83	5.74	22
23	5.00	4.91	5.10	5 . 32	9.28	5.51	08.24	11.99	8.44	6.09	5.86	5.74	23
24	4.97	4.91	5.10	5.32	9.28	5.51	00.88	11.91	8.18	6.11	5.89	5.76	24
25	4.96	4.93	5.08	5.32	9.28	5.49	09.13	10.88	7.40	6.08	5.88	5 • 62	25
26	4.97	4.93	5.03	5.34	9.28	5.51	09.47	10.81	6.89	6.08	5.84	5.58	26
27	4.95	4.97	4.98	5.33	9.27	5.53	09.30	11.57	7.16	6.01	5.85	5.54	27
28	4.94	4.92	4.95	5 • 32	9.28	6.61	09.09	11.80	7.45	5.99	5.76	5.55	28
29	4.95	4.89	4.94	5.33		8.70	08 • 74	11.08	7.31	5.99	5.75	5.51	29
30	4.93	4.89	4.96	5.43		8.51	08.61	10.93	6.58	6.03	5.78	5.51	30
31	4.95		4.96	5.97		8.27		10.75		6.00	5.77		31

Ε	-	Est	mated
NR	-	Nα	Record
NF	-	Nο	Flow

					(REST	STAGES					
Ì	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
	2-10-63 3- 1-63 4-26-63	0300 1920 1640	9.9 9.3 9.6	5-10-63 5-23-63 6- 4-63	0510 1850 0210	12.5 12.0 11.4	6-10-63 6-17-63	1030 1130	9.7 11.4			

	LOCATION	V	MAXIM	NUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE 1/4 SEC. T.& M.O.B.&M			OF RECORD		DISCHARGE GAGE HEIGHT PERIOD ZE		ZERO ON	REF		
CATTIONE	LONGITUDE	M.O.B.&M	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
37 30 06	120 27 03	NE17 5S 14E	4910	12.51	5-10-63	NOV 58-DATE	NOV 58-DATE	1958		0.00	LOCAL

Station located 0.2 mi. below Merced-Snelling Highway Bridge, 1.4 mi. SW of Snelling. Flow regulated by Exchequer power plant and Lake McClure. Prior to November 1958, records available for a site 3.6 mi. downstream.

DAILY MEAN GAGE HEIGHT

MERCED RIVER AT CRESSEY

IN FEET

STATION NO WATER YEAR 805155 1963

DAY	OCT.	NOV.	OEC	JAN	FEB	MAR	APRIL	MAY	JUNE	JULY	AUG	SEPT.	DAY
1	11.32	10.82	10.43	10.49	12.03	14.94	13.78	13.98	17.03	11.13	10.29	10.40	1
2	11.34	10.82	10.43	10.49	12.33	14.47	13.80	13.82	17.13	10.75	10.33	10.43	2
3	11.23	10.83	10.43	10.50	11.38	11.90	13.80	13.78	17.34	10.82	10.35	10.42	3
4	11.13	10.83	10.40	10.49	11.02	11.20	13.82	13.75	17.69	10.93	10.39	10.46	4
5	11.05	10.83	10.43	10.48	10.84	10.83	13.72	13.72	16.07	10.98	10.46	10.46	9
6	11.00	10.82	10.44	10.48	10.66	10.80	13.80	13.33	15.42	10.96E	10.39	10.46	6
7	10.97	10.81	10.44	10.49	13.61	10.76	14.21	12.70	15.44	10.74E	10.29	10.41	1
8	10.94	10.82	10.45	10.51	13.23	10.66	14.19	14.07	14.57	10.51	10.16	10.39	1 8
9	10.94	10.83	10.54	10.50	14.86	10.64	13.84	15.36	13.87	10.33	10.17	10.40	9
10	10.92	10.83	10.52	10.50E	16.24	10.71	13.55	19.32	15.02	10.29	10.25	10.40	10
11	10.94	10.84	10.47	10.50E	15.42	10.89	13.31	18.97	12.76	10.30	10.35	10.42	11
12	10.93	10.82	10.47	10.50E	15.20	10.85	13.25	18.34	11.76	10.25	10.39	10.36	12
13	10.94	10.82	10.46	10.49E	16.00	10.73	13.24	17.11	11.45	10.23	10.23	10.49	13
14	10.94	10.82	10.46	10.49E	16.50	10.67	13.35	15.18	11.27	10 - 24	10.19	10.49	1.
15	10.94	10.83	10.46	10.48E	15.37	10.69	13.73	14.81	11.10	10.29	10.20	10.56	1
16	10.94	10.82	10.69	10.48E	15.23	10.72	13.77	14.60	11.08	10.30	10.27	10.55	16
17	10.92	10.79	10.86	10.47E	15.16	10.80	13.71	15.35	15.22	10.26	10.32	10.61	17
18	10.91	10.80	10.85	10.47	15.13	10.77	13.57	17.81	16.97	10.27	10.41	10.62	1
19	10.89	10.80	10.77	10.48	15.09	10.75	13.81	18.22	17.04	10.16	10.41	10.69	1
20	10.88	10.78	10.67	10.49	15.07	10.69	13.98	18.50	16.38	10.32	10.32	10.81	2
21	10.87	10.79	10.62	10.49	15.05	10.65	14.42	18.66	16.06E	10.37	10.28	10.84	2
22	10.86	10.79	10.60	10.49	15.03	10.64	14.14	18.67	15.52E	10.41	10.30	10.78	2
23	10.85	10.45	10.58	10.49	15.00	10.65	13.98	18.83	15.04E	10.45	10.33	10.76	2
24	10.85	10.44	10.62	10.49	14.96	10.59	14.14	18.82	14.39E	10.43	10.36	10.80	2
25	10.86	10.44	10.56	10.44	14.95	10.54	14.68	17.99	13.80E	10.37	10.44	10.81	2
26	10.88	10.45	10.56	10.54	14.96	10.53	15.08	16.85	12.69E	10.37	10.45	10.81	21
27	10.87	10.47	10.54	10.63	14.96	10.54	15.20	17.64	11.83E	10.40	10.54	10.75	2
28	10.87	10.44	10.54	10.51	14.95	10.74	14.96	18.53	12.04	10.34	10.41	10.73	2
29	11.02	10.43	10.53	10.48		12.98	14.64	17.98	12.31	10.34	10.29	10.72	2
30	10.83	10.43	10.54	10.47		14.24	14.27	17.24	11.88	10.30	10.26	10.66	31
31	10.84	1	10.51	10.78		13.83		17.01		10.32	10.30		3

Ε	-	Est	mated
NR	-	No	Record
NF	٠	Νo	Flow

				(REST	STAGES					
DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
2-10-63 2-14-63 3- 1-63	1520 0430 0910	17.8 17.8 15.0	4-26-63 5-10-63 5-26-63	2400 1430 0415	15.3 19.6 18.9	6- 4-63	0530 0320 0200	18.6 17.8 17.4			

	LOCATION	V	MAXIM	NUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	don	ZERO ON	REF.
CATITODE	LONGITUDE	M. O. B. & M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
37 25 28	120 39 47	SW 9 6S 12E	34400	22.67	12- 4-50	JUL 41-DEC 41 JUL 42-DATE	APR 41- DATE	1950		96.24	USCGS

Station located 150 ft. below McSwain Bridge, immediately N of Cressey. Prior to May 20, 1960, station located 250 ft. upstream.

DAILY MEAN GAGE HEIGHT

MERCED RIVER NEAR LIVINGSTON

IN FEET

STATION NO WATER YEAR 805138 1963

DAY	OCT.	NO V.	OEC.	JAN	FE8	MAR	APRIL	MAY	JUNE	JULY	AUG	SEPT.	DAY
1	1.59	1.14	1.11	1.25E	1.90	7.42	05.52	6.37	11.11	3.19	1.50	1.66	1
2	1.57	1.11	1.12	1.24E	3.67	7.24	05.39	5.89	11.34	2.57	1.47	1.57	2
3	1.57	1.10	1.11	1 • 2 2	2 • 56	4.55	05.50	5.79	11.42	2.47	1.63	1.30	3
4	1.59	1.15	1.08	1.22	2.00	3.23	05.64	5.64	12.02	2.51	1.82	1.29	4
5	1.41	1.13	1.10	1 • 25E	1.77	2.83	05.54	5.55	10.54	2.60	1.69	1.39	5
6	1.34	1.13	1.12	1.25E	1.60	2.55	05.58	5.21	8.80	2.61	1.62	1.49	6
7	1.31	1.12	1.12	1.25E	3.50	2 • 45	06.06	4.53	8.81	2.32	1.47	1.53	7
8	1.28	1.09	1.11	1.25E	4.28	2.30	06.17	5.17	7.83	2.23	1.58	1.42	8
9	1.25	1.06	1.17	1.24E	6.54	2 • 20	05.89	7.20	6.60	2.08	1.44	1.39	9
10	1.26	1.07	1.22	1 • 24E	8 • 45	2.15	05.66	12.62	7.67	1.77	1.58	1 • 25	10
11	1.26	1.12	1.19	1.24E	8.54	2.24	05.10	13.89	6.12	1.65	1.56	1.30	11
12	1.26	1.07	1.18	1.24E	7.62	2.29	05.02	13.16	4.30	1.60	1.62	1.22	12
13	1.26	1.03	1.17	1 • 2 4 E	8.30	2.11	05.00	11.89	3.77	1.56	1.44	1 • 4 9	13
14	1.29	1.04	1.16	1.23E	10.13	2.05	05.07	8.99	3.45	1.55	1.39	1.61	14
15	1.28	1.07	1.22E	1 • 23E	8.12	2.07	05.44	7.87	3.33	1.61	1.34	1.54	15
16	1.28	1.07	1.32E	1.23E	7.74	2.35	05.60	7.50	3.27	1.62	1.23	1.51	16
17	1.25	1.08	1.44E	1.23E	7.61	2.51	05.50	7.79	5.95	1.53	1.31	1.55	17
18	1.21	1.13	1.52E	1.24	7.56	2.12	05.21	11.02	10.77	1.43	1.56	1.77	18
19	1.23	1.07	1.48	1 • 25	7.53	2.08	05.69	12.40	10.91	1.44	1.59	1.77	19
20	1.23	1.07	1.39	1.26	7.49	2.05	06.11	12.85	10.39	1.38	1.56	1.87	20
21	1.21	1.07	1.39E	1.26	7.52	2.10	06.37	13.15	9.45	1.65	1.34	1.89	21
22	1.18	1.13	1.38E	1.26	7.52	2.02	06.67	13.25	8.97	1.58	1.25	1.83	22
23	1.18	1.07	1.37E	1.25	7.49	2.07	06.09	13.46	7.34	1.54	1.29	1.70	23
24	1.18	1.04	1.36E	1.24	7.48	1.94	06.09	13.57	6.34	1.51	1.21	1.70	24
25	1.19	1.11	1 • 35E	1.23	7.46	1.88	07.00	12.92	5.78	1.50	1.57	1.70	25
26	1.20	1 • 12	1.34E	1.19	7.47	1.85	07.54	11.02	4.69	1.57	1.68	1.60	26
27	1.20	1.09	1.33E	1.37	7.46	1.87	07.95	11.52	3.79	1.61	1.50	1.48	27
28	1.20	1.09	1.32E	1.33	7.44	2.22	07.69	13.05	3.80	1.60	1.49	1.43	28
29	1.17	1.10	1.31E	1.28		3.18	07.27	12.92	4.12	1.67	1.40	1.58	29
30	1.15	1.10	1.31E	1.25		5.96	06.67	11.52	3.97	1.48	1.23	1.76	30
31	1.17		1.30E	1.34		5.81		11.25		1.48	1.43		31

E - Estimated NR - No Record NF - No Flow

				(CREST	STAGES					
DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
2-10-63 2-14-63 4-21-63	2110 0945 2100	10.2 11.1 7.3	4-28-63 5-10-63 5-24-63	0800 2400 0630	14.3	5-29-63 6- 4-63 6-18-63	0550 1020 0850	13.3 12.2 11.2			

	LOCATIO	N	MAXII	MUM DISCH	ARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
LATITUOE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PER	RIOD	ZERO ON	REF
LATTION	LONGITUDE	M.O.8.8.M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
37 23 18	120 47 35	NW29 6S 11E	11100	21.44		MAR 22-SEP 24 OCT 25-FEB 44			DATE	79.5	USGS

Station located 4.5 mi. W of Livingston and 9.5 mi. upstream from mouth. Early discharge records, 1922-44, available in U.S.G.S. Water Supply Papers. Stage records from 1951-1960 were not published, available from D.W.R., State of California. Station reactivated April 1, 1962 for stage only. Drainage area, 1,259 sq. mi.

DAILY MEAN GAGE HEIGHT

SAN JOAQUIN RIVER NEAR NEWMAN

STATION NO WATER YEAR B07300 1963

DAY	ост	NOV	DEC	JAN	FEB	MAR	APRIL	MAY	JUNE	JULY	AUG	SEPT.	DA
1	48.88	48.78	NR	49.20	51.50	53.58	53.38	54 • 33	55.67	50.77	NR	49.32	
2	48.90	48.77	NR	49.20	51.67	53.50	53.21	53.75	55.72	50.41	NR	49.44	
3	48.93	48.72	NR	49.22	52.92	52.77	53.08	53.26	55.79	50.31	NR	49.38	
4	48.91	46.65	NR	49.20	54.00	51.46	52.94	52.98	55.93	50.32	NR	49.39	
5	48.82	48 • 68	48.58	49.18	54.31	50.95	52.61	52.74	55.91	50.39	NR	49.42	
6	48.80	48.70	48.52	49.18	53.73	50+67	52.43	52.54	54.73	50.42	NR	49.44	
7	48.87	48.73	48.49	49.38	52.86	50.46	52.83	52.13	54.22	50.39	NR	49.59	
8	48.72	48.77	48.47	49.71	52.96	50.31	53.20	51.81	53.96	50.26	49.42	49.49	
9	48.73	48.73	48.47	49.95	52.88	50.20	53.15	52+65	53.27	50.16	49.36	49.49	
0	48.67	48.78	48.48	49.99	54.13	50.16	52.93	54.33	53.03	50.02	49.48	49.32	
1	48.60	48.82	48 • 48	49.97	55.50	50.14	52.81	56.72	53.33	49.84	49.63	49.31	
Z	48.63	48.86	48.71	49.89	55.53	50.17	52.94	57.02	51.89	49.78	49.58	49.31	
3	48.68	NR	48.77	49.77	55.91	50.03	52.91	56.86	51.37	49.68	49.66	49.43	
4	48.78	NR	48.72	49.75	56.80	49.81	52.84	55 • 68	51.21	49.59	49.50	49.62	
5	48.79	NR	48.67	49.72	56 - 96	49.87	52.84	54.22	51.16	49.58	49.42	49.68	
6	48.75	N.R	48.77	49.64	56.84	50.08	53.01	53.73	51.13	49.60	49.37	49.76	
7	48.60	NR	49.08	49.55	56.67	50.17	53.29	53.44	51.20	49.54	49.33	49.71	
6	48.48	NR	49.35	49.45	56.15	50.07	53.58	54.36	54.07	49.42	49.26	49.75	
9	48.45	NR	49.56	49.37	55.60	50.02	53.81	55.82	55.01	49.39	49.38	49.73	
0	48.40	NR	49.65	49.33	55.14	50.01	53.85	56.32	55.25	49.38	49.33	49.78	
1	48.39	NR	49.64	49.31	54 • 81	49.89	53.82	56.60	54.65	49.42	49.34	49.93	
2	48.40	NR	49.58	49.30	54.59	49.92	54 • 16	56.79	54.35	49.55	49.27	50.01	
3	48.49	NR	49.52	49.25	54.34	50.07	54.34	56.89	53.65	49.42	49.18	50.02	1
4	48.53	NR	49.44	49.22	54.13	50 • 12	54.64	57.02	52.87	49.28	49.23	49.88	
5	48.58	NR	49.39	49.19	54 • 00	50.19	54.96	56.99	52.33	49.32	49.39	49.83	
6	48.70	NR	49.32	49.18	53.26	50.21	55.14	56.20	51.87	49.34	49.61	49.77	
7	48.79	NR	49.29	49.15	53.75	50.18	55.22	55.61	51.17	49.43	49.49	49.63	
8	48.86	NR	49.18	49.19	53.65	50.30	55.21	56.27	50.83	NR	49.58	49.58	
9	48.84	NR	49.16	49.22		50.58	55.04	56.85	50.90	NR	49.50	49.46	
0	48.84	NR	49.13	49.31		52.27	54.73	56.38	51.01	NR	49.35	49.54	
1	48.82		49.14	49.65		53.54		55.91		NR	49.36		

					-	CREST	STAGES					
- Estimated	DATE	TIME	STAGE	DATE	TIME	STAGE	OATE	TIME	STAGE	OATE	TIME	STAGE
No Record Na Flow	2- 5-63 2-11-63 2-14-63	0600 1000 2100	55.68	3-31-63 4-27-63 5-12-63	1400 1200 2000	53.62 55.25 57.04	5-24-64	1400	57.05			

m.u.b.om. C.F.S. GAGE HI. DATE UNIT PROMITED GAGE		LOCATION	V	MAXII	MUM DISCH	ARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
LATTIONE CONGTONE M.O.B.BM. C.F.S. GAGE HT. DATE ONLY FROM TO GAGE			1/4 SEC. T. 8 R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PER	0018		REF
17 24 A 2 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A	LATITUDE	LONGITUDE	M.D.B.8M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	то		DATUM
37 21 02 120 58 54 SW 3 75 5E 35000 15.50 3 7 50 11.4 12 51.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12	37 21 02	120 58 34	SW 3 7S 9E	33000	18.50	3- 7-38	APR 12-DATE	APR 12-DATE	1912	1959	47.24 47.31	USCGS USCGS USCGS

Station located at bridge on Hills Ferry Road, 300 ft. below the Merced River, 3.5 mi. NE of Newman. Records furn. by U.S.G.S. Drainage area is 9,990 sq. mi. Flow records are published in the U.S.G.S. report, "Surface Water Records of California."

DAILY MEAN GAGE HEIGHT

SAN JOAQUIN RIVER AT CROWS LANGING BRIDGE

STATION NO WATER YEAR 807250 1963

DAY	ост.	NO V.	OEC	JAN	FEB	MAR	APRIL	MAY	JUNE	JULY	AUG	SEPT.	DAY
1	38.80	38.53	38.34	38.82	43.51	43.45	43.40	44.64	45.95	40.70	39.15	38.91	1
2	38.78	38.47	38,33	38.82	42.06	43.37	43.17	44.03	45.85	40.32	39.04	39.11	2
3	38.77	38.44	38.32	38.63	42.42	43.03	43.14	43.38	45.92	40.16	38.97	39.03	3
4	38.77	38.36	38.29	38.86	43.32	41.77	43.05	43.01	45.97	40.10	39.04	38.97	4
5	38.78	38.34	38.24	38.82	43.92	41.06	42.69	42.72	46.19	40.25	39.33	39.06	5
6	38.68	38.36	38.20	38.83	43.67	40.71	42.45	42.57	45.29	40 - 17	39.30	39.12	6
7	38.66	38.37	38.15	38.91	42.93	40.44	43.03	42.22	44.40	40.26	39 • 17	39.27	7
8	38.60	38.39	38,13	39.24	42.73	40.23	43.39	41.79	44.09	40.16	39.07	39.27	8
9	38.46	38.42	38,12	39.52	42.58	40.08	43.34	42.23	43.52	39.99	39.07	39.33	9
10	38.44	38.42	38.12	39.64	43.57	39.99	43.10	43.26	43.05	39.76	39.12	39.13	10
11	38.37	38.46	38,12	39.65	44.95	39.98	42.97	45.91	43.45	39.59	39.35	38.96	11
12	38.53	38.51	38.21	39.57	45.31	39.96	43.04	46.99	42.40	39.49	39.30	38.99	12
13	38.64	38.50	38.42	39.47	45.98	39.86	43.06	47.13	41.59	39.42	39.31	39.08	13
14	38.62	38.52	38.38	39.43	47.00	39.63	43.07	46.40	41.23	39.39	39.25	39.27	14
15	38.75	38.55	38.35	39.41	47.39	39.56	42.96	44.72	41.05	39.40	39.18	39.34	15
16	38.74	38.54	38,42	39.35	47.19	39.85	43.06	43.87	41.00	39.40	39.11	39.40	16
17	38.48	38.54	38,63	39.24	47.02	40.15	43.32	43.48	40.90	39.36	39.17	39.36	17
18	38.31	38.57	38,90	39.15	46.48	39.95	43.61	43.84	42.86	39.24	39.08	39.37	18
19	38+22	38.53	39.13	39.05	45.84	39.78	43.83	45.31	44.57	39.09	39.17	39.42	19
20	38.17	38.49	39.27	38.97	45.27	39.77	44.00	46.10	45.01	39.04	39.01	39.44	20
21	38.14	38.49	39.30	38.94	44.87	39.72	44.10	46.53	44.71	39.10	39.01	39.60	21
22	38.13	38.44	39.24	38.92	44.60	39.77	44.28	46.89	44.28	39.25	39.00	39.66	22
23	38.18	38.41	39.20	38.90	44.33	40.01	44.51	47.07	43.84	39.14	38.91	39.70	23
24	38.23	38.40	39.14	38.86	44.09	40.07	44.73	47.23	43.06	38.98	38.86	39.57	24
25	38.27	38.38	39.06	38.82	43.92	40.19	44.96	47.37	42.43	39.05	39.00	39.46	25
26	38.36	38.39	38,99	38.79	43.80	40.14	45.31	46.97	41.96	39.05	39.13	39.43	26
27	38.45	38.40	38.91	38.76	43.67	40.08	45.41	45.99	41.26	39.04	39.14	39.29	27
28	38.56	38.36	38.86	38.76	43.54	40.29	45.46	46.19	40.74	39.01	39.12	39.26	28
29	38.59	38.37	38.82	38.79		40.77	45.34	46.99	40.74	39.09	39.18	39.11	29
30	38.60	38.34	38.79	38.88		41.59	45.10	46.95	40.84	39.12	39.02	39.11	30
31	38.59		38.79	39.46		43.13		46.27		39.21	38.99		31

F	_	F - 1	mated
			Record
NF	-	No	Flow

				-	CREST	STAGES					
DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
2- 1-63 2- 5-63 2-15-63	0015 1240 0610	44.1	4- 1-63 4- 8-63 4-28-63	0300 0840 0430	43.5	5-25-63 5-13-63 5-30-63	1230 0850 0050	47.4 47.3 47.2	6- 5-63 6-20-63	1250 1310	46.3 45.2

	LOCATION	N	MAXII	MUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. 8 R.		OF RECORD		DISCHARGE	GAGE HEIGHT	-	RIOD	ZERO ON	REF
CHITTOGE	2011011000	M. D. B. & M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	то	GAGE	DATUM
37 26 52	121 00 44	NW 8 6S 9E		61.9	4- 7-58		41-DATE	1959 1959	1959	0.00 0.00 3.51	USED USGS USED

Station located at Crows Landing Road Bridge, 4.3 mi. NE of Crows Landing.

SAN JOAQUIN RIVER AT PATTERSON BRIDGE IN FEET

STATION ND WATER YEAR B07200 1963

OAY	OCT.	NO V.	DEC	JAN	FEB	MAR	APRIL	MAY	JUNE	JULY	AUG	SEPT.	DAY
1	32.85	32.30	32.02	32.42	36.27	37.16	37.14	38.69	39.83	34.38	32.54	32.78	1
2	32.79	32.25	32.00	32.42	36.02	37.07	36.95	38.09	39.66	34.04	32.51	32.83	2
3	32.79	32.22	31.98	32.43	35.78	36.84	36.96	37.40	39.67	33.86	32.46	32.78	3
4	32.87	32.16	31.99	32.44	36.67	35.79	36.89	36.91	39.67	33.83	32.54	32.66	- 4
5	32.82	32.12	31.97	32.42	37.52	34.93	36.51	36.63	39.83	33.90	32.81	32.86	5
6	32.76	32.14	31.94	32 - 41	37.55	34.48	36.24	36.43	39.35	33.80	32.82	32.86	6
7	32.68	32.15	31.85	32.44	36.89	34.20	36.76	36.14	38.33	33.88	32.70	32.99	7
8	32.65	32.15	31.79	32.69	36.34	33.93	37.28	35.65	37.91	33.98	32.63	33.02	8
9	32.51	32.17	31.74	32.98	36.23	33.77	37.26	35.75	37.47	33.66	32.62	33.10	9
10	32.47	32.18	31.76	33.15	36.98	33.65	37.11	36.55	36.89	33.42	32.70	33.07	10
11	32.49	32.22	31.81	33.17	38.31	33.64	36.92	38.81	37.15	33.21	33.00	32.87	11
12	32.63	32.21	31.82	33,15	39.06	33.51	36.93	40.35	36.53	33.14	32.90	32.79	12
13	32.80	32.25	32.05	33.05	39.48	33.29	36.99	40.75	35.49	33.03	32.80	33.04	13
14	32.72	32.25	32.05	33.00	40.58	33.01	37.00	40.39	34.93	33.06	32.86	33.10	14
15	32.91	32.28	32.02	32.98	41.17	32.84	36.91	38.90	34.69	33.01	32.80	33.18	15
16	33.06	32.27	32.07	32.94	41.07	33.14	36.98	37.67	34.68	32.93	32.69	33.23	16
17	32.58	32.27	32.19	32.86	40.89	33.71	37.17	37.13	34.51	32.97	32.62	33.11	17
16	32.34	32.28	32.43	32.76	40.55	33.58	37.43	37.13	35.41	32.90	32.60	33.06	18
19	32.21	32.26	32.65	32.66	39.93	33.40	37.69	38.45	37.66	32.82	32.59	33.19	19
20	32.14	32.26	32.83	32.57	39.32	33.37	37.91	39.42	38,32	32.76	32.53	33.18	20
21	32.07	32.24	32.89	32.55	38.82	33.29	38.07	39.94	38.33	32.69	32.43	33.28	21
22	32.04	32.22	32.88	32.54	38.51	33.31	38.17	40.31	37.93	32.85	32.55	33.45	22
23	32.03	32.15	32.83	32.53	38.22	33.65	38 • 41	40.57	37.62	32.84	32.53	33.47	23
24	32.05	32.11	32.78	32.49	37.95	33.78	38.61	40.75	36.89	32.70	32.45	33.45	24
25	32.09	32.13	32.70	32.45	37.73	33.83	38.83	40.89	36.14	32.50	32.53	33.28	25
26	32.11	32.11	32.65	32.42	37.56	33.84	39.15	40.81	35.52	32.47	32.70	33.18	26
27	32.19	32.11	32.59	32.38	37.42	33.78	39.31	40.03	34.92	32.43	32.63	33.09	27
28	32.30	32.07	32.51	32.37	37.27	34.02	39.40	39.77	34.36	32.53	32.60	32.96	28
29	32.32	32.03	32.46	32.39		34.41	39.31	40.42	34.30	32.63	32.78	32.98	29
30	32.33	32.03	32.43	32.48	i	35.09	39.12	40.69	34.45	32.56	32.73	33.01	30
31	32.33		32.42	32.79		36.53		40.21		32.53	32.74		31

						CREST	STAGES					
E ~ Estimated	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
	2- 1-63 2- 6-63 2-15-63	1750 0000 1500	37.7		2130 1130 1430	39.5	5-25-63 5-30-63 6- 1-63		41.0 40.8 40.0	6- 5-63	1610	39.9

	LOCATION	V	MAXI	MUM DISCH	ARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R.	OF RECORO)	DISCHARGE	GAGE HEIGHT	PERIOD		ZERO ON	REF.
	2011011002	M.D.B.8.M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
37 29 52	121 04 52	SW15 5\$ 8E		54.0	6-13-38		APR 38-DATE	1938 1959 1959	1959	0.00	USED USCGS USED

Station located at Patterson-Turlock Highway Bridge, 3.1 mi. NE of Patterson

TABLE B-71

SAN JOAQUIN RIVER AT GRAYSON

STATION NO WATER YEAR B07080 1963

DAY	OCT.	NOV.	DEC	JAN	FE8	MAR	APRIL	YAM	JUNE	JULY	AUG	SEPT	DAY
1	24.42	23.78	23.66	23.84	26.89	28 • 82	30.17	31.14	32.93	26.13	24.08	24.37	1
2	24.28	23 • /1	23.62	23.84	28.05	28.63	29.19	30.35	32.72	25.83	24.02	24.30	2
3	24.28	23.68	23.51	23.83	29.56	28.42	28.51	29.39	32.62	25.58	24.03	24.26	3
4	24.42	23.63	23.49	23.90	31.00	27.53	28.47	28.76	32.53	25.45	24.06	24.05	4
5	24.33	23.57	23.51	23.88	31.73	26.62	28.15	28.40	32.26	25.46	24.37	24.24	5
6	24.36	23.59	23.50	23.83	31.98	26 • 14	27.76	28.14	31.58	25.42	24.47	24.25	6
7	24.25	23.59	23.48	23.82	31.43	25.83	28.10	27.88	30.47	25.45	24.25	24.37	7
8	24.30	23.61	23.48	23.94	29.27	25.58	28.77	27.40	29.82	25.65	24.22	24.43	8
9	24.08	23.63	23.40	24.24	28.77	25.43	29.40	27.23	29.44	25.40	24.29	24.51	9
10	24.02	23.63	23.29	24.43	29.24	25.32	29.82	27.79	29.02	25.08	24.38	24.60	10
										-			
11	24.13	23.65	23+29	24.46	30.48	25.23	29.96	29.58	29.01	24.87	24.53	24.32	11
12	24.20	23.65	23.39	24.47	31.21	24.98	30.63	31.70	29.41	24.73	24.53	24.18	12
1,3	24.40	23.72	23.52	24.46	31.24	24.79	30.85	32.55	27.82	24.67	24.36	24.39	13
14	24.37	23 • 12	23.60	24.38	32.48	24.51	29.69	32.41	26.78	24.62	24.31	24.55	14
15	24.40	23./3	23.54	24.37	33.93	24.33	29.36	31 • 21	26.38	24.60	24.31	24.62	15
16	24.67	23.12	23.59	24.36	33.41	24.48	30.72	29.83	26.33	24.45	24.17	25.11	
17	24.30	23.71	23.60	24.29	32.83	25.07	30.44	29.12	26.21	24.46	24.06	25.27	16
18	23.98	23.72	23.72	24.18	32.48	25.07	29.44	28.72	26.36	24.45	24.08		
19	23.84	23.70	24.05	24.07	32.02	24.81	29.68	29.66	28.82	24.26		25 • 22 25 • 32	18
20	23.75	23.69	24.25	24.01	31.63	24.73	30.11	30.92	29.76		24.04		
20	23013	23009	24.27	24.01	31.03	24473	30.11	30.92	27.10	24.21	24.01	25.37	20
21	23.65	23.69	24.35	23.97	30.82	24.64	30.72	31.57	30.68	24.28	23.88	25.44	21
22	23.63	23.68	24.45	23.96	30.38	24.62	30.85	31.93	30.87	24.48	24.04	25.66	22
23	23.59	23.62	24.42	23.96	30.12	24.93	30 • 85	32.27	30.15	24.46	24.08	25.68	23
24	23.63	23.56	24.30	23.92	29.78	25.14	30.95	32.50	29.12	24.17	24.12	25.58	24
25	23.53	23.58	24.18	23.90	29.45	25.19	31.04	32.56	28.30	24.01	24.16	25.47	25
26	23.57	23.60	24.14	23.87	29.27	25.23	31.33	33.05	27.65	24.00	24.19	25.40	. 26
27	23.63	23.62	24.03	23.85	29.14	25.20	31.54	32.71	27.88	23.94	24.09	24.73	27
28	23.73	23.60	23.99	23.81	28.97	25.51	31.60	32.27	27.17	23.98	24.03	24.50	28
29	23.77	23.55	23.93	23.80	20177	25.99	31.28	32.76	26.05	24.08	24.26	24.57	29
30	23.77	23.60	23.89	23.86		27.96	31.18	33.36	26.14	24.07	24.28	24.53	30
31	23.79	22.00	23.85	24.21		29.40	,	33.24	20014	24.05	24.31	24.73	31
								33027		2.00	24031		31

Е	-	E 51	mated
NR	-	No	Record
NF	•	No	Flow

					CREST	STAGES					
DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
2- 1-63 2- 6-63 2-15-63	1200 1600 1300	32.03	4-1-63 4-13-63 5-13-63	1500 1100 1000	30.30 30.97 32.65	5-30-63	1900	33.48			

	LOCATION	1		MAXII	MUM DISCH	IARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
ATITUE	LONGITURE	1/4 SEC	C. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	COD	ZERO	REF
LATITUDE	LONGITUDE	M. O. E	B. 8 M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
37 33 47	121 09 06	NW25 4	4S 7E	23900	45.15	3- 8-41	JUL 28-DATE	JUL 28-DATE	1960 1960	1959	0.00 0.00 3.81	USED USCGS USED

Station located at Laird Slough Bridge, 5 mi. above the Tuolumne River. High flows bypassing this station through old channel of San Joaquin River are included in figures shown. Records furn, by City of San Francisco.

SAN JOAQUIN RIVER AT WEST STANISLAUS 1. D. INTAKE

STATION NO WATER YEAR B07070 1963

TIME STAGE

DAY	ост	NOV	DEC	JAN	FE8	MAR.	APRIL	MAY	JUNE	JULY	AUG	SEPT.	OAY
1	19.93	20.48	22.37	21.08	22.27	25.01	28.79	28.35	30.64	22.73	18.75	19.60	1
2	19.77	20.43	22.08	21.17	25.43	24.43	26.50	27.16	30.47	22.59	18.76	19.68	2
3	19.74	20.38	21.55	21.21	29.16	24.06	25.14	25.98	30.30	22.07	18.64	19.69	3
4	19.86	20.36	21.43	21.88	30.54	23.45	24.76	25.40	30.07	21.09	18.86	19.61	4
5	19.89	20.26	21.91	21.63	31.06	22.65	24.26	25.10	29.05	21.00	19.15	19.66	5
6	19.86	20.11	22.10	21.20	31.22	22.44	23.37	24.86	27.56	20.75	19.16	19.72	6
7	19.86	20.15	22.41	20.90	30.52	22.13	23.36	24.37	26.50	20.77	19.01	19.89	7
8	19.86	20.32	22.58	20.92	27.62	21.73	25.07	23.50	25.80	21.65	18.93	19.97	8
9	19.66	20.36	22.28	21.49	27.16	21.58	27.38	23.35	25.72	21.16	18.99	19.92	9
10	19.55	20.40	21.76	21.52	27.57	21.43	28.18	23.73	25.98	21.45	19.35	19.95	10
11	19.62	20.41	21.87	21.44	28.80	21.16	28.75	24.89	26.22	21.49	19.67	19.63	11
12	19.85	20.39	22.38	21.67	28.76	20.81	29.77	27.63	27.59	21.29	19.73	19.47	12
13	20.64	20.39	22.25	21.55	28.02	20.51	29.44	28.68	25.11	21.41	19.48	19.66	13
14	21.04	20.45	22.14	21.17	30.00	19.88	27.48	28.22	22.61	20.88	19.42	19.89	14
15	21.07	20.51	21.87	20.92	31.85	19.60	27.45	27.25	22.30	20.62	19.43	20.03	15
16	21.15	20.55	21.75	20.85	30.34	19.86	29.79	26.73	22.96	20.30	19.29	20.55	16
17	20.87	20.58	21.48	20.87	29.19	20.44	28.61	26.06	22.73	20.18	19.18	20.90	17
18	20.59	20.52	21.44	20.85	28.74	20.39	26.65	25.16	21.94	19.99	19.31	20.87	18
19	20.41	20.48	22.20	20.78	28.72	20.16	26.94	25.38	23.62	19.61	19.33	21.02	19
20	20,35	20.47	22.37	20.75	28.71	20.02	27.73	26.33	26.09	19.33	19.28	21.01	20
21	20.27	20.57	22.48	20.62	27.42	19.94	28.73	26.97	28.47	19.41	19.07	21.04	21
22	20.20	20.52	22.77	20.51	27.03	19.94	28.76	27.27	28.88	19.45	19.27	21.22	22
23	19.99	20.48	22,69	20.64	26.73	20.21	28 • 47	27.67	27.47	19.37	19.46	21.30	23
24	20.00	20.44	22.22	20.60	26.17	20.44	28.48	28.13	26.02	18.77	19.49	21.18	24
25	20.19	21.08	21.98	20.60	25.48	20.39	28 • 42	29.07	24.71	18.38	19.64	21.12	25
26	20.27	21.12	21.91	20.63	25.35	20.38	28.55	29.59	23.31	18.81	19.70	20.97	26
27	20.36	21.23	21.68	20.61	25.56	20.41	28.76	29.68	22.56	18.73	19.40	20.18	27
28	20.44	21.78	22.01	20.43	25.33	20.76	28.42	29.46	21.87	18.87	19.12	19.90	28
29	20.48	21.92	21.73	20.31		23.28	27.44	29.92	21.74	18.98	19.23	19.97	. 29
30	20.45	22.22	21,62	20.62		27.43	27.97	30.72	22.61	18.85	19.34	19.95	30
31	20.46		21.40	20.93		28.43		30.81		18.44	19.45		31

						CREST	STAGES			
E - Estimated	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE
NR - No Record NF - No Flow	2- 6-63 2-15-63 4- 1-63	1400 0410 1240	32.2	4-13-63 4-16-63 5-26-63	0410 1530 2400	30.1	5-31-63 6- 1-63 6-22-63	0720 0000 1310	30.8 30.7 29.0	

	LOCATION	V	MAXII	NUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R. M. O. & & M.	C.F.S.	OF RECORD	DATE	OIS CHARGE	GAGE HEIGHT	FROM	00 TO	ZERO ON GAGE	REF DATUM
37 36 07	121 10 51	SE10 4S 7E	G.F. 3.	OAGE III.	0472		DEC 50-DATE	1959	1959	0.00	USED USCGS USED

Station located at intake gates for W.S.I.D. Canal, 2.6 mi. N of Grayson.

TABLE B-73

TUOLUMNE RIVER AT LAGRANGE BRIDGE

STATION ND WATER YEAR B04175 1963

							APRIL	MAY	JUNE	JULY	AUG.	SEPT.	DAY
DAY	ОСТ	NOV.	OEC	JAN	FEB	MAR	APRIL	MAT	JUNE	JULT	AUG.	JEF1.	UAT
1	67.55	69.19	70.23	69.25	71.70	69.14	70.24	71.10	73.38	70.59	67.35	67.38	1 1
2	67.57	69.17	69.91	70.31	75.09	68.99	70 • 1 4	70.52	73.40	68.25	67.35	67.31	2
3	67.24	69.15	70.56	70.18	75.10	68.98	69.90	70.46	73.17	67.98	67.35	67.30	3
4	67.24	68.88	70.68	69.59	75.11	69.19	68 • 61	70.48	71.64	67.83	67.35	67.39	4
5	67.22	68.95	70.90	69.26	75.02	69.31	67.34	70.33	70.26	67.85	67.35	67.18	5
6	67.22	69.25	71.11	69.06	74.76	69.08	67.65	69.93	70.24	68.79	67.35	67.20	6
7	67.21	69.23	71.09	69.77	71.57	69.10	70.50	68.73	70.25	69.45	67.35	67.19	7
6	67.21	69.26	70.52	69.75	72.54	69.11	72.84	68.61	70.92	68.60	67.35	67.21	8
9	67.33	69.30	70.25	69.47	72.75	69.08	72.67	68.61	71.53	70.23	67.34	67.27	9
10	68.62	69.26	71.06	69.79	72.57	68.74	73.69	69.18	72.10	69.29	67.24	67.11	10
11	69.23	69.21	70.80	69.85	71.49	68.96	74.24	71.46	73.32	70.10	67.38	67.18	11
12	69.28	69.29	70.57	69.26	70.89	67.69	72 • 62	70.65	68.99	69.59	67.38	67.33	12
1.3	69.24	69.41	70.20	68.91	72.90	67.38	70.91	69.70	68.38	68.46	67.38	67.32	13
14	69.04	69.36	70.08	68.91	73.36	67.36	72.50	70.65	69.74	68.56	67.39	67.29	14
15	68.75	69.45	69.74	68.95	71.46	67.27	74.38	71.80	70.22	68.36	67.40	67.28	15
16	69.19	69.34	69.31	69.11	71.13	67.32	71.42	71.35	69.18	68.42	67.41	67.27	16
17	69.17	69.30	70.34	69.12	71.08	67.31	70.34	70.70	68.36	67.58	67.41	67.25	17
38	69.14	69.24	70.40	69.14	72.11	67.30	71.76	70.51	69.13	67.36	67.42	67.26	18
19	69.18	69.48	70.42	69.02	71.54	67.26	72 • 36	70.56	72.20	67.35	67.54	67.30	19
20	69.16	69.33	70.72	68.79	71.06	67.26	72.46	70.25	73.61	67.33	67.39	67.30	20
21	68.78	69.34	70.85	68.88	71.27	67.28	72.09	70.10	73.60	67.32	67.39	67.34	21
22	68.73	69.75	70.41	69.11	71.09	67.27	72.03	70.10	71.27	67.31	67.39	67.33	22
23	69.22	70.05	69.96	68.80	70.37	67.25	72.01	70.55	71.13	67.32	67.38	67.42	23
24	69.16	70.10	70.25	69.12	69.82	67.29	72.02	71.64	69.45	67.31	67.61	67.44	24
25	69.22	69.70	69.71	69.11	70.40	67.30	72.06	72.19	68.72	67.31	67.30	67.43	25
26	69.24	70.60	70.51	69.06	70.74	67.33	72.19	72.20	68.51	67.31	67.25	67.43	26
27	69.24	70.61	70.06	68 • 34	70.40	68.37	70.97	72.52	68.50	67.33	67.27	67.41	27
28	69.16	70.76	70.06	68.72	69.77	72.30	70.21	73.15	69.41	67.32	67.39	67.39	2.8
29	69.11	71.00	69.87	69.12		74.27	72.35	73.44	70.25	67.32	67.33	67.29	29
30	69.25	70.92	69.21	68.98		73.79	72.00	73.41	70.05	67.31	67.33	67.25	30
31	69.25		69.72	68.99		73.80		73.39	-	67.33	67.33		31

Ε	-	Est	imated
NR	-	No	Record
NF	-	No	Flow

				(CREST	STAGES					
DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
2- 3-63 2- 9-63 2-14-63	1030 1650 2000	75.3 73.4 75.0	2-18-63 3-29-63 3-30-63	2250 1930 2310	74.4 74.7 74.5		0850 1430 2330	75.0 74.5 74.3			

	LOCATION	N	MAXIN	NUM DISCH	IARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
		1/4 SEC. T. 8 R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	IOD	2ERO ON	REF
LATITUDE	LONGITUDE	M. D. B. & M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	то	GAGE	DATUM
37 39 59	120 27 40	NW20 3S 14E	48200	88.0	12- 8-50		OCT 36-SEP 60 OCT 61-Date	1937		0.00	USGS

Station located at highway bridge, immediately N of La Grange. Flow regulated by reservoirs and power plants. In order to machine process this station, the recorder datum was changed. To obtain true elevations add 100 feet to all of the above gage heights.

TABLE B-74

TUOLUMNE RIVER AT ROBERTS FERRY BRIDGE IN FEET

STATION NO WATER YEAR 804165 1963

			IN	FEET		_							
DAY	OCT.	NO V.	OEC	JAN	FE8	MAR	APRIL	MAY	JUNE	JULY	AUG	SEPT.	DAY
1	8.28	9.92	11.02	10.06	11.16	9.94	11.33	11.69	13.74	10.60	8.26	8 • 38	1
2	8.41	9.90	10.71	10.60	15.72	9.82	10.70	10.95	13.78	9.93	8 • 25	8.40	2
3	8.52	9.90	10.91	10.92	15.92	9.74	10.46	10.89	13.67	8.90	8.23	8.37	3
4	8.37	9.78	11.27	10.45	15.84	9.73	10.07	10.87	12.52	8.74	8.23	8.37	4
5	8 . 32	9.58	11.45	10.15	15.81	10.04	8 • 68	10.76	10.80	8.72	8.27	8.41	5
6	8.33	9.88	11.73	9.97	15.55	9.92	8.54	10.38	10.75	9.00	8 • 25	8.43	6
7	8.32	9.88	11.75	10.08	12.14	9.77	10.23	9.44	10.73	10.31	8.24	8.40	7
8	8.30	9.88	11.27	10.51	13.03	9.78	12.83	9.42	11.11	9.10	8.24	8.41	8
9	8.30	9.92	10.99	10.23	13.26	9.77	13.21	9.40	11.87	10.51	8.26	8 • 41	9
10	8.62	9.93	11.42	10.34	13.15	9.55	13.93	9.36	12.03	10.24	8 • 2 8	8.40	10
11	9.81	9.89	11.51	10.58	12.32	9.55	14.83	11.57	14.03	10.28	8.30	8.44	11
12	10.04	9.87	11.26	10.16	11.42	9.07	13.88	11.25	10.58	10.31	8.29	8.47	12
13	9.97	10.00	11.04	9.93	12.77	8.49	11.11	10.38	9.30	9,58	8.25	8.51	13
14	9.88	10.09	10.86	9.65	14.41	8.37	12.16	10.62	9.99	9.36	8.26	8.55	14
15	9.64	10.09	10.52	9.68	12.11	8.33	15.05	11.95	10.66	9.19	8.30	8.55	15
16	9.89	10.03	10.30	9.83	11.51	8.32	12.61	11.79	10.23	9.22	8.29	8.53	16
17	9.91	10.01	10.65	9 . 82	11.54	8.31	10.71	11.15	9.24	8.87	8.28	8.51	17
18	9.88	9.95	11.14	9.85	11.96	8.30	12.04	10.86	9.44	8.43	8.30	8.54	18
19	9.92	10.00	11.09	9.84	12.67	8.27	12.38	10.90	11.75	8.29	8.30	8.58	19
20	9.92	10.03	11.32	9.65	11.45	8 • 25	12.86	10.74	14.28	8.26	8 • 31	8 • 5 8	20
21	9.68	10.01	11.46	9.58	11.68	8 • 25	12.74	10.55	14.26	8.24	8.28	8.59	21
22	9.56	10.00	11.21	9.83	11.59	8.26	12.32	10.53	12.11	8.25	8.33	8 • 61	22
23	9.95	10.17	10.78	9 • 63	11.08	8.28	12.38	10.55	11.49	8.24	8.35	8.61	23
24	9.89	10.84	10.88	9.81	10.48	8.26	12.36	12.05	10.52	8.26	8.34	8 • 60	24
25	9.93	10.55	10.59	9.83	10.74	8.26	12.40	12.23	9.55	8.26	8.56	8 • 6 5	25
26	9.97	10.92	10.76	9.82	11.26	8.26	12.52	12.51	9.46	8.26	8.38	8 • 6 7	26
27	9.96	11.26	10.92	9.30	11.00	8.53	11.91	12.73	9.30	R • 26	9.31	8 • 6 9	27
28	9.91	11.35	10.70	9.49	10.76	11.56	10.74	13.31	9.65	8.25	8.32	8.68	28
29	9.86	11.64	10.54	9.83		14.70	12.01	13.82	10.66	8.25	8.36	8.69	29
30	9.95	11.61	10.29	9.83		14.38	12.78	13.78	10.56	8.23	8.38	8 • 67	30
31	9.97		10.19	9.69		14.55		13.77		8.23	8.37		31

Ε	-	Est	imated
NR	-	Νo	Record
NF	-	Na	Flow

				(CREST	STAGES					
DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
2- 2-63 2-14-63 2-19-63	2400 0230 0230	16.0 15.6 14.3	3-30-63 3-31-63 4-15-63	0120 1820 0140	14.8	4- 9-63 4-11-63 6-11-63	0100	14.4 15.1 15.5	6-20-63	1200	14.4

	LOCATION	V	MAXII	MUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
	ATITUDE LI ONGITUDE L	1/4 SEC. T. 8 R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	RIOD	2ERO	REF
LATITUDE	LUNGITUDE	M. O. B. B. M.	C.F.S.	GAGE HT.	DATE	OTO ETTATIOE	ONLY	FROM	TO	GAGE	DATUM
37 38 08	120 37 03	NW35 3S 12E	49800	28.2	12- 8-50	JUL 28-OCT 36 JAN 37-FEB 38 JUN 38-DATE			1940	106.20	USCGS USCGS

Station located at highway bridge, 7.5 mi. E of Waterford. In order to machine process this station, the recorder datum was changed. 'To obtain true elevations add 100 feet to all of the above gage heights.

DAILY MEAN GAGE HEIGHT

TUOLUMNE RIVER AT HICKMAN BRIDGE

STATION NO WATER YEAR 804150 1963

			114	FEE									
DAY	ост	NOV.	DEC	JAN	FE8	MAR	APRIL	MAY	JUNE	JULY	AUG	SEPT.	DAY
1	72.33	73.92	75.27	74.23	74.68	73.66	75.56	75.46	77.25	74.01	71.57	71.57	1
2	72.30	73.92	74.86	74.31	78.91	73.47	74.49	74.70	77.26	73.74	71.58	71.59	2
3	72.44	73.91	74 . 86	75.05	79.30	73.32	74.24	74.66	77.16	72.28	71.56	71.55	3
4	72.34	73.79	75.40	74.57	79.22	73.22	74.00	74.58	76.33	72.11	71.55	71.52	4
5	72.31	73.57	75.46	74.19	79.19	79.76	72.42	74.49	74.47	72.05	71.58	71.52	5
6	72.29	73.93	75.74	73.93	79.09	73.61	72.23	74.21	74.34	72.10	71.58	71.55	6
7	72.29	73.94	75.87	73.90	76.15	73.39	73.59	73.01	74.31	73.70	71.53	71.54	7
8	72.28	73.95	75,53	74.47	76.65	73.41	76.27	72.93	74.52	72.57	71.50	71.50	8
9	72.28	73.96	75.15	74.26	76.90	73.41	76.98	72.90	75.42	73.73	71.52	71.51	9
10	72.29	73.96	75.31	74.19	76.89	73.22	77.44	72.80	75.44	73.91	71.56	71.49	10
11	73.44	73.93	75.66	74.53	76.26	73.08	78.36	74.89	77.29	73.54	71.56	71.51	11
12	73.98	73.89	75.35	74.21	75.24	72.90	77.91	75.11	74.69	73.75	71.56	71.54	12
13	73.95	74.03	75.22	73.92	76.02	72.14	75.01	74.13	72.71	73.05	71.54	71.58	13
4	73.95	74.16	75.10	73.58	78.20	72.03	75.66	73.99	73.26	72.68	71.53	71.59	14
15	73.65	74.15	74.65	73.60	76.01	71.92	78.52	75.58	74.24	72.50	71.55	71.60	15
16	73.87	74.12	74.49	73.73	75.29	71.90	76.80	75.55	73.97	72.50	71.57	71.57	16
17	73.89	74.04	74.50	73.76	75.34	71.89	74.51	74.90	72.64	72.31	71.56	71.55	17
18	73.87	73.98	75.30	73.78	75.43	71.88	75.60	74.54	72.63	71.88	71.57	71.56	18
19	73.91	74.02	75.16	73.81	76.65	71.87	75.85	74.58	74.89	71.72	71.56	71.61	19
20	73.90	74.12	75.32	73.58	75.21	71.87	76.56	74.45	77.44	71.67	71.53	71.62	20
21	73.68	74.07	75.49	73.45	75.43	71.86	76.59	74.19	77.58	71.63	71.53	71.62	21
22	73.50	74.06	75.32	73.77	75.41	71.86	75.94	74.17	75.96	71.61	71.55	71.65	22
23	73.93	74.02	74.95	73.55	74.93	71.87	76.09	74.13	75.08	71.59	71.57	71.61	23
24	73.93	74.97	74.88	73.73	74.28	71.85	76.03	75.55	74.31	71.58	71.57	71.60	24
25	73.94	74.69	74.82	73.76	74.34	71.84	76.06	75.71	72.99	71.62	71.69	71.60	25
26	73.98	74.81	74.61	73.77	74.98	71.82	76.14	76.10	72.93	71.60	71.65	71.63	26
27	73.97	75.33	75.17	73.32	74.75	71.83	75.82	76.23	72.65	71.59	71.55	71.65	27
28	73.91	75.42	74.71	73.31	74.64	74.70	74.51	76.73	72.82	71.57	71.52	71.62	28
29	73.85	75.69	74.65	73.79		78.17	75.31	77.26	74.18	71.59	71.54	71.62	29
30	73.97	75.71	74.49	73.83	-	78.05	76.56	77.25	74.15	71.57	71.57	71.61	30
31	73.98		74.10	73.66		77.97		77.25		71.52	71.56		31

						CREST	STAGES					
ted	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
scord aw	2- 2-63 2- 9-63 2-14-63	1950 2215 0630	79.4 77.5 79.0	2-19-63 3-30-63 3-31-63	0550 0350 2100	78.2 78.6 78.3	4- 9-63 4-11-63 4-15-63	1450 0340 0430	78.0 78.6 78.7	4-20-63	0210	77.7

	LOCATIO	V	MAXII	MUM DISCH	IARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
		1/4 SEC. T, & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	100	ZERO	REF.
LATITUDE LONGITUDE	M. D. B. B. M.	C.F.S.	GAGE HT.	DATE	510 51 111102	ONLY	FROM	то	GAGE	0ATUM	
37 38 10	120 45 14	NW34 3S 11E	59000	96.2		JUL 32-OCT 36 JAN 37-MAR 37 JUL 37-FEB 38 JUL 38-DEC 38 MAR 39-DATE	JAN 37-MAR 37 JUL 37-FEB 38			0.00	USCGS

Station located at Hickman-Waterford Road Bridge, immediately SE of Waterford.

DRY CREEK NEAR MODESTO

STATION NO WATER YEAR B04130 1963

		DRT CRE	EK NEAR M	FEET							804130	1903	,
DAY	OCT.	NO V.	DEC	JAN	FEB	MAR	APRIL	MAY	JUNE	JULY	AUG	SEPT.	DAY
1	68.32	67.74	67.51	67.45	71.34	67.86	68.43	68.39	68.70	69.45	68.40	68.55	1
2	68.25	67.77	67.50	67.45	76.13	67.80	68 - 18	68.25	69.11	69.29	68.30	68.50	2
3	68.30	67.72	67.48	67.47	70.77	67.82	68.05	68.40	69.48	68.97	68.33	68.45	3
4	68.52	67.70	67.48	67.47	69.26	67.83	67.96	68.44	69.40	69.20	68.35	68.45	4
5	68.65	67.66	67.47	67.46	68.65	67.81	67.88	68.22	69.30	69.30	68.40	68.61	5
6	68.64	67.64	67.47	67.46	68.30	67.77	67.86E	68.31	69.22	68.66	68.51	68.66	6
7	68.68	67.62	67.47	67.47	68.07	67.71	67.96E	68.30	69.31	68.60	68.47	68.61	7
8	68.70	67.60	67.45	67.47	67.92	67.70	71.62E	68.14	69.01	68.67	68.50	68.65	8
9	68.54	67.61	67.44	67.46	67.90	67.77	70 • 42	68.38	68.73E	68.56	68.50	68 • 66	9
10	68.58	67.59	67.44	67.47	71.05	67.73	69.85	68.57	68.84E	68.72	68.52	68.58	10
11	68.59	67.62	67.44	67.47	73.85	67.75	69.42	68.56	68.84	68.60	68.41	68 • 46	11
12	68.68	67.60	67.44	67.45	69.98	67.74	69.22	68.72	68.71	68.49	68.54	68.58	12
13	69.47	67.58	67.43	67.44	71.64	67.74	69.07	68.69	68.64	68.49	68.36	68.59	13
14	69.43	67.55	67.44	67.44	77.94	67.74	69.01	68.64	68.65	68.47	68.36	68.55	14
15	69.22	67.59	67.46	67.45	71.78	67.71	71 • 44	68.68	68.78	68.80	68.33	68.67	15
16	69.10	67.59	67.66	67.45	69.92	67.72	72.04	68.72	69.11	68.78	68.42	68.66	16
17	68.24	67.55	68.08	67.44	69.26	67.79	70.43	68.73	68.93	68.63	68.36	68 • 72	17
18	68.04	67.55	68.15	67.44	68.93	67.81	69.49	68.96	68.97	68.58	68.35	68.93	18
19	67.93	67.55	67.83	67.44	68.71	67.74	69.03	68.77	68.95	68,60	68.30	68.94	19
20	67.80	67.55	67.66	67.45	68.52	67.71	73.21	68.61	68.66	68.53	68.29	68.73	20
21	67.73	67.55	67.59	67.49	68.37	67.70	72.06	68.60	68.58	68.61	68.33	68.67	21
22	67.66	67.52	67.53	67.49	68.27	67.73	71 • 92	68.63	68.63	68.62	68.43	68.68	22
23	67.63	67.50	67.49	67.48	68.16	68.14	70.43	68.98	68.92	68.53	68.29	68.64	23
24	67.65	67.48	67.47	67.45	68.10	68.01	69.79	68.78	69.39	68.42	68.26	68 • 65	24
25	67.67	67.47	67.46	67.45	68.04	67.82	69.49	68.64	69.53	68.33	68.35	68.69	25
26	67.69	67.46	67.46	67.44	67.98	67.77	69 • 32	69.10	69.44	68.34	68.44	68.61	26
27	67.73	67.50	67.46	67.44	67.93	67.81	69.51	68.98	69.38	68.41	68.61	68 • 43	27
28	67.76	67.50	67.46	67.46	67.91	68.06	69.77	68.90	69.35	68.47	68.59	68.41	28
29	67.75	67.51	67.45	67.52		70.37	69.26	68.92	69.29	68.52	68.50	68.48	29
30	67.71	67.51	67.45	67.51		69.73	68.62	68.87	69.29	68.47	68.48	68.54	30
31	67.63		67.47	67.55		68.85		68.74		68.34	68.45		31

						CREST	STAGES					
E - Estimoted	DATE	TIME	STAGE	OATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
NR - No Record NF - No Flow	2- 2-63 2-10-63 2-14-63	2330	79.0 77.4 79.7	3-29-63 4-15-63 4-20-63	1150	71.7 73.5 75.7	4-22-63	0115	70.9			

Г		LOCATION	v	MAXI	NUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
Γ.	LATITUOE		1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	NOD	ZERO	REF.
۱ ا		LONGITUDE	M. O, B. & M	C.F. S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
	37 39 26	120 55 19	SE24 3S 9E	7710	88.04	12-23-55	MAR 41-DATE	MAR 41-DATE	1941		0.00	USCGS

Station located 0.1 mi. below Claus Road bridge, 4 mi. E. of Modesto. Tributary to Tuolumne River. Prior to Mar. 1941, records available for a site 2.5 mi. downstream. Station is operated under a cooperative agreement between the Department of Water Resources and the Modesto Irrigation District.

DAILY MEAN GAGE HEIGHT

TUOLUMNE RIVER AT MODESTO

R AT MODESTO

STATION NO WATER YEAR B04120 1963

DAY	ост.	NOV.	DEC	JAN	FEB	MAR	APRIL	MAY	JUNE	JULY	AUG	SEPT.	DAY
1	41.34	41.89	43.13	42.10	42.17	42.26	45.95	44.12	46.53	42.32	41.29	41.29	1
2	41.34	41.87	42.41	41.94	47.50	41.95	42.59	43.02	46.62	42.54	41.29	41.32	2
3	41.32	41.85	42.22	42.45	50.57	41.89	42.38	42.67	46.67	41.78	41.27	41.30	3
4	41.37	41.85	42.56	42.42	50.51	41.84	42.26	42.61	46.10	41.66	41.30	41.27	4
5	41.38	41.78	42.64	42.14	50-41	41.98	41.87	42.60	43.45	41.62	41.28	41.27	5
6	41.35	41.74	42.95	41.98	50.36	41.99	41.54	42.49	42.57	41.53	41.28	41.29	6
7	41.38	41.88	43.11	41.88	47.58	41.89	41.76	42.08	42.52	41.84	41.27	41.32	7
8	41.38	41.91	43.11	42.13	44.63	41.87	43.51	41.80	42.50	42.04	41.28	41.33	8
9	41.32	41.91	42.59	42 - 18	45.32	41.88	45.83	41.80	43.15	41.86	41.30	41.34	9
10	41.35	41.92	42.37	42.05	46.10	41.86	45.94	41.80	43.48	42.37	41.28	41.32	10
11	41.37	41.93	43.08	42.16	46.49	41.73	41.96	42.22	45.20	42.13	41.31	41.33	11
12	41.86	41.91	42.85	42.21	43.14	41.78	48.61	43.30	45.06	42.32	41.29	41.33	12
13	42 • 11	41.91	42.76	41.98	43.60	41.50	44.80	42.59	42.02	42.11	41.24	41.39	13
14	42.19	41.96	42.48	41.82	49.50	41.34	43.22	42.19	41.79	41.82	41.25	41.35	14
15	42.13	41.95	42.38	41.78	46.80	41.29	47.17	43.01	42.29	41.80	41.25	41.37	15
16	42.08	41.97	42.27	41.80	43.67	41.28	48.67	43.77	42.41	41.71	41.31	41.39	16
17	42.05	41.93	42.06	41.85	43.23	41.27	43./1	43.06	41.99	41.66	41.26	41.34	17
18	42.02	41.92	42.54	41.85	43.09	41.29	42.99	42.61	41.73	41.53	41.27	41.38	18
19	42.00	41.90	42.57	41.86	45.02	41.27	43.82	42.57	42.22	41.41	41.28	41.38	19
20	42.01	41.96	42.51	41.84	43.48	41.26	46.15	42.56	45.18	41.36	41.25	41.36	20
21	41.96	41.94	42.76	41.75	43.16	41.25	46.17	42.39	47.13	41.35	41.26	41.36	21
22	41.83	41.94	42.95	41.77	43.30	41.24	44.89	42.33	46.17	41.35	41.28	41.36	22
23	41.78	41.92	42.54	41.84	42.99	41.28	44.72	42.35	43.40	41.35	41.30	41.34	23
24	41.93	42.30	42.26	41.77	42.48	41.28	44.57	42.90	43.11	41.30	41.28	41.33	24
25	41.93	42.43	42 - 41	41.85	42.28	41.25	44.52	43.47	42.16	41.30	41.34	41.34	25
26	41.90	42.26	42.14	41.85	42.57	41.23	44.63	44.32	41.97	41.32	41.36	41.34	26
27	41.85	42.89	42.52	41.83	42.67	41.27	44.82	44.35	41.86	41.30	41.31	41.34	27
28	41.85	42.89	42.31	41.63	42.55	41.55	43.09	44.97	41.79	41.31	41.28	41.34	28
29	41.86	43.05	42.28	41.73		45.89	42.69	46.23	42.17	41.34	41.26	41.33	29
30	41.84	43.26	42.20	41.87		48.26	45.28	46.58	42.43	41.35	41.31	41.36	30
31	41.88		41.96	41.86		47.41		46.53		41.30	41.21		31

Ε	-	Est	imated
NR	-	No	Record
NF	-	No	Flow

						CREST	STAGES					
	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
1	2- 2-63 2- 3-63 2- 4-63	2400 1000 1000	50.68	2- 5-63 2- 6-63 2-14-63	1200 1300 1800	50.46 50.40 51.21	4- 6-63	0300	49.74			

	LOCATIO	V	MAXII	MUM DISCH	HARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
LATITUDE	TITUDE LONGITUDE 1/4 SEC. T. & R. M. D. 8. 8M.		C.F.S.	OF RECORD	DATE	DISCHARGE	GAGE HEIGHT	PER FROM	100	ZERO ON GAGE	REF. DATUM
37 37 38	120 59 20	SW33 3S 9E	57000	69.19	12- 9-5D	JAN 95-DEC 96 MAR 40-DATE	78- 84 91- 97	1940	-10	0.00	USCGS
1		1				PMR 40-DATE	MAR 40-DATE				

Station located at U.S. Highway 99 Bridge. Records furn. by U.S.G.S. Flow records are published by the U.S.G.S. report, "Surface Water Records of California."

TUOLUMNE RIVER AT TUOLUMNE CITY
IN FEET

STATION NO WATER YEAR 804105 1963

DAY	ост	NOV	DEC	JAN	FE8	MAR	APRIL	MAY	JUNE	JULY	AUG	SEPT.	DAY
1	24.02	25.90	28.68	26.36	25.60	NR	32.90	30.90	33.17	27.28	24.30	24.19	1
2	23.93	25.87	29.92	26.36	30 - 17	NR	29.08	29.49	33.11	27.45	24.28	24.17	2
3	23.97	25.83	30.57	26.78	35.08	NR	27.88	28.45	33.11	26.49	24.23	24.11	3
4	24.01	25 • 78	30.50	27.53	35.56	NR	27.41	28.21	32.85	25.45	24.22	24.11	4
5	24.06	25.67	29.85	26.96	35.68	NR	26.78	28.08	31.07	25.37	24.21	24.05	5
6	24.09	25.40	29.57	26 • 38	35.72	NR	26.65	27.83	28.93	25.10	24.19	24.10	6
7	24.05	25.64	28 • 85	26.01	34.67	NR	25.40	27.21	28.33	25.18	24.21	24.15	7
8	24.10	25.82	29.00	26.10	30.95	NR	27.94	26.19	28.04	26.36	24.21	24.11	8
9	24.04	25.86	28.42	26.20	31.23	NR	31.17	26.04	28.50	25.52	24.27	24.17	9
10	24.00	25 • 87	27.83	25.48	31.72	NR	31.78	26.00	29.29	26.62	24.27	24.11	10
11	24.02	25.87	29.33	26.50	32.64	NR	32.97	26 • 33	30.11	26.56	24.28	24.06	11
12	24.60	25.84	28.66	26.81	31.04	NR	34 - 14	29.16	31.75	26.57	24.27	24.07	12
13	25.98	25.79	28.29	26.42	29.93	NR	32.70	29.60	27.86	26.58	24.19	24.11	13
14	26.51	25.89	27.89	25.92	33.62	NR	29.76	28.78	26.12	25.80	24.18	24.22	14
15	26.45	26.03	27.70	25.53	34 • 62	NR	31.22	28.58	26.65	25.59	24.18	24.19	15
16	26.29	26.08	27.50	25.46	31.68	NR	34.50	29.51	27.44	25.39	24.22	24.20	16
17	26.05	26.10	27.00	25.59	30.47	NR	31.48	29.10	26.94	25.24	24 - 12	24.12	17
18	25.98	25.99	27.15	25.62	30.08	NR	28.92	28.25	25.89	25.16	24.12	24.11	18
19	25.89	25.90	27.99	25.63	30.93	NR	29.96	28.00	26.12	24.76	24.13	24.19	19
20	25.87	25.91	27.91	25 • 63	30.71	24.19	31.17	28.21	29.47	24.59	24.11	24.21	20
21	25.87	26.07	28 • 14	25.43	29.48	24.17	32.16	28.22	32.52	24.52	24.11	24.25	21
22	25.68	26.02	28.46	25.28	29.46	24.19	31.66	28.22	36.66	24.48	24.12	24.24	22
23	25.40	25.98	28+17	25.57	29.18	24.21	31.14	28.45	30.12	24.47	24.17	24.19	23
24	25.53	26.10	27.55	25.40	28.37	24.25	31.01	28.89	29.14	24.39	24.18	24.11	24
25	25.80	27.21	27.47	25.50	27.58	24.20	30.90	30 • 28	27.71	24.31	24.22	24.15	25
26	25.83	27.00	27.18	25.57	27.87	24.15	29.99	31.03	26.48	24.32	24.27	24.14	26
27	25.90	27.40	27.27	25.57	NR	24 • 13	31.18	31.31	26.18	24.32	24.27	24.11	27
28	25.91	28.12	27.56	25.17	NR	24.48	30+24	31.46	25.92	24.32	24.15	24.12	28
29	35.85	28.30	27.24	25.06		24.83	28.90	32.31	26.26	24.48	24.16	24.13	29
30	25.76	28.70	27.06	25.54		33.21	30.53	33.14	27.34	24.36	24.20	24.10	30
31	25.83		26.68	25.72		33.12		33.21		24.32	24.19		31

Ε	-	Est	mated
NR	-	No	Record
NF	-	No	Flow

					CREST	STAGES					
DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
2- 6-63 2-14-63 4- 1-63	1130 2350 1000	36.15	4-12-63 4-16-63 6-22-63	1400 0900 0900	34.30 34.83 32.96	7- 2-63	1450	28.03			

	LOCATIO	N	MAXIMUM DISCHARGE			PERIOD O	DATUM OF GAGE				
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	RIOD	ZERO ON	REF
LATITODE	LONGITODE	M, O, B, & M,	C.F.S.	GAGE HT.	OATE		ONLY	FROM	TO	GAGE	DATUM
37 36 12	121 07 50	NW 7 45 8E		46.65	12- 9-50	30-DATE	30-DATE	1960	1959	0.00 0.00 3.50	USED USCGS USED

Station located at highway bridge, 3.35 mi. above mouth. Backwater at times affects the stage-discharge relationship. Records furn. by City of San Francisco.

IN FEET

DAILY MEAN GAGE HEIGHT SAN JOAQUIN RIVER AT MAZE ROAD BRIDGE

STATION NO WATER YEAR 807040 1963

DAY	OCT.	NOV.	DEC	JAN	FEB	MAR	APRIL	MAY	JUNE	JULY	AUG	SEPT.	DAY
1	15.07	15.67	17.39	16.37	16.67	19.86	23.79	23.44	26.63	18.22	14.42	14.81	1
2	15.01	15.62	17.23	16.41	19.50	19.31	22.39	22.48	26.36	17.90	14.42	14.85	2
3	14.97	15.57	16.6R	16.25	24.22	18.90	20.82	21.40	25.85	17.59	14.39	14.84	3
4	15.07	15.55	16.46	17.04	26.21	18.43	20.31	21.32	25.46	16.63	14.44	14.76	4
5	15.16	15.48	16.84	16.80	26.27	17.70	19.83	21.29	24.40	16.47	14.59	14.80	5
6	15.17	15.33	17.02	16.37	26.19	17.48	18.79	21.27	22.85	16.22	14.64	14.83	6
7	15.19	15.32	16.63	16.06	25.65	17.17	18.66	21.04	21,67	16.11	14.53	14.92	7
8	15.15	15.48	16.44	15.95	23.44	16.78	20.85	20.97	21.01	16.85	14.55	15.09	8
9	14.85	15.54	16,60	16.47	22.58	16.62	23.08	21.18	21.11	16.66	14.57	15.08	9
10	14.72	15.57	17.11	16.61	22.82	16.44	24.23	21.67	21.42	16.65	14.69	15.12	10
11	14.78	15.60	17,23	16.46	24.07	16.20	24.14	22.69	21.62	16.93	14.89	14.87	11
12	15.03	15.60	16,62	16.68	24.49	15.86	25 • 48	24.64	22.93	16.57	15.01	14.79	12
13	15.76	15.59	16.72	16.66	23.81	15.75	26.18	25.67	21.52	16.67	14.75	14.94	13
14	16.28	15.61	16.80	16.27	24.68	15.15	24.50	25.17	18.96	16.27	14.62	15.17	14
15	16.37	15.69	17.09	15.98	26.55	14.87	23.03	23.79	17.95	16.03	14.61	15.26	15
16	16.43	15.75	16.92	15.88	25.61	14.97	24.73	22.63	19.21	15.79	14.58	15.56	16
17	16.20	15.79	16.65	15.88	24.54	15.57	24.84	21.66	19.75	15.66	14.55	15.99	17
18	15.86	15.75	16.46	15.88	24.06	16.09	23.19	20.79	19.08	15.54	14.59	15.97	18
19	15.67	15.70	17,18	15.82	23.82	15.67	22.50	21.15	20.41	15.30	14.55	16.04	19
20	15.58	15.65	17,37	15.79	23.87	15.23	22.88	22.72	21.36	15.06	14.53	16.06	20
21	15.50	15.76	17.55	15.66	22.77	15.07	23.97	23.62	23.35	15.02	14.36	16.10	21
22	15.45	15.75	17.82	15.53	22.13	14.98	24.66	24.17	24.03	15.08	14.45	16.25	22
23	15.24	15.72	17.88	15.60	21.79	15.13	24.63	24.63	23.07	14.98	14.64	16.40	23
24	15.18	15.64	17.52	15.61	21.36	15.34	24.58	24.93	21.43	14.78	14.65	16.29	24
25	15.38	16.15	17.22	15.57	20.74	15.60	24.21	25.56	20.16	14.52	14.77	16.24	25
26	15.48	16.33	17.16	15.61	20.43	15.54	24.12	26.01	18.80	14.50	14.89	16.11	26
27	15.55	16.31	16.75	15.61	20.41	15.38	24.24	26.21	18.06	14.46	14.72	15.58	27
28	15.64	16.84	17.12	15.47	20.16	15.74	24.05	25.89	17.37	14.52	14.53	15.18	28
29	15.67	16.99	16.82	15.27	1	17.90	23.06	25.82	17.15	14.59	14.60	15.19	29
30	15.64	17.25	16.84	15.53		22.59	22.99	26.40	17.98	14.52	14.66	15.22	30
31	15.64		16.74	15.84		23.46		26.69		14.41	14.74		31

Ε	-	Est	imated
NR	-	No	Record
NF	-	No	Flow

					CREST	STAGES					
DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
2- 4-63 2-15-63 4-13-63	1850 0900 1100	26.7	5-13-63 5-27-63 5-31-63	1230 1115 1440	25.8 26.3 26.7	6- 1-63	0000	26.68			

	LOCATION MAXIMUM DISCHARGE				PERIOD C	DATUM OF GAGE					
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	RIOD	ZERO	REF.
LATITODE	CONTROL	M. D. B. B. M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
37 38 28	121 13 37	SW29 3S 7E		39.8	12-9-50	JAN 50-MAR 52	SEP 43-DATE	1943 1959	1959	0.00	USED USCGS USED

Station located at State Highway 132 Bridge, 13 mi. W of Modesto.

STANISLAUS RIVER AT ORANGE BLOSSOM BRIDGE IN FEET

STATION NO WATER YEAR B03175 1963

DAY	OCT.	NO V.	OEC	JAN	FE8	MAR	APRIL	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	01.40	02.16	01.79	01.94	07.27	01.39	05.37	04.17	08.11	01.91	01.41	01.49	1
2	01.36	01.85	01.79	01.91	14.05	01.37	04.94	04.62	07.15	01.67	01.39	01.46	2
3	01.37	02.13	01.79	01.90	08.92	01.36	04.90	06.98	06.06	01.61	01.38	01.42	3
4	01.40	02.14	01.79	01.90	07.41	01.35	04.18	07.35	04.38	01.60	01.44	01-45	4
5	01.46	02.15	01.79	01.90	06.92	01.33	02.00	07.64	03.60	01.58	01.39	01.56	5
6	01.44	02.15	01.80	01.90	05.46	01.81	03.83	08.29	02.40	01.58	01.43	01.52	6
7	01.39	02.14	01.81	01.89	05.39	01.83	08.66	10.10	03.63	01.58	01.39	01.56	7
8	01.37	02.07	01.80	01.89	05.66	01.41	09.00	10.26	05.00	01.54	01.41	01.61	8
9	01.35	02.06	01.81	01.90	05.59	01.33	07.81	11.44	05.05	01.48	01.46	01.55	9
10	01.36	02.02	01.82	01.90	08.35	01.66	06.86	12.34	05.47	01.46	01.45	01.57	10
11	01.41	02.02	01.84	01.89	07.74	03.08	12.27	12.08	06.16	01.42	01.42	01.75	11
12	01.49	02.07	01.83	01.88	07.07	02.89	10.91	10.85	05.77	01.42	01.38	01.78	12
13	02.07	02.06	01.85	01.84	06.95	02.79	06.23	08.72	03.97	01.42	01.36	01.78	13
14	02.05	02.08	01.84	01.84	06.78	02.57	05.72	07.15	03.73	01.39	01 • 41	01.77	14
15	01.99	02.13	01.91	01.75	06.67	02.45	06.80	05.61	06.99	01.40	01.45	01.77	15
16	01.98	02.12	02.03	01.71	06.63	03.67	08.17	04.55	07.34	01.41	01.48	01.76	16
17	01.84	02.07	02.01	01.70	06.54	05.05	06.94	04.75	07.73	01.39	01.45	01.77	17
18	01.89	02.12	02.47	01.70	05.98	02.89	05.43	07.25	08.26	01.41	01.41	01.88	18
19	01.93	02.13	03.01	01.71	05.21	01.81	05.57	10.22	05.73	01.43	01.43	01.87	19
20	01.89	02.17	03.03	01.64	04.75	01.55	06.74	10.66	05.95	01.44	01.41	01.84	20
21	01.78	02.13	02.95	01.63	03.86	01.52	08.90	11.15	06.03	01.40	01.45	01.84	21
22	01.77	02.12	03.04	01.56	03.87	01.52	08.76	11.19	05.34	01.39	01.45	01.85	22
23	02.06	02.13	03.06	01.49	03.87	02.38	08.02	11.18	02.40	01.38	01.43	01.88	23
24	02.07	02.13	02.87	01.39	03.87	04.06	06.89	11.11	02.11	01.39	01.44	01.87	24
25	02.09	02.13	02.00	01.38	03.29	02.72	06.88	11.07	02.10	01.45	01.47	01.87	25
26	02.12	02.14	01.94	01.38	01.79	01.75	06.89	10.32	01.90	01.41	01.50	01.87	26
27	02.10	02.09	01.94	01.37	01.52	01.54	06.30	09.32	01.89	01.42	01.45	01.87	27
28	02.10	01.91	02.95	01.38	01.41	07.99	05.42	09.49	02.57	01.42	01.42	01.87	28
29	02.08	01.84	03.27	01.38	0.041	06.98	05.10	10.00	02.89	01.39	01.46	01.86	29
30	02.08	01.79	03.08	01.42		05.65	04 • 42	09.78	02.61	01.43	01.46		30
31	02.10		02.75	01.60		05.46	34.42	09.43	02.01	01.37	01.46	01.86	31

						CREST	STAGES					
E - Estimated	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
NF - No Flow	2- 2-63 3-28-63 4- 8-63	0800 1550 0400	12.1	4-11-63 5- 6-63 5- 9-63	1630 2230 2140	12.5 10.3 12.5	5-22-63	1600	11.2			

[LOCATION	٧	MAXII	MUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
	LATITUOE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	100	ZERO	REF.
		LONGITOOL	M. O. 8. 8 M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
	37 47 18	120 45 41	SW 4 2S 11E	52000	30.05		JUN 28-DEC 39 APR 40-DATE	JUN 28-DEC 39 APR 40-DATE			0.00	LOCAL

Station located at bridge, 5.0 mi. E of Oakdale. Flow regulated by reservoirs and power plants.

DAILY MEAN GAGE HEIGHT

STANISLAUS RIVER AT RIVERBANK

STATION NO WATER YEAR 803145 1963

DAY	ост.	NOV.	DEC.	JAN	FE8	MAR	APRIL	MAY	JUNE	JULY	AUG	SEPT.	DAY
1	73.07	73.81	73.48	74.38	76.05	73.27	78 - 19	76.95	81.97	74.24	72.87	72.94	1
2	73.10	73.86	73.45	73.76	87.69	73.19	77.73	76.46	80.37	73.57	72.85	73.00	2
3	73.11	73.56	73.44	73.69	83.90	73.14	77.61	79.64	79.93	73.31	72.88	72.91	3
4	73.11	73.85	73.44	73.65	80.56	73.10	77.49	80.00	77.76	73.30	72.90	72.88	4
5	73.11	73.91	73.45	73.63	80.33	73.07	75.09	80.63	77.33	73.19	72.92	72.90	5
6	73.17	73.92	73.46	73.63	78.77	73.04	74.03	80.64	75.47	73.16	72.85	72.96	6
7	73.15	73.94	73.46	73.60	78.04	73.98	81.51	83.04	75.56	73.12	72.85	72.94	7
8	73.12	73.91	73.47	73.58	78.55	73.26	81.26	83.50	77.84	73.13	72.85	72.99	8
9	73.11	73.82	73.44	73.57	78.34	73.09	82.53	84.19	77.95	73.10	72.88	73.00	9
10	73.16	73.80	73.48	73.61	80.73	73.00	78.92	85.94	78.30	73.07	72.94	72.95	10
11	73.18	73.74	73.49	73.61	80.86	74.57	84.39	85.98	78.83	73.04E	72.93	72.99	11
12	73.38	73.76	73.50	73.57	80.45	75.17	85.55	85.10	79.17	73.00E	72.87	73 - 17	12
13	73.75	73.81	73.50	73.53	79.84	75.09	80.57	82.90	77.21E	72.96E	72.83	73.25	13
14	73.98	73.81	73.50	73.51	79.97	74.87	78.54	80.71	75.44E	72.93E	72.81	73.28	14
15	73.93	73.88	73.52	73.46	79.58	74.51	79 • 11	79.17	79.35	72.89E	72.85	73.20	15
16	73.76	73.99	73.81	73.35	79.50	74.76	81.36	77.87	80.63	72.89E	72.87	73.17	16
17	73.63	73.99	73.95	73.31	79.44	77.84	80.72	77.54	79.92	72.90	72.87	73.18	17
18	73.48	73.94	73.83	73.29	79 • 12	76.09	78.32	79.14	81.99	72.93	72.92	73.24	18
19	73.52	74.01	75 - 14	73.30	78.20	74.38	78.29	83.05	78.82	72.96	72.91	73.36	19
20	73.55	74.06	75.60	73.27	77.98	73.45	78.79	83.84	78.82	72.93	72.88	73.33	20
21	73.48	74.08	75 . 31	73.22	76.51	73.22	81.85	84.55	78.87	72.95	72.87	73.35	21
22	73.35	74.04	75.45	73.19	76.43	73.23	81.96	84.68	78,62	72.87	72.87	73.35	22
23	73.40	74.03	75.48	73.13	76.38	73.35	81.63	84.70	75.80	72.86	72.87	73.37	23
24	73.71	74.02	75.51	73.09	76.36	76.48	79.93	84.65	74.36	72.84	72.85	73.39	24
25	73.76	74.04	74.41	73.06	76.27	75.38	79.78	84.58	74.25	72.81	72.93	73.36	25
26	73.79	74.03	73.82	73.02	74.48	74.09	79.79	84.25	73.96	72.87	72.97	73.34	26
27	73.82	74.07	73.70	73.02	73.67	73.31	79.54	82.97	73.67	72.83	72.97	73.36	27
28	73.82	73.94	74.07	73.02	73.39	77.48	78 • 22	82.63	74.16	72.86	72.94	73.36	28
29	73.81	73.67	75.76	73.01		81.31	78.05	83.37	75.27	72.85	72.89	73.39	29
30	73.79	73.54	75.65	73.05		78.57	77.19	83.23	75.28	72.82	72.91	73.39	30
31	73.80		75.51	73.13		78.22		83.03		72.86	72.91		31

Ε	-	Est	imoted
NR	-	No	Record
NF	-	Nο	Flow

				1	CREST	STAGES					
DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
2- 2-63 2-10-63 3-28-63	1500 1300 2315	88.8 81.9 84.1	4- 7-63 4- 8-63 4-12-63	1410 2330 0510	84.1	4-21-63 5-11-63 5-23-63	1400 1830 0530	82.1 86.1 84.7			

	LOCATION	N	MAXII	MUM DISCH	HARGE	PERIOD O	F RECORD				
LATITUDE LONGITUDE		1/4 SEC. T. & R.	/4 SEC. T. & R. OF RECORD		DISCHARGE	GAGE HEIGHT	PER	RIOD	ZERO	REF.	
LATITUDE	LONGITUDE	M.D.8.8M,	C.F.S.	GAGE HT.	DATE	DISTRICE	ONLY	FROM	TO	GAGE	DATUM
37 44 31	120 56 21	SW24 2S 9E	85800	103.18	12-23-55	JUL 40-DATE	JUL 40-DATE	1940		0.00	uscgs

Station located at Burneyville Bridge, immediately N of Riverbank.

DAILY MEAN GAGE HEIGHT

STANISLAUS RIVER AT RIPON

STATION NO WATER YEAR B03125 1963

DAY	ОСТ	NOV	OEC	JAN	FEB	MAR	APRIL	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	37.61	38 • 04	37.68	39.90	37.70	38.65	45.05	44.15	52.88	40.58	37.91	38.13	1
2	37.57	38.07	37.61	38.71	68.04	38.46	44.65	43.39	50.96	39.70	37.94	38.22	2
3	37.53	38 • 02	37.5/	38.21	54.01	38.32	44.14	45.33	49.44	39.29	38 • 04	38.06	3
4	37.41	37.88	37.55	38.02	52.10	38.20	44.02	47.80	46.89	39.26	38 • 10	37.65	4
5	37.59	38.07	37.55	37.92	49.06	38.11	42.44	48.55	45.04	39.36	38.12	37.07	5
6	37.52	38 • 12	37.54	37.88	47.35	38.03	40.12	49.01	43.51	39.18	38.03	37.93	6
7	37.63	38.13	37.55	37.84	65.25	38.26	44.86	50.34	42.18	39.09	37.93	38.07	7
8	37.58	38 • 14	37.55	37.80	45.32	38.45	49.55	52.60	43.92	38.93	38.08	38.09	8
9	37.51	38.09	37.55	37.77	45.39	38.07	51.37	53.37	45.04	38.81	37.92	38.25	9
10	37.38	38.02	37.54	37.77	45.87	37.90	49.21	54.49	45.40	38.59	37.94	38.01	10
11	37.57	37.99	37.55	37.76	49.61	38.06	49.58	55.63	45.94	38.42	38 • 12	37.97	11
12	38.22	37.93	37.56	37.74	49.15	39.76	54.43	55.68	47.00	38.35	38 • 17	38.17	12
13	38.30	37.94	37.56	37.72	48.27	39.87	54.28	54.80	45.73	38.35	38 • 11	38.48	13
14	38.43	37.95	37.56	37.67	48.60	39.73	48.58	52.48	43.08	38.46	37.95	38.57	14
15	38.72	37.93	37.58	37.64	47.81	39.38	45.82	49.19	44.39	38.48	37.92	38.43	15
16	38.56	38.03	37.76	37.58	47.42	39.14	48.89	46.20	48.17	38.27	38.00	38.28	16
17	38 • 28	38.12	38+23	37.48	47.29	41.68	50.23	44.71	48.16	38.33	37.86	38.15	17
18	37.92	38.12	38 • 17	37.44	47.04	43.06	47.99	45 • 36	49.92	38 • 34	37.97	38.18	18
19	37.77	38 • 10	38.33	37.41	45.92	41.47	46.11	49.44	49.14	38.36	37.91	38.36	19
20	37.77	38 • 16	39 • 65	37.40	44.94	38.89	45.21	52.61	46.40	38.35	37.87	38.42	20
21	37.74	38.20	40.03	37.38	43.76	38.38	48.92	53.64	46.58	38.38	37.83	38.44	21
22	37.68	38.22	39.93	37.32	42.66	38.07	51.32	54.30	46.67	38.21	37.89	38.54	22
23	37.59	38.17	40.13	37.28	42.46	38.00	51.49	54.67	44.82	38.16	38 • 03	38.49	23
24	37.69	38.14	40.20	37.24	42.34	39.29	50.19	54.63	41.74	38.12	37.87	38.43	24
25	37.88	38.16	39.93	37.19	42.26	41.48	48.59	54.63	40.97	38 • 03	37.97	38.33	25
26	37.95	38.17	38 • 71	37.16	41.22	39.85	48.40	54.62	40.58	37.98	38.08	38.23	26
27	38.00	38.22	38.24	37.13	39.50	38.58	48.37	54.05	40.07	37.91	38 • 02	38.23	27
28	38.06	38 • 22	38.05	37.11	38.94	39.28	46.91	53.00	39.78	37.99	37.94	38 • 24	28
29	38.06	38 • 04	39 • 17	37.10		49.15	45.95	52.96	40+62	38+02	37.92	38 • 35	29
30	38.06	37.81	40.42	37.13		47.13	45.04	53.38	41.15	38.02	38.06	38.46	30
31	38.03		40.34	37.19		45.32		53+28		37.91	37.94		31

E - Estimated NR - No Record NF - No Flow

					CREST	STAGES					
DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
2- 3-63 3-29-63 4- 8-63	1100 1500 2200	50.57	4-13-63 4-17-63 5-11-63	0100 0400 22 0 0		5-25-63 6-19-63	0100 0030	54.64 51.40			

	LOCATIO	N	MAXII	MUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PER	100	ZERO	REF.
	1 2014011002	M. D. B. & M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
37 43 5	121 06 35	SE29 2S 8E	62500	63.25	12-24-55	APR 40-DATE	APR 40-DATE	1940		0.00	USGS

Station located 15 ft. below the Southern Pacific Railroad Bridge, 1.0 mi. SE of Ripon. Records furn. by U.S.G.S. Flow records are published in U.S.G.S. report, "Surface Water Records of California."

DAILY MEAN GAGE HEIGHT STANISLAUS RIVER AT KOETITZ RANCH

STATION NO WATER YEAR 803115 1963

IN FEET

DAY	OCT.	NOV.	OEC.	JAN	FEB	MAR	APRIL	MAY	JUNE	JULY	AUG	SEPT.	DAY
1	28.63	28.49	28.20	30.48	27.71	29.28	36 • 00E	34.81	43.19	31.41E	28.23	28.35	1
2	28.42	28.51	28.10	29.44	34.86	29.02	35 • 12E	34.18	41.63	30.41E	28.22	28.43	2
3	28.30	28.50	26.04	28.82	43.24	28.83	34.71	34.94E	39.91	29.99E	28.48	28 • 20	3
4	28.22	28.34	28.01	28.55	42.95	28.67	34.57	37.00E	37.83	29.83E	28.59	28 • 01	4
5	28 • 22	28.48	28.01	28 • 41	39.42	28.53	33 • 57	37.92E	35.65	30.03E	28.77	28 • 1 4	5
6	28.29	28.56	28.00	28.34	37.93	28.46	31.22	38.32E	34.38	29.85E	28.44	28 • 12	6
7	28.46	28.58	27.99	28.29	35.89	28.49	34 • 13	39.39E	32.84	29.69E	28.23	28 • 33	7
8	28.24	28.59	27.99	28 • 24	35.58	28.99	39.54	41.29E	34.02	29.57E	28.28	28.47	8
9	28.12	28.57	27.99	28.20	35.78	28.54	40.66	42.56E	35.52	29.43E	28.23	28.63	9
10	28.19	28.49	27.98	28.19	36.37	28.35	40.09	43.84E	35.76	29.31E	28.24	28.24	10
11	28.40	28.45	27.99	28 • 19	39.41	28.30	39.10	45.05	36.28	29.07E	28.24	28.30	11
12	28.97	28.40	27.99	28 • 17	39.21	29.84	43.18	45.62	37.22	28.91E	28.34	28 • 46	12
13	29.12	28.39	27.98	28.15	38.50	30.34	44.62	45.40	36.63E	28 • 92E	28.20	28.82	13
14	29.30	28.41	27.99	28.13	38.59	30.28	40.00	43.95E	34.10E	28.97E	28.06	29.13	14
15	29.46	28.41	28.00	28.10	38.04	30.01	37.34	40.90E	34.42	28.96E	28.12	28.79	15
16	29.42	28.45	28.13	28.05	37.58	29.72	38 • 69	37.36E	38.17	28.72E	28.20	28.56	16
17	29.01	28.56	28.49	27.96	37.43	31.16	40.20	35.20E	38.66	28.92	28.05	28.49	17
7.6	28.57	28.58	28.61	27.90	37.24	33 • 65	38.68	36.04E	39.62	29.03	28.06	28.52	18
19	28.37	28.54	28.49	27.87	36.43	31.49	36 • 69	39.56E	39.88	28.94	28.18	28.54	19
20	28.31	28.59	29.61	27.85	35.39	29.91	36 • 60	41.94E	37.04	28.82	28.09	28.68	20
21	28.29	28.64	30.25	27.83	34.52	29.16	38.57	43.37	37.05	28.86	27.96	28.83	21
22	28.24	28.66	30.17	27.78	33.22	28.75	41.05	44.25	37.17	28.72	28.01	28.81	22
23	28.17	28.64	30.35	27.73	32.99	28.61	41.41	44.67	35.91	28.64	28.30	29.09	23
24	28.17	28.59	30.43	27.68	32.84	29.21	40.59	44.77	32.71	28.42	28.09	28.75	24
25	28.35	28.58	30.34	27.64	32.76	31.96	38.92	44.77	31.79	28.30	28.28	28.62	25
26	28.42	28.61	29.42	27.60	32.15	30.67	38.65	44.75	31.36	28.19	28.22	28.57	26
27	28.47	28.65	28.83	27.57	30.40	29.50	38 • 62	44.50	30.83	28.18	28 • 19	28.63	27
28	28.50	28.65	28.57	27.55	29.67	29.50	37.56	43.53	30.39	28.47	28.13	28.70	28
29	28.52	28.54	29.00	27.53		36.84E	36.50	42.96	31.01	28.44	28.09	28.74	29
30	28.52	28.33	30.50	27.53		36.86E	35.80	43.39	31.75	28.45	28.18	28.92	30
31	28,50		30.61	27.56		36.41E		43.48		28.34	28.12		31

E - Estimoted NR - No Record NF - No Flow

						CREST	STAGES					
moted	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATÉ	TIME	STAGE
Record	2- 3-63	2400	44.2	4-17-63	0700	40.4	5-24-63	2400	44.9			
Flow	4-10-63	0200 1040	41.8	4-23-63 5-12-63	1930	41.5	6- 1-63	0000	43.1			
	4-13-63	1040	45.0	5-12-63	1600	45.8						

1		LOCATION	N	MAXI	MUM DISCH	IARGE	PERIOD C	F RECORD		DATUM OF GAGE		
I	LATITUDE	ATITUDE LONGITUDE 1/4 SEC. T. & R.		OF RECORD			DISCHARGE	GAGE HEIGHT	PEF		ZERO ON	REF
ı			M. O. B. & M.	C.F.S.	GAGE HT.	OATE		ONLY	FROM	TO	GAGE	DATUM
	37 41 57	121 10 08	SW 2 3S 7E					MAR 50-DATE	1950 1951 1951	1951	0.00 0.00 3.60	USED USCGS USED

Station located 0.6 mi. NW of Bacon and Gates Road Junction, 3.7 mi. SW of Ripon.

DAILY MEAN GAGE HEIGHT

STANISLAUS RIVER NEAR MOUTH

STATION NO WATER YEAR 803105 1963

DAY	ост	NOV	DEC.	JAN	FEB	MAR	APRIL	MAY	JUNE	JULY	AUG	SEPT.	DAY
1	NR	16.63	16.65	18.23	16.01	18.80E	23.76	23.14	28.22	19.05	15.44	15.63	1
2	16.54	16.63	16.59	17.63	19.69	10.32	23.07	22.34	27.57	18.09	15.37	15.88	2 3
2	16.36	16.66	16.45	17.06	26.91	17.94	22.21	22.13	26.47	17.59	15.62	15.60	
4	16.28	16.56	16.36	16.86	28.10	17.63	21.96	23.77	25.53	17.32	16.09	15.56	4
5	16.30	16.53	16.33	16.73	26.81	17.17	21.44	24.25	23.91	17.28	15.93	15.69	5
6	16.46	16.38	16.33	16.61	26.18	16.99	19.58	24.61	22.56	17.48	15.83	15.33	6
7	16.84	16.48	16.36	16.49	25.18	16.86	20.22	24.85	21.10	17.35	15.72	15.46	7
8	16.52	16.48	16.44	16.49	23.70	17.08	24.70	26.01	21.13	17.29	15.68	15.89	8
9	16.16	16.51	16.47	16.48	23.28	16.96	25 • 64	26.57	22.21	17.12	15.60	16.08	9
10	16.21	16.55	16.43	16.54	23.43	16.64	26.26	27.07	22.42	16.90	15.76	15.69	10
11	16.60	16.52	16.32	*16.46	25.44	16.34	25.25	28.00	22.89	16.70	15.74	15.71	11
12	16.90	16.42	16.36	16.48	25.78	16.87	27.43	28.93	23.78	16.52	15.70	15.99	12
13	17.42	16.40	16.42	16.44	25.26	17.67	28.70	29.08	23.31	16.38	15.44	16.45	13
14	17.46	16.32	16.44	16.38	25.41	17.76	26.53	28.03	21.42	16.43	15.25	16.73	14
15	17.58	16.34	16.39	16.33	26.32	17.65	24 • 32	25.94	20.60	16.51	15.11	16.56	15
16	17.64	16.38	16.42	16.28	25.75	17.55	25.25	23.90	23.33	16.35	15.10	16.29	16
17	17.28	16.47	16.48	16.22	25.04	18.23	26.28	22.51	24.03	16.07	15.34	16.21	17
18	16.89	16.52	16.67	16.18	24.67	20.51	25.24	22.18	24.19	16.04	15.47	16.21	18
19	16.65	16.53	16.69	16.14	24.22	19.25	23.79	23.97	24.93	16.12	15.58	16.10	19
20	16.50	16.52	17.22	16.12	23.79	18.05	23.77	26.15	23.30	16.09	15.70	16.22	20
21	16.50	16.65	17.90	16.09	22.96	17.20	24.84	27.05	23.80	16.09	15.30	16.44	21
22	16.46	16.69	18.03	16.06	21.88	16.73	26.44	27.74	24.21	16.06	15.32	16.41	22
23	16.36	16.69	18.17	16.02	21.52	16.74	26.71	28.22	23.47	15.84	15.57	16.78	23
24	16.31	16.67	18.20	15.99	21.21E	16.81	26.50	28.39	21.11	15.79	15.55	16.58	24
25	16.45	16.67	18.21	15.96	20.87E	18.80	25.57	28.61	19.79	15.67	15.72	16.35	25
26	16.54	16.67	17.71	15.92	20.40E	18.15	25.33	28.77	18.90	15.56	15.48	16.39	26
27	16.58	16.69	17.10	15.89	19.55E	17.24	25.34	28.79	18.42	15.44	15.64	16.23	27
28	16.62	16.73	16.89	15.87	19.11E	17.25	24.94	28.14	17.93	15.43	15.30	16.17	28
29	16.64	16.77	16.87	15.86		22.05	23.92	27.73	18.19	15.67	15.39	16.45	29
30	16.64	16.73	17.90	15.88		24.58	23.48	28.11	19.03	15.48	15.68	16.37	. 30
31	16.64		18.26	15.91		23.83		28.34		15.37	15.61		31

Ε	-	Est	mated
NR	-	No	Record
NF	-	No	Flow

				(CREST	STAGES					
DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
2- 4-63 2-15-63 4-10-63	0850 1030 0610	28.30 26.44 26.71	4-17-63	1610 0800 0800	28.93 26.42 26.29	5-27-63	0450 1000 1950	29.22 28.88 28.35			

	LOCATION	N	MAXI	MUM DISCH	IARGE	PERIOD C	F RECORD				
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	-		ON	REF.
		M. D. B. & M	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	OATON
37 40 02	121 13 41	SW17 3S 7E				SEP 51-DATE	SEP 51-DATE	1951 1959	1959	1.11	USCGS USCGS

Station located 1.9 mi. above mouth, 7.7 mi. SW of Ripon. Backwater from San Joaquin River at times affects the stage-discharge relationship. Prior records available at other sites. Drainage area 1,091 sq. mi. Altitude of gage is approx. 25 ft. (from U.S.G.S. topographic map).

DAILY MEAN GAGE HEIGHT

SAN JOAQUIN RIVER NEAR VERNALIS

STATION NO WATER
YEAR
B07020 1963

DAY	ост.	NOV.	DEC	JAN	FEB	MAR	APRIL	MAY	JUNE	JULY	AUG	SEPT	DAY
1	11.43	12+16	13.62	13.17	12.95	16.29	20.31	19.99	23.71	15.11	NR	11.49	1
2	11.48	12 • 17	13.56	13.15	15.38	15.79	19.39	19.23	23.36	14.62	NR	11.60	2
3	11.50	12+17	13.10	12.79	20.72	15.36	17.86	18.24	22.68	14.39	NR	11.62	3
4	11.54	12.17	12.83	13.29	23.03	14.96	17.35	18.49	22.11	13.53	NR	11.61	4
5	11.62	12.14	13.13	13.28	22.95	14.14	16.92	18.58	20.97	13.35	NR	11.59	5
6	11.63	12.00	13.32	12.89	22.72	13.96	15.73	18.67	19.60	13.18	NR	11.59	6
7	11.76	11.89	13.55	NR	22.18	13.68	15.43	18.54	18.33	13.03	NR	11.58	7
8	11.70	11.91	13.75	NR	20.28	13.41	18.00	18.65	17.71	13.52	NR	11.64	8
9	11.37	11.97	13.69	12.81	NR	13.22	19.97	18.91	17.95	13.50	YR .	11.74	9
10	11.20	12.00	13.28	13.03	NR	13.01	21.25	19.39	18.27	13.30	ЧR	11.78	10
11	11.32	12.02	13.05	12.88	NR	NR	20.90	20.24	18.44	13.58	ND	11.77	11
12	11.62	12.03	13.56	13.03	NR	NR	22.34	22.06	19.57	13.26	NR	11.69	12
13	12.30	12.05	13.52	13.08	NR	NR	23.35	23.12	18.86	13.30	NP	11.71	13
14	12.79	12.06	13.49	12.74	NR	NR	21.95	22.67	16.39	13.07	NR	11.8/	14
15	12.97	12.12	13.28	NR	22.91	11.98	19.96	21.19	15.17	12.84	NO	NP	15
16	13.02	12.17	13.22	NR	22.36	11.97	21.21	19.78	16.62	NR	NP	NR	16
17	12.83	12.21	13.06	NR	21.34	12.54	21.90	18.65	17.41	NR	٩R	12.63	17
18	12.49	12.22	12 • 84	NR	20.83	13.53	20.48	17.79	16.82	NP	NR	12.64	18
19	12.26	12.20	13+38	NR	20.51	13.12	19.47	18.23	17.96	NR	11.39	12.66	19
20	12.13	12 - 13	13.71	NR	20.50	NR	19.62	19.93	18.31	NR	11.39	12.6/	20
21	12.08	12.18	13.97	NR	19.53	12.17	20.62	20.94	19.85	NR	11.37	12.74	21
22	12.01	12.20	14.25	NR	18.71	11.92	21.60	21.55	20.63	NR	11.31	12.86	22
23	11.84	12.24	14.37	NR	18.37	11.97	21.72	22.09	20.07	NR	11.32	13.08	23
24	11.69	12.18	14.10	NR	17.97	12.15	21.70	22.37	18.25	NR	11.38	12.96	24
25	11.75	12.41	13.82	NR	17.43	NR	21.23	22.89	16.97	NR	11.45	12.87	25
26	11.85	12.76	13.71	NR	1/.09	12.76	21.03	23.31	15.64	NR	11.55	12.77	26
27	11.94	12.70	13.25	NR	16.90	12.49	21.11	23.52	14.95	NR	11.50	12.61	27
28	12.02	13.15	13.48	NR	16.60	12.54	20.99	23.15	14.30	NR	11.33	12.39	28
29	12.08	13.31	13.25	NR		NR	20.01	22.96	14.06	NR	11.31	12.20	29
30	12.13	13.47	13.44	NR		19.35	19.67	23.49	14.80	NR	11.36	12 • 12	30
31	12.15		13.47	NR		20.08		23.77		NR	11.43	16.15	31

Ε	-	Est	imated
NR	~	No	Record
NF	-	No	Flow

					CREST	STAGES					
OATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
2- 4-63 2-15-63 4-13-63	2000 1500 1400	23.09	4-17-63 5-13-63 5-27-63	0600 1400 1100	22.12 23.20 23.55	5-31-63	1400	23.80			

	LOCATION	ı	MAXII	MUM DISCH	ARGE	PERIOD O	F RECORD		DATUM OF GAGE			
		1/4 SEC. T. 8 R.		OF RECORD)	OISCHARGE	GAGE HEIGHT	PER	RIOD	2ERO	REF	
LATITUDE	LONGITUDE	M. D. B. B M.	C.F.S.	GAGE HT.	DATE	OTSCHARGE	ONLY	FROM	TO	ON GAGE	DATUM	
37 40 34	121 15 51		79000	27.75	12-9-50	JUL 22-DEC 23 JAN 24-FEB 25				8.4	USED	
						JUN 25-OCT 28 MAY 29-DATE	JUN 25-OCT 28 MAY 29-DATE		1959		USCGS	

Station located 30 ft. above the Durham Ferry Highway Bridge, 3 mi. below the Stanislaus River, 3.4 mi. NE of Vernalis. Records furn. by U.S.G.S. Drainage area is approx. 14,010 sq. mi.

	Mile and Sank	and Size					м	onthly Diren	ion in Acre I	eet					Diversion
Water User		Number and Size of Pump	Oct	Non	Dec	Jgn	Feb	Mor	Apr	Mary	June	July	Aug	Sept	Total Diversion Oct - Sep Acre Feet
DURHAM FERRY BRIDGE	76.														
	76,7														
GAGING STATION - SAN JOAQUIN RIVER NEAR VERNALIS															
Cook Land and Cattle Company	78.9R	1-14"	110	3		1					222	540	433	173	1482
Cruze, Trudel and Gillmeister	79,48	1-20"	2	1				1	1	38	58	50	166	94	411
STANISLAUS RIVER	79.7R														
Faith Ranch	79.8R	1-16"		75				21			119	295	423	255	1188
W. C. Blewett Estate	80.7L	1-12"						219	22		332	40	578	160	1351
W. C. Blewett Estate	81.8L 81.85	2-12"	64					314		435	660	1055	1099	350	3977
GAGING STATION - SAN JOAQUIN RIVER AT MAZE ROAD BRIDGE	81.85														
Blewett Mutual Water Company	81.95L	1-10"	43					394		1262	954	1051	1050	530	5284
El Solyo Water Oistrict	82.0L	1-10" 1-16" 3-18"	168					964	238	2040	2458	2730	2455	1301	12350
GAGING STATION - SAN JOAQUIN RIVER AT HETCH HETCHY AQUEDUCT CROSSING	82.65														
El Solyo Ranch	82.9L	1-16"	32							71	5.9	199	242	250	853
El Solyo Ranch	83.5L	1-12"	1							23	20	28	27	32	131
El Solyo Ranch	83.7L	1-12"	3.3							114	В6	232	244	146	855
Faith Ranch	84.4R	1-16"	122	56	43			378	64	449	572	736	792	623	3835
		1-20"													
TUOLUMNE RIVER	91.OR														
GAGING STATION - SAN JOAOUIN RIVER AT WEST STANISLAUS IRRIGATION DISTRICT INTAKE CANAL	91.8L														
WEST STANISLAUS IRRIGATION DISTRICT INTAKE CANAL	JB.10														
West Stanislaus Irrigation District	91.8L	1-12" 1-24" 6-26"	1260	493	277	577	0	4597	583	10660	13240	12820	9222	4662	5839
Fred Lara #1	* (0,6S)	1-14"		45		1		81		255	369	147	380	77	135
Frank Sarmento #1 *	4 (0.7N)	3-16 " a	94					106		302	192	370	351	290	170
Frank Sarmento #2 *	• (1.1N)	1-14"	68					292	1	701	632	385	556	404	303
Fred Lara #2	* (2.2S)	1~16~				12		13		7	37	48	65	28	21
Frank Sarmento #3 *	* {2,3N}	2-16"	125					176		391	373	391	363	373	219.
J. V. Steenstrup Estate	93.1R	1-12 1-14"E						70		328	476	706	846	535	296
T. C. Daily	94.1L	1- 3" 1- 6"						25	16	66	60	74	101	22	36
Rancho Dos Rios	94.7R	1-12"	5.4		34	1		54	1	192	279	345	338	280	158
E. L. Brazil	95.5R	1-16"		59	3		3	115		90	90	161	122	43	68
Charles Correia	95.8R	1-10"										51	51		10
CAGING STATION - SAN JOAQUIN	95.95L														
Island Dairy (d)	96.0L	1-18"			27			137		512	402	476	435	227	221
LAIRD SLOUGH BRIDGE	96.05														
E. S. Brush	98.5R	1- 71								61	8.5	84	62	58	351
Rancho El Pescadero	98.9L	1-18"	51	18	45			191		584	232	477	470	259	2321
GAGING STATION - SAN JOAQUIN RIVER AT PATTERSON BRIDGE	104,4L														
Patterson Water Oistrict	104.4L	1~14" 2-18" 3-20" 1-36"	158					848		5878	7684	7948	7948	7903	38 370
Chase Brothers	104.5R	1-36"	13	13				28		49	167	260	59B	276	142
PATTERSON BRIDGE	104.6									1					
Chase Brothers	106.5R	1-12"	23	24				98		319	535	517	445	271	2232
Tony Spinell:	109,1R	1-12"	40					27		57	12	39	69	44	288
Twin Oaks Irrigation Company	109.8L	1-12" 2-16" 1-18"	328	45	86			562		1962	1913	1338	1880	1015	912
T. J. Nenderson	118R	2- 8"	108							95	35	7.7	19	87	42.
L. A. Thompson	112.55P	1-18"	54					6.3		49	94	241	242		74
Frank C. Mosier	113.4R	1-12"	115	2	4			100	20	189	153	155	156	130	102
GAGING STATION - SAN JOAQUIN RIVER AT CROWS LANDING BRIDGE	113.4														
Frank C. Mosier	114.63R	1- 0"						No Dive	rsion						
Manuel A. Serpa	114.75R	2-10"						227		229	631	577	479	107	225
				1							1				
ORESTIMBA CREEK	115,2L												200	246	
ORESTIMBA CREEK ROY F. Crow L. B. Crow	115.2L 115.BL	1-10"	77		54			9	23	180	137	192	366 217	144	93.

DIVERSIONS - SAN JOAQUIN RIVER (Vernalis to Fremont Ford Bridge) (Continued) October 1962 through September 1963

	Mile and Bank	Number and Size					м	onthly Divers	ion in Acre-I	eet					Tatal Diversion
Water User	*	al Pump	Oct.	Nov.	Dec	Jan	Feb.	Mor	Apr	May	June	July	Aug	Sept.	Oct Sept Acre-Feet
Stevinson Water District	121.3R	1-18"	2	3						95	190	204	183	81	758
MERCED RIVER SLOUGH	122.2R														
GAGING STATION - SAN JOAQUIN RIVER NEAR NEWMAN	123.7														
MERCED RIVER	123.75R														
Stevinson Corporation	129.1L	1-16"			6		128			62	151	30	130	68	575
VERNALIS TO FREMONT FORD BRIDG	GE_														
Total Average cubic feet per second Monthly use in percent of sea	isonal		3152 51 1.9	837 14 0.5	579 9 0.3	592 10 0.4	132 2 0.1	10250 166 6.1	991 17 0.6	28000 455 16.6	33890 570 20.1	35340 574 20.8	33680 548 20.0	21380 360 12.6	168800 233

^{*} Mileage along San Joaquin River from its mouth, 4.5 miles below Antioch.

^{**} West Stanislaus Irrigation District Canal. The intake canal joins the San Joaquin River at mile 91.8L. Distance from the river and the bank is shown in parentheses.

a One 16" unit was removed in 1963. b Replaces a 12" unit. c Includes an undetermined amount of water returned to river by spill. d Formerly listed as W. F. Cook

DIVERSIONS - SAN JOAQUIN RIVER (Fremont Ford Bridge to Gravelly Ford) October 1962 through September 1963

Mile and Bank	Number and Size						Ionthly Diversi	an in Acre-Fi	ref					Total Diversion
and Bank Water User *	ond Size of Pump	Oct.	Nav.	Dec.	Jan	Feb.	Mar.	Apr.	May	June	July	Aug	Sept.	Oct Sept. Acre-Feet
GAGING STATION - SAN JOAQUIN 129.5 RIVER AT FREMONT FORD BRIDGE														
GAGING STATION - SAN JOAQUIN 186.0 RIVER NEAR DOS PALOS														
San Luis Canal Company (a) 186.6L	Gravity	7449	3574	2100	3386	4326	11203	12077	21955	26852	28153	25837	16623	163535
FIREBAUGH BRIDGE 198.4														
GAGING STATION - SAN JOAQUIN 206.2 RIVER NEAR MENDOTA														
MENDOTA DAM 208.63														
Central California 208.8L Irrigation District (a)	Gravity	21012	12277	3311	4806	10989	47353	28719	72893	81878	87742	84987	41667	497634
FRESNO SLOUGH 8 209.0L		,												
DELTA-MENDOTA CANAL (0.2L)														
Firebaugh Canal Company (a) (0.4L)		1203	369	234		591	5216	4840	10494	12361	14168	14168	4973	68617
M. Jensen (b)	•						No Dive	rsion						
M. L. Dudley 8 (3.4L)							405	268	444	434	595	309	46	2501
State of California & (6.45-8.20) Mendota Waterfowl Management (b)	1-16"	3917	2174	700				30	234	2319	2670	2533	3112	17689
Fresno Slough Water 8 (9.20-10.50) District (b)						60	736	16	341	1309	1037	1111	192	4802
JAMES BYPASS 8 (11.BOR)	l													
Traction Water District (b) 88(0.75)		524	315	50		54	559	214	623	748	619	668	494	4868
Reclamation District 88(1.50)						22	67		67	153	171	167	14	661
James Irrigation District (b) 88(4.4)						1093	4941	1513	990	5619	7182	6028	496	27862
Tranquillity Irrigation 8(12.00-13.75) District (b)		204				1777	4066				557	6306	1414	14324
Melvin O. Hughes (b) 8 (12:20)							30			36				66
LONE WILLOW SLOUGH 219.BR														
Columbia Canal Company (a) 219.8R		3368	2846	1006	40	3207	4372	6668	8255	8664	8785	8959	5786	61956
State Center Duck Club (c) (b)			141	1.29									4	274
C. Sawall (d) (b)							No Dive	ersion						
Mendota Duck Club (e) (b)							No Dive	ersion						
M. Beck (f) (b)		44	10											54
E. P. Jennings (b)		6					52	58	4	22		28		180
F. A. Yearout (b)						77	102	26	87	161	115	209		777
Tulle Gun Club (g) (b)							No Dive	rsion						
GAGING STATION - SAN JOAQUIN 219.83 RIVER AT WHITEHOUSE														
GRAVELLY FORD CANAL 232.8R														
FREMONT FORD BRIDGE TO GRAVELLY FORD														
Total Average cubic feet per second Monthly use in percent of seasonal		37727 614 4.4	21706 365 2.5	7530 122 0.9	8232 134 1.0	22196 400 2.6	79102 1286 9.1	54429 915 6.3	116387 1893 13.4	140556 2362 16.2	151804 2469 17.5	351310 2461 17.5	74821 1257 8.6	B65800 1196

^{*} Mileage along San Jrajuin River from its mouth 4.5 miles below Antioch.

8 Plant is located in Fresno Slough which diverts from San Joaquin River at mile 209.0L. Oistances from San Joaquin River and bank are shown in parentheses.

88 Plant is located or James Bypass which diverts from Fresno Slough at Mile 8 (11,80R). Distances from Fresno Slough and bank are shown in parentheses.

9 Records furnished by motifacting entities.

⁽c) 1-6" pump located on arm of slough, at SW corner S.12, T145, R15E. (d) 1-8" pump located on arm of slough, 1500' W of SE corner, S.18, T145, R16E. (e) 1-8" pump located on arm of slough, at St corner, S.11, T145, R15E. (f) 1-8" pump located on arm of slough, 1400' S of NE corner, S.24, T145, R15E. (g) 1-8" pump located on arm of slough, adjacent to M. Beck

DIVERSIONS - SAN JOAQUIN RIVER (Gravelly Ford to Friant Dam) October 1962 through September 1963

	Mile	Number					Septemb		on in Acre-Fi						Total
Water User	and Bank	and Size of Pump	Oct.	Nov	Dec	Jan	Feb.	Mar	Apr	May	June	July	Aug	Sept	Diversion Oct Sept Acre Feet
W. A. Kochergen 1	233.66R	1-6"	31	1107	Dec	76	1.0		търг	,	23	71	3B	19	192
Dewey W. Johnson 1	235.33R	1-5"						10	11	5	24	32	54	30	166
Hansen, Smith and McIntuf	237.33L	1-10"		10				33	18			46			107
	237.98R	1-6"		10				33	10			40			107
SKAGGS BRIDGE	238.18	1 0													
A. and M. Overgaard	243.84R	1-5"	5		3	2	1	32	20	19	52				134
		1-6"													
U. S. 99 HIGHWAY BRIDGE	247.38														
SANTA FE RAILROAD BRIDGE	249.23		8			3	1			37	62	73	69	36	289
Miller Brothers	251.46L 254.93R	1-6"	8			3	1			3 /	62	/ 3	69	30	289
	254.93R	1-6													
Sycamore Island Stock Rench 5 (b)	255.34R	1-6"						3			20	82	77		182
Oscar Spano River Ranch 1	257.10L	1-16"	11					14	33	100	120	158	165	124	725
Oscar Spano River Ranch 2	257.70L	1-12"	33	3				34	16	81	79	92	70	54	462
L. D. Cobb	258.08R	1→6" 1-7"						43		53	149	208	134	30	617
STATE HIGHWAY 41 BRIDGE	258.33														
R. J. Curtis	25B.39L	1-4"						89	35	55	40	100	56	68	443
W. E. Roberts 2	258.901	1-12"	17		1	1	1	1	1	33	90	85	80	82	392
J. E. Cobb	259.39R	2→6"	2	4			18	40		3	56	76	75	7	281
OLD LANES BRIDGE	259.78														
J. E. Cobb 3	260.40R	1-6"	49	17		4	4	40	8	91	142	95	124	80	654
R. C. Arnold	261.53R	1-4" 1-5"		2				14		36	66	123	96	26	363
Duane M. Folsom	261.70L	1-6"	64	19				15	12	28	89	136	156	76	595
E. G. Rank, Jr.	262.32L	1-5"	21	10	3	1		8		27	68	70	79	36	323
Dale McCoon 1	262.60R	1-5"						57	5		65	76	77	6	286
W. H. Rohde	262.66L	1-7"	3			52	10		4	1	45	75	78	19	287
Dale McCoon 2	263.40R	1-7"						96	7		101	127	114	8	453
Dale McCoon 3	263.48R	1-6"						43	2		95	116	77	2	335
H. K. Jensen	263.76R	1-5"		35	1	11	10			40	83	100	98	71	449
H. W. Ball 4 (c)	264.08L	1-6"													
Ike D. Ball	264.60R	1-6"	37	26				32		80	113	117	116	88	609
W. F. Bell	264.83L	1-4" 1-5"	30	20	6	5	4			51	47	102	75	46	386
Virgil Durando	267.56L	1-8"	32		13	10	8	4	12	27	160	212	219	146	843
GAGING STATION - SAN JOAQUIN RIVER BELOW FRIANT	268.13L														
FRIANT BRIDGE	268.88														
COTTONWOOD CREEK	269.53R														
FRIANT DAM	269,63														
GRAVELLY FORD TO FRIANT DAM															
Total Average cubic feet per second Monthly use in per cent of se	asonal		343 6 3.6	146 2.5 1.5	27 0.4 0.3	89 1.4 0.9	57 1.0 0.6	608 9.9 6.4	184 3.0 1.9	767 12 8.0	1789 30 18.7	2372 39 24.8	2127 35 22.3	1054 18 11.0	9563 13

Milesge along San Joaquin River from its mouth 4½ miles below Antioch.

Mot published in 1962 report. 174 acre-feet were diverted during 1962 diversion year.

Mot published in 1962 report. 174 acre-feet were diverted during 1962 diversion year.

Date not published as current byear seasonal average is less than 200 acre-feet.

TABLE B-89 DIVERSIONS - MERCED RIVER Uctober 1962 through September 1963

	Mile and Bank	Number and Size					Mi	onthly Diverse	an in Acre-Fe	ret					Total Diversion Oct Sep Acre-Feet
Water User	above Mouth	al Pump	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Acre-Feet
	1.1														
HILLS FERRY BRIDGE	1.1 1.8R	1-16"					57		- 1	73	252	445	185	32	104
Stevinson Water District #1 Stevinson Water District #2	3.8R	1-16"	100	16	. 3		89	215		644	626	835	851	524	390
Stevinson Water District #2	4.3L	1-10"	17	8	6	4	5	3	,	044	14	32	27	19	13
Milton Gordon GAGING STATION - MERCED RIVER NEAR STEVINSON	4.6	1-10	17			,	,	,	-		2.7	72			
Maria DeAngelis	5.8L	1-12"								36	48	56	24	36	20
Stevinson Water District	6.11.	1-20"	32	49	8		42	434		225	795	486	577	171	281
Stevinson Water District #3	7.75	1-20"	192	74			18	126		103	68	46	222	11	В6
Manuel Clemintino	8.SL	1-12"									31	77	38	27	17
Manuel Clemintino	8.9L	1-12"								14	51	62	70	35	23
Samuel B. McCullagh	9.4L	1-8"		34						11	107	220	90	48	51
Mrs. J. R. Jacinto	9.6L	1-12"	47				14			33	70	130	59	45	39
Mrs. J. 8. Silva, E. and J. Gallo Winery Ranch L. Alves and A. Mattos	10.35L	1-10"	54	12	5	6	2	6	3	164	198	458	119	117	114
R. E. Prusso and John Vierra	10.9L	(a) 1- 8" 1-12"	66	13						57	113	87	121	86	54
Manuel Freitas	10.9L	1-12"	30	30						59	100	100	105	108	5.3
E. and J. Gallo Winery Ranch	11.61	1-12	245	30				54	43	50	350	461	289		152
MILLIKEN BRIDGE	11.65	1-10													
E. and J. Gallo Winery Ranch	12.35L	1-10"	5	74	6			3	4			61	7		16
Anthony L. Calderia	12.5R	1-12"	9					7		18	29	60	27	55	20
E. and J. Gallo Winery Ranch	12.85L	1-12"	5	111	19			5	27	12	231	274	30		71
J. M. Souza	14.5L	1-10"	32								57	136	88	35	34
GAGING STATION - MERCED RIVER NEAR LIVINGSTON	16.49														
E. and J. Gallo Winery Ranch	16.5L	1-14"		127	49	9	2		15	11	195	180	134		72
J. E. Gallo	20.4L	1-8"(b)	1	94	52			124	14	3	178	176	8		65
U.S. HIGHWAY 99 BRIDGE .	21.04														
SDUTHERN PACIFIC RAILRDAD BRIDGE	21.05														
Gallo Cattle Company	22.2R	1-8"	57	178	10	2	1	175	27	235	338	475	300	237	203
Gallo Cattle Company	22.8R	1-12"	180	73	72			121	24	146	315	415	359	132	183
Merced River Farms Association	26.3R	1-8"	12				19	5		33	81	78	97	32	35
SANTE FE RAILROAD BRIDGE	£7.05														
W. C. Magneson	27.5R	1-10"	14							1	72	81	103	92	36
GAGING STATION - MERCED RIVER AT CRESSEY	27.55														
CRESSEY BRIDGE	27.55														
Manuel Silva	29.9R	1-6"									45	81	50	47	22
Manuel Silva	30.95R	1-12"									99	137	95	84	41
Rancho Con Valor	31.1L	1- 8"		1						97	107	111	84	57	45
Manuel Silva	31.4R	1-10"								155	226	226	213	146	96
P. Hilarides	32.3L	1-12"		59								5	39	2	10
SHAFFER BRIDGE	32.5														
Harry P. Schmidt and Son	33.1R	1-10"									93	55	110	18	27
Walter Settencourt	34.45L	1-12"						No Div	ersion						
W. F. Bettencourt, P. Hilarides and Cowel Lime and Cement Company	36.9L	Gravity	180	83	155	179	89	58	362	598	803	1414	1341	802	600
Amsterdam Orchards Incorporated (c)	39.1L	1-14"					83	123	12	27	40	23	13		3.
Ratzlaff Brothers	40.2L	1- 4"								21	43	53	46	26	1.0
COX FERRY BRIDGE	42.1														
Cowel Ditch	45.3R	Gravity	65B	498	772	849	397	2899	2717	3650	2791	4151	3812	3126	263
GAGING STATION - MERCED RIVER BELOW SNELLING	46.2														
MERCED RIVER															
Total Average cubic feet per second Monthly use in percent of seas	onal		1936 31 3.4	1564 26 2.8	1157 19 2.0	1051 17 1.9	B18 15 1.4	4358 71 7.7	3250 55 5.7	6476 105 11.4	8566 144 15.1	11690 190 20.6	1733 158 17.2	6152 103 10.8	567

a A 5" unit was removed in 1963. b Replaces a 7" unit. c Formerly listed as Reinero Brothers.

TABLE B-90 DIVERSIONS - TUOLUMNE RIVER October 1962 through September 1963

						ougn se									
	Mile and Bank	Number and Size					M	onthly Diversi	ion in Acre-F	ce1					Diversion Oct Sept
Water User	above Mouth	of Pump	Oct	Nov	Dec	nol	Feb	Mor	Apr	May	June	July	Aug	Sept	Acre-Feet
E. T. Mape	1.3R	1-14"	253	264	50	19		292		589	541	988	935	664	4595
J. V. Steenstrup Estate	1.9L	2-12"						72	1	171	400	509	595	132	1880
J. V. Steenstrup Estate	2.9L	1-10"			1	1	1	319	45	185	506	331	452	213	2054
GAGING STATION - TUDLUMNE RIVER AT TUOLUMNE CITY (SHILOH BRIDGE)	3.35														
Bancroft Fruit Farms	5.0R	1-10"	4					22	3	38	56	59	41	53	276
Della Battestin	5.9L	1-14"						No D	iversio	n					
Western Farms	6.3L	1-16"				1				9	78	115	143	65	411
Eugene Boone, Galen Hartwich and Dr. Harold Willis	7.1R	1-10"								94	75	83	79	48	379
Beth Wootten	8,4R	1-10"	19							10	46	60	56	62	253
Ella T. Rahilly Estate	8.5L	1-10"								41	29	58	43	51	222
A. C. Watkins Estate	9.4L	1-20"	62	82	1			73		41	103	36	68	20	486
A. C. Watkins Estate	9,6L	1-12"	116					Plant	Remove	d					116
McClure Ranches	9.7R	1-21"		}					19	33	106	64	63	43	328
Raymond 800ne	10.2R	1-14"	4							25	162	126	107	100	524
CARPENTER ROAD SRIDGE	12.9														
SEVENTH STREET BRIDGE	15.75														
SOUTHERN PACIFIC RAILROAD BRIDGE	15.8														
U.S. HIGHWAY 99 BRIDGE	16.05														
GAGING STATION - TUOLUMNE RIVER AT MODESTO	16.05														
DRY CREEK	16.5R														
EAST MODESTO BRIDGE	19.3														
Jack Gardella	20.3R	1-10"	4					11		36	51	34	40	27	203
SANTA FE RAILROAD BRIDGE	21.6														
SANTA FE RDAD BRIDGE	21.65														
Mrs. A. L. Leib (a)	22.8R	1- 3" 1- 6"	4							20	11	30	30	7	102
GEER AVENUE BRIDGE	26.0														
Michel Investment Company	28.8R	1-8"	15	1						41	95	76	108	40	376
J. W. and Lola May Short	29.8L	1-10"		5							13	77	44	37	176
Firpo Ranch	30.2L	1-10"	36	3	16			14		51	65	95	83	87	450
SOUTHERN PACIFIC RAILROAD BRIDGE (OAKDALE BRANCH)	31.5														
A. E. Ketcham Estate	39.4R	1-8"	11	33						20	92	83	93	56	388
Westley N. Sawyer (b)	39.0R	1-8"c								13	55	58	46	36	208
GAGING STATION - TUDLUMNE RIVER AT ROBERTS FERRY BRIDGE	39.9														
Westley N. Sawyer	40.8L	1-14"	6							57	87	93	100	46	389
Curtner Zanker	45.7L	1-10"	14		1	1		1	1	38	100	82	79	60	377
Dolling Brothers	46.3R	1- 8"	22							71	68	100	80	95	4 3 6
STATE HIGHWAY 132 BRIDGE	47.4														
GAGING STATION - TUOLUMNE RIVER AT LA GRANGE BRIDGE	50.5														
TUOLUMNE RIVER															
Total Average cubic feet per second Monthly use in percent of seas	sonal		570 9 3•9	388 7 2.6	69 1 .5	22 0 .2	1 0 0	804 13 5.5	69 1 .5	1583 26 10.8	2739 46 18.7	3157 51 21.6	3285 53 22-4	1942 33 13.3	14630 20

a Formerly listed as A. L. Leib b Formerly listed as George H. Sawyer c Replaces a 6" unit.

TABLE B-91

DIVERSIONS - DRY CREEK
October 1962 through September 1961

	Number ond Size	Monthly Diversion in Acre-Feet												Total Diversion	
Woler User	above Mouth	of Pump	Oct.	Nov.	Dec.	Jon	Feb	Mor	Apr	May	June	July	Aug	Sept	Oct Sept Acre-Feet
Podesto and Arata	0.4R	1- 6"						Pla	nt Dro	pped					
MODESTO-EMPIRE TRACTION COMPANY RAILROAD BRIDGE	0.7														
STATE HIGHWAY 132 BRIDGE (YOSEMITE BOULEVARD)	0.8														
LA LOMA BRIDGE	1.2														
EL VISTA AVENUE BRIDGE	2.9														
GAGING STATION - DRY CREEK NEAR MODESTO	5.3R														
CLAUS ROAD BRIDGE	5.4														
SANTA FE RAILROAD BRIDGE	6.4										,				
CHURCH STREET BRIDGE	7.2														
WELLSFORD ROAD BRIDGE	8.7														
ALBERS ROAD BRIDGE	11.0														
MODESTO IRRIGATION DISTRICT CANAL CROSSING	11.1														
Edward Johnson	12.6R	1- 6"	6							6	34	49	38	31	164
Edward Johnson	12.7R	1- 6"	10							61	77	90	74	46	358
Joe Fagundes	14.7R	1-10"	30	3	11	6	1	59	13	123	150	182	165	103	846
OAKDALE WATERFORD HIGHWAY BRIDGE	17.4														
DRY CREEK															
Total Average cubic feet per second Monthly use in percent of seas	onal		46 1 3.9	3 0 .2	11 0 .8	6 0 .4	1 0 .1	59 1 4.3	13 0 1.0	190 3 13.8	261 4 19.0	321 5 23.3	277 5 20.1	180 3 13.1	1368

TABLE 3-92 DIVERSIONS - STANISLAUS RIVER October 1962 through September 1968

	Mile and Bank	Number and Size	Monthly Diversion in Acre Feet												
Water User	above Mouth	ond Size of Pump	Oct.	Nov	Dec	not	Feb	Mar	Apr.	Моу	June	July	Aug	Sept	Direction Oct - Sept Acre Feet
GAGING STATION - STANISLAUS RIV	ER 1.9R														
Cook Land and Cattle Co. pany and C. M. Carroll	1.9R	1-16"									17 ,	93	28	44	18.
C. C. Angyal	2.4R	1-18						130	14	148	269	246	142	6.21	1_46 a
Faith Ranch	3.4L	2-12" 1-16"	115	84				255	1	522	577	49	469	455	2975
Reclamation District 2064	4.OR	1-14" 1-16" 2-20"	403	111		5		3B3		1462	1703	2341	1825	12 1	9431
Reclamation District 2075	4.05F	2~16"	597	199	40	13		1293		2576	2600	3119	2829	2170	15440
D. F. Koetitz	4.7L	1-14"	25							208	163	291	257	51	1001
E. T. Mape	4.75L	1-20"		290				262		61	194	37			844
Henry Pelucca	5.5L	1-16"								39	113	86	71	76	385
Alice Gill	6.4L	1-12"	2							46	533	99	~6	124	680 a
D. J. Macedo	8.4R	1-16"						112		342	119	562	349	181	1665
N. E. Cannon	8.7R	1-10"	58	15				80		420	290	422	388	271	1944
GAGING STATION - STANISLAUS RIVER AT KOETITZ RANCH	9.35L														
D. F. Koetitz	9.4L	1-12"	113		4					421	357	466	363	199	1923
John L. Hertle	9.81	1-10"							40	10	31	39	65	2-	212
Nelson Santos	10.0R	1-16"	39								6	91	39	49	224
Nelson Santos	10.5R	1-16"	11								7.3	153	139	124	500
John L. Hertle	10.7L	1-10"									3		5	23	31
GAGING STATION - STANISLAUS RIVER AT RIPON	15.7L														
SOUTHERN PACIFIC RAILROAD BRIDGE	15.7														
U.S. HIGHWAY 99 BRIDGE	15.7												200	3.4	1276 a
A. Girardı	17.7L	1-16"			1		1			95	412	446	287	43	613
E. J. Freethy	19.0R	1-14"	26	55				35		19		198	207		
Libby, McNeill and Libby	20.9R	1-14"	}		5				12	367	202	305	189	10~	1182 258
Heath Ranch	21.2L	1- 6"	24					28		15	66	70	41	14	17
Mark Rumble b	23.4L	1~ 8"										5		,	17
MODESTO-ESCALON HIGHWAY BRIDGE	29.6														
F. K. Floden	29.9L	1-10"						No	Divers	non					
SANTA FE RAILROAD BRIDGE	33.4														
GAGING STATION - STANISLAUS RIVER AT RIVERBANK	33.6							10	12	5	176	212	132	5	552 a
Oakdale Irrigation District (Crawford pump) c	37.7L	1-14"						10	12	29	140	161	132	137	512 9
Oakdale Irrigation District (Brady pump) c	39.1L	1-12"								29	140	101	124	15.	
OAKDALE-STOCKTON HIGHWAY BRIDGE	41.2														
SOUTHERN PACIFIC RAILROAD BRIDGE (OAKDALE BRANCH)	41.2														
GAGING STATION - STANISLAUS RIVER AT ORANGE BLOSSOM BRIDGE	47.0														
STANISLAUS RIVER															
Total Average cubic feet per second Monthly use in percent of seas	onal		1413 23 3.3	754 13 1.8	45 1	18 0 0	1 0 0	2596 42 6.0	79 1 .2	6785 110 15.7	B131 137 18.8	9929 161 23.0	7982 130 18.5	5435 91 12.6	43170

a Includes an undetermined amount of water returned to river by spill. b Formerly listed as Thomas Lyon. c Oakdale Irrigation District for season of 1963 maintained plants at miles 37.71 and 39.1L to supplement district gravity supply.

DIVERSIONS - TULE RIVER Ucto-er 1962 through September 1963

	Mile and Bank	Number and Size		Monthly Diversion in Acre-Feet									Total Diversion		
Water User	*	of Pump	Oct.	Nov	Dec	Jan	Feb	Mar	Apr	Moy	June	July	Aug	Sept	Oct - Sept, Acre Feet
SUCCESS DAM	0.0														
GAGING STATION - TULE RIVER BELOW SUCCESS DAM	0.35														
Campbell-Moreland Ditch	a 2.4L	Gravity	422	519	714	719	797			788	1684	1043	1305	853	8834
PORTER SLOUGH	2.4R														
GAGING STATION - PORTER SLOUGH AT PORTERVILLE (B LANE BRIDGE)	** (2.4)														
PIONEER SPILL	**(3.7R)														
Porter Slough Ditch b	**(4.5R)	Gravity				11	512		5	337	669	870	518	205	3127
GAGING STATION - PORTER SLOUGH NEAR PORTERVILLE (NEWCOMB ROAD)	** (6.1)														
Vandelia Ditch	c 3.1L	Gravity				17	228			125	176	391	65	215	1217
SANTA FE RAILROAD BRIDGE	5.1														
Poplar Ditch	d 5.8L	Gravity		41	43	38	2541	676		58B	1507	4558	5939	2141	18070
STATE HIGHWAY 190 BRIDGE	5.9														
SOUTHERN PACIFIC RAILROAD BRIDGE	6.0														
Hubbs-Miner Ditch	e 6.4R	Gravity					169	122		407	590	851	483	793	3415f
STATE HIGHWAY 65 BRIDGE	6.6														
Rhodes-Fine Ditch	g 8.4L	Gravity							156	1120	872	115			2303h
OLIVE AVENUE BRIDGE	9.9														
FRIANT-KERN CANAL CROSSING	10.5														
Woods-Central Ditch	1 11.OL	Gravity				24	3227					9483	2763		15500)
GAGING STATION - TULE RIVER BELOW PORTERVILLE	11.8														
OTTLE BRIDGE	14.4														
TULE RIVER															
Total Average cubic feet per second Monthly use in percent of sea			422 7 2.7	560 9 1.1	757 12 1.4	809 13 1.5	7474 135 14.2	79B 13 1.5	161 3 0.3	3355 55 6.4	5498 92 10.5	17350 282 33.1	11070 180 21.1	4207 71 7.8	52470 72

- Mileage downstream from Success Dim
 Flagre in parentheses indicates distance
 along Porter Slough from Tule River
 Flow measured at gaging station on CampbellMoreland Ditch located approximately 2600
 feet below head.
 Flow measured at gaging station on Porter Slough
 Ditch located approximately 150 feet below head.
 Ditch located approximately 100 feet below head.
 The greater portion of this water was used to
 recharge Vandalia Irrigation District well field.
 Flow measured at gaging station on Poplar Ditch
 located approximately 4750 feet below head.
 The greater portion of this water was used to
 recharge Vandalia Irrigation District well field.
 Flow measured at gaging station on Poplar Ditch
 located approximately 4750 feet below head.
 The recorder at this station was deactivated during
 the following periods: 10-1-62 through 2-1-63 and
 2-6-63 through 2-10-63. This recorder was activated
 prior to anticipated diversion periods upon notifi-

- cation from the Tule River Association. It is assumed there was no flow during these deactivated periods. Flow measured at gaging station on Rhodes-Fine Ditch located approximately 3100 feet below head. The recorder at this station was deactivated during the following periods: 10-1-62 through 2-11-63, 3-6-63 through 4-17-63, and 8-1-63 through 9-30-63. This recorder was activated prior to antiepated diversion periods upon notification from the Tule River Association. It is assumed there was no flow during these Flow mensured at gaging station on Woods-Central Ditch located approximately 100 feet below head. The recorder at this station was deactivated during the following periods: 10-1-62 through 1-30-63, 2-26-63 through 6-22-63, and 8-16-63 through 9-30-63. This recorder was activated prior to anticipated diversion periods upon notification from the Tule River Association. It is assumed there was no flow during these deactivated periods.

TABLE 8-94

OIVERSIONS AND ACREAGE IRRIGATEO-EAST SIDE CANALS AND IRRIGATION DISTRICTS* October 1962 through September 1963

														Acrec Imga	
Water User	Oct	Nov	Dec	Jan	Feb	Mar	Apr.	Мау	June	July	Aug	Sept	Total	General	Rice
Friant-Kern Canal					Si	IN JOAQI	IN RIV	ER							
Total acre-feet diverted Average cubic feet per second Monthly use in percent of seasonal	54159 881 3.6	22471 378 1.5	0	1083 18 0.1	61071 1100 4.0	74279 1208 4.9	163174 2742 10.8	221468 3602 14.6	243915 4099 16.1	237905 3869 15.7		173113 2909 11.4	1512,990 2090		
Madera Canal															
Total acre-feet diverted Average cubic feet per second Monthly use in percent of seasonal	409 7 0.2	101 2 0	0 0	0 0 0	1375 25 0.5	6912 112 2.6	12672 213 4.7	31321 509 11.6	53873 905 19.9	1069	1059	33142 557 12.2	270609 371		
Merced Irrigation District						MERCED	RIVER							-	
Main Canal Northside Canal	0 490	300 63	310 63	310 111	280 34	23070 776	35786 345	85124 2932	104612 4227	104222 4618		65993 3529	512228 21673		
Total acre-feet diverted Average cubic feet per second Monthly use in percent of seasonal	490 8 0.1	363 6 0.1	373 6 0.1	421 7 0.1	314 6 0	23846 388 4.4	36131 607 6.8	88056 1432 16.5	108839 1829 20.4	108840 1770 20.4	1573	69522 1168 13.0	533901 a 737	100284b	5366
Turlock Irrigation Gistrict					2	CUOLUMNI	RIVER								
Total acre-feet diverted Average cubic feet per second Monthly use in percent of seasonal	32610 530 5.7	26297 442 4.6	6224 101 1.1	10199 166 1.8	714 13 0.1	24188 393 4.2	30250 508 5.2	87152 1417 15.2	104073 1749 18.1	102506 1667 17.8	1570	907	574705 C 794	171008	0
Modesto Irrigation District															
Total acre-feet diverted Average cubic feet per second Monthly use in percent of seasonal	19736 321 6.1	6776 114 2.1	32 1 0	110 2 0	0	15734 256 4.9	26421 444 8.1	50692 824 15.6	1120		714	38185 642 11.8	324878 € 449	66028£	437
Waterford Irrigation District															
Total acre-feet diverted Average cubic feet per second Monthly use in percent of seasonal	1973 32 5.7	0	0 0	0 0	0	11 0 0	1072 18 3.1	5714 93 16.5	7182 121 20.8	7348 120 21.2	6391 104 18.5	4912 83 14.2	34603 9 48	7232h	
Dakdale Irrigation District					<u>S′</u>	CANISLA	S RIVE	<u>R</u>							
Northaide Canal Southside Canal	5669 8009	130 404	17 60	47	0	486 1079	437 42		23796 32522					199381 33869)	3221 416
Total acre-feet diverted Average cubic feet per second Monthly use in percent of seasonal	13678 222 5.3	534 9 0.2	77 1 0	47 1 0	0 0 0	1565 25 0.6	479 8 0.2	46386 754 17.8	56318 946 21.6	50641 824 19.5	49826 810 19.1	40938 688 15.7		53807k	3637
South San Joaquin Irrigation Oistrict															
Total acre-feet diverted Average cubic feet per second Monthly use in percent of seasonal	8703 142 4.1	0 0	0	0 0	0 0 0	5207 85 2.5	5888 99 2.8	34683 564 15.5	40937 688 19.5	45236 736 21.5	41288 671 19.6	476	210263 290	63666m	

- Oata for Madera and Friant-Kern Canal furnished by USBR, all other data furnished by individual irrigation districts. a An additional 83,200 accrefect of water was pumped from wells. by the state of the state of

- h Of this acreage, 209 was double cropped.
 1 Of this acreage, 274 was double cropped.
 2 Of this acreage, 608 was double cropped.
 3 This acreage, 608 was double cropped.
 3 This acreage also received 32,231 acre-feet of water from wells and controlled drainage.
 5 This acreage also received an undetermined amount of well water, and an undetermined amount of controlled drainage water from Oakdale Irrigation district. Of this acreage, 3,200 was double cropped. Includes 1,355 acres served by substrigation.

TABLE 8-95

DELIVERIES FROM CENTRAL VALLEY PROJECT CANALS *
October 1962 through September 1963

	Mile Post from				rough S				_					
	Conol Head				Т.		hly Oeliver	ies in Aci	re-Feet	1		1		Total
Water User	From To	Oct.	Nov	Dec	Jan.	Feb	Mar	Apr.	May	June	July	Aug	Sept.	
						_	<u>l</u> ta-Men I	1	T					
State of California (South Bay Aqueduct)	3.54	1571	1320	0	620	86	1148	0	645	1539	1407	2205	2392	12933
Plain View Water District	8.50 20.00	425	141	1	5	54	1089	118	2861	2809	3256	3176	1930	15865
West Side Irrigation District	14.78	0	0	0	0	0	98	0	336	204	827	327	212	2004
Banta-Carbona Irrigation District	20.42	0	0	0	0	0	0	0	1530	1331	1739	1747	654	7001
Hospital Water District	18.05 30.96	359	194	3	1	3	2009	631	2932	4375	4131	3598	2689	20925
West Stanislaus Irrigation District	31.31	0	0	0	0	0	0	0	406	715	5778	6977	1124	15000
Kern Canon Water District	31.31 35.18	136	129	13	4	0	401	151	1039	1198	1276	1592	636	6575
Del Puerto Water District	35.73 42.08	217	527	47	0	1	716	94	1209	2405	1996	2138	1238	10588
Patterson Water District	42.51	174	25	8	٥	0	0	268	806	895	891	1285	1079	5431
Salado Water District	42.10 46.83	116	41	0	0	0	215	0	1156	1408	2034	1131	514	6615
Sunflower Water District	44.23 52.02	140	30	0	13	0	541	188	1073	2005	2458	1903	549	8900
Orestimba Water District	46.83 51.41	40	2	8	1	1	330	30	1181	1943	3176	1631	429	8772
Foothill Water District	51.65 57.46	208	1	1	1	0	632	0	915	1393	2083	1563	1387	8184
Davis Water District	53.60 56.82	128	31	0	0	0	73	33	304	412	599	578	415	2573
Luhr and Wendt		0	0	0	0	0	5	4	6	6	9	13	10	53
Mustang Water District	56.80 62.67	131	46	6	0	0	322	36	644	972	1626	1063	625	5471
Quinto Water District	63.96 67.55	129	60	0	0	0	160	0	278	511	844	811	714	3507
Romero Water District	66.70 68.03	390	100	50	0	0	145	0	181	291	489	545	128	2319
San Luis Water District	69.21 90.53	2246	1606	675	928	4414	4265	5026	6130	10574	12698	9507	3350	61419
Grassland Water District	70.00	9916	4341	54	0	0	0	0	796	899	762	402	1114	18284
Grassland Water District (1)	Mendota Pool	18925	5648	0	0	0	0	0	0	0	0	0	2759	27332
Morrison-Knudsen		0	0	0	0	0	0	0	0	0	0	0	1	1
State Fish and Game	70.00	0	0	0	0	0	0	0	0	0	0	0	0	0
Sam Hamburg Farms	90.53	1	2	1	3	1	2	1	2	3	4	3	2	25
Panoche Water District	93.25 96.70	2153	2983	1470	1175	7264	7649	2710	4676	10665	12664	10993	3329	67731
Eagle Field Water District	93.27 94.57	33	192	43	132	517	98	160	1242	1229	1451	1270	564	6931
Oro Loma Water District	95.50 96.62	0	0	0	0	0	0	666	1156	933	1130	961	97	4943
Westside Golf Association	95.95	14	12	2	5	3	9	8	13	17	22	20	15	140
McNamara-Mannix		0	0	0	0	0	0	33	49	51	53	33	34	253
Mercy Springs Water District	97.70 99.82	0	0	0	0	0	216	137	1213	1187	1119	733	220	4825
Mercy Springs Water District (1)	Pool	0	0	0	0	0	0	0	0	0	0	0	0	0
Widren Water District	102.03	0	0	0	0	0	35	113	506	439	438	478	124	2133
Broadview Water District	102.95	284	1209	849	428	1911	1575	585	1344	2262	3271	2479	1058	17255
Total		37736	18640	3231	3316	14255	21733	10992	34629	52671	68231	59162	29392	353988
Net Deliveries DMC to Mendota Pool		45629	26244	5044	13734	23909	83185	56247	124074	14 30 78	174944	163008	82665	941761
						М	ıllerto	n Lake						
Fresno County Water District #18			2	2	2	2	2	2	8	14	18	16	11	84
Ralston Association			1	1	1	1	1	1	1	1	2	2	1	13
Total		5	3	3	3	3	3	3	9	15	20	18	12	97
							Madera	Canal						
Madera Irrigation District	6.10 32.2	0	0	0	0	1006	5697	7750	17274	31861	38954	36861	20261	159664
Adobe Ranch	20.6		54	0	0	0	0	0	0	0	0	0	0	54
														105943
Chowchilla Water District	35.9		0	0	0	0	77	4104	12341	22882	26458	26809	1327.	105943

TABLE 8-99 DELIVERIES FROM CENTRAL VALLEY PROJECT CANALS (Contilised)*
October 1962 through September 1963

	Mile Post from Canal Head					Mont	Thly Oeliveri	es in Acre	Feet					
Water User	From To	Oct.	Nov	Dec.	Jan	Feb.	Mar	Apr	May	June	July	Aug	Sept	Total
						Fr	lant-Ke	rn Cana	1					
Garfield Water District	7.53	108	*5	20	d	71	92	18	296	668	571	462	274	264
International Water District	14.9	18	0	0	0	0	0	0	52	147	180	187	116	740
Round Mountain Water District	20.85 21.33	21	0	0	0	0	0	0	0	0	29	34	38	122
Round Mountain Ranch	20.22	13	4	0	0	0	0	0	7	16	16	8	10	74
Consolidated Irrigation District	28.50	0	0	0	0	0	0	10820	16096	9900	10000	17278	0	64094
Last Chance Water Ditch Company	28.50	0	0	0	0	0	0	635	1865	1000	0	0	0	3500
Laguna Irrigation District	28.50	0	0	0	0	0	0	1460	3540	2001	0	0	C	7001
Corcoran Irrigation District	28.50	0	0	0	0	0	0	8440	3160	2001	0	0	5383	18984
Stratford Irrigation District	28.50	0	0	0	0	0	0	200	300	0	0	0	0	500
Tulare Lake Basın Water Storage District	28.50 95.64	0	0	0	0	0	0	4358	16284	4001	8000	4479	26523	63645
Alta Irrigation District	28.50	0	0	0	0	0	0	2101	901	601	0	0		3603
Fresno Irrigation District	28.50	0	0	0	0	3836	0	17994	1226	2711	1861	18821	6179	52628
Riverdale Irrigation District	28.50	0	0	0	0	0	0	1460	3540	2501	0	0	0	7501
Kings River Water Association	28.50	0	0	0	0	0	0	0	0	0	0	0		0.
Westside Irrigation District	28.50	0	0	0	0	0	0	1200	1800	0	0	0	0	3000
Kings County Water District	28.50 71.29	0	0	0	0	0	0	12966	8536	3132	5873	9656	345	40508
Drange Cove Irrigation District	35.87 53.31	1373	885	0	0	0	5.2	20	1950	5361	6881	7198	3669	27389
City of Orange Cove	43,44	23	3	0	0		0	0	30	36	38	35	26	191
Stone Corral Irrigation District	56.90 64.40	260	151	0	0	0	65	46	434	1408	1910	1757	843	6874
Ivanhoe Irrigation District	65.04 68.13	1010	674	0	0	0	12	157	1375	1644	2634	3402	2491	13399
Tulare Irrigation District	68.14 71.29	3051	2001	0	0	18631	0	23241	24151	39454	39228	19250	26793	195800
Lakeside Irrigation Water District	69.42	0	0	0	0	0	0	1628	4873	8420	280	5000	0	20201
Kaweah-Delta Water Conservation District	69.08 71.29	0	0	0	0	0	0	11558	18403	10193	0	7468	2283	49905
Exeter Irrigation District	72.52 79.24	1523	1186	0		409	353	422	3136	4407	4860	4324	2321	22941
Lindsay-Strathmore Irrigation District	85.56	2588	2164	0	0	50	353	417	2674	3781	4441	44"1	347+	24418 ⁽ ·
Lindmore Irrigation District	20.17 91.12	2951	1730	0	0	1549	1954	369	4655	8589	10344	9812	5542	47195
Porterville Irrigation District	93.93 98.62	500	545	0	0	922	1825	807	2275	30~0	3584	3995	1882	19405
Lower Tule Irrigation District	95.67 98.62	19295	8398	0	0	8313	17635	27166	49088	49342	38625	49558	40392	317312
Tea Pot Dome	99.35	407	220	0	0	26	22	2	442	609	680	672	510	3390
Saucelito Irrigation District	93.62 107.37	1956	579	0		1817	4364	2075	4395	8247	9231	9459	5123	47296
Cloer Commercial Service District	101.60	0	0	0		0	0	16	0	0	0	0		16
Terra Bella Irrigation District	102.65	994	524	0	0	0	28	0	1158	1603	2210	2297	1595	10409
Pixley Irrigation District	102.69	3039	0	0	0	4320	0	2692	4261	6583	10277	10352	6407	47931
Delano-Earlimart Irrigation District	109.48 118.45	7765	5399	224		6748	18813	11054	16027	25240	33329	28991	11 .4	16-404
Rag Gulch Water District	117.96	430	264	141		910		891	1327	149	1343	1.96	488	9148
Southern San Joaquin Municipal Utility District	117.44 127.97	3554	3082	555	0	2698	20567	8404	+269	13222	29943	258/19	9425	.16931
Shafter-Wasco Irrigation District	134.42 137.17	1640	1190	532		930	7147	2150	2257	5742	10719	10140	4062	46509
Pacific Gas & Electric Company Rosedale Rio Bravo Water Storage District	150.83	0	0	0		0		4019	5889	6303	0			::90:
	151.0	0		0		. 0		2358	3830	9199	18 /5		2501	19663
Buena Vista Water Storage District TOTAL	151.80	52519	29074	1472	l.	51230	73282	<u> </u>				256811		19663

^{*} Data furnished by the U. S. Bureau of Reclamation.

⁽¹⁾ Delta-Mendota Canal water delivered via Delta-Mendota Pool. (2) Includes water transported from Wutchumna Ditch.

APPENDIX C GROUND WATER MEASUREMENTS

TABLE OF CONTENTS

	PAGE
	TION
	OF GROUND WATER LEVELS AT WELLS IN THE SAN JOAQUIN VALLEY
	LIST OF TABLES
TABLE	
C-1	Ground Water Levels at Wells
	LIST OF PLATES
PLATE	(Bound at end of volume)
C-1	Ground Water Level Changes in Districts and Areas Unconfined Aquifers Spring 1962 - Spring 1963
C-2	Ground Water Level Changes in Districts and Areas Confined Aquifers and Semiconfined Aquifers Spring 1962 - Spring 1963
C-3	Location of Selected Observation Wells
C-4	Poso Soil Conservation District Cooperative Program Area
C-5	Kern County Cooperative Program Area
C-6	Map of Nineteen Historic Ground Water Areas in San Joaquin Valley and Profiles Along Section A-A' Showing Ground Water Levels in 1921, 1951, 1962, and 1963
C-7	Fluctuation of Average Water Level, 1921 to 1963, in Nineteen Historic Ground Water Areas in San Joaquin Valley.
C-8	Fluctuation of Water Level in Selected Wells in San Joaquin Valley
C-9	Lines of Equal Elevation of Water in Wells, San Joaquin Valley - Spring 1963

INTRODUCTION

This appendix presents ground water measurement data for the period July 1, 1962 through June 30, 1963.

The area for which ground water level measurements of selected wells are shown on Table C-1 is designated as Area 4 on page iii. Area 4 is that portion of the Water Pollution Control Board Region 5, which includes the Stanislaus River drainage area and the area south, to the Tehachapi Mountains.

The department cooperates with U. S. Geological Survey and the U. S. Bureau of Reclamation and many local agencies for the systematic observation of ground water levels. Wells for which water level measurements are collected in the San Joaquin Valley Hydrologic area number approximately 7,500 of which nearly 600 are presented here. These 600 wells were selected as representative wells of all the wells measured in the area, and are designated as selected wells. These wells were selected on the basis of a number of factors such as areal distribution; length of water level record; frequency of measurements; conformity with respect to water level fluctuations in the ground water basin or area, in a confined aquifer, or in a zone of shallow depth; and availability of a log, mineral analyses, and production records.

The depth to water in most wells is usually a direct measurement made with a tape; however, in some wells, especially deep ones, measurements are made with an air line and gage or an electric sounder.

Forty-six ground water basins or areas in the San Joaquin Valley are shown on Plates C-1 and C-2.

The districts or areas with a ground water level change of five feet or more in the unconfined and semiconfined aquifers are also shown on Plate C-1. The districts or areas with a ground water level change of five feet or more in the confined aquifers are shown on Plate C-2.

A map showing the location of the selected wells as listed in Table C-1 is presented on Plate C-3. Outlined on Plate C-4 is the Poso Soil Conservation District Cooperative Ground Water Program area.

Presented on Plate C-5 is that portion of Kern County covered in the Kern County cooperative ground water program for that area.

Definitions

Free ground water - Water in the interconnected interstices in the zone of saturation down to the impervious barrier, moving under the control of the water-table slope.

Confined ground water - A body of ground water overlain by material sufficiently impervious to sever free hydraulic connections with overlying ground water except at the intake. Confined water moves in conduits under pressure due to difference in head between intake and discharge areas of the confined water body.

Pressure surface - Or piezometric surface is the level to which the water level will rise above the bottom of a confining bed of impervious material when penetrated.

Perched ground water - Ground water occurring in a saturated zone separated from the main body of ground water by unsaturated material.

Water table - On pervious granular material the water table is the upper surface of the body of free water which completely fills all openings in the material sufficiently pervious to permit percolation. On fractured impervious rocks and in solution openings, it is the surface at the contact between the water body in the openings and the overlying ground air.

A map of 19 historic ground water areas and profiles along a section showing water levels in 1921, 1951, 1962, and 1963 are presented on Plate C-6.

Unit hydrographs depicting the fluctuation of average water levels in the 19 historic ground water areas in the San Joaquin Valley are presented on Plate C-7.

Water level fluctuations are depicted graphically on hydrographs for 35 selected wells distributed among significant basins and areas in the San Joaquin Valley. The hydrographs are presented on Plate C-8 by region, basin, or area, and well number.

Presented on Plate C-9 is a map showing lines of equal elevation of water in wells, San Joaquin Valley, Spring 1963.

RECORDS OF GROUND WATER LEVELS AT WELLS IN THE SAN JOAQUIN VALLEY

@181

Explanation of Headings and Symbols Used in Columns in Table C-1

State Well Number—The well numbering system used in this report is based on the township, range, and section subdivision of the Public Land Survey. It conforms to the system used in all ground water investigations and for numbering all wells for which data are published or filed by the Department of Water Resources. In this report the number, which is assigned to a well in accordance with this system, is referred to as the "State" well number.

Under the system, each section is divided into 40-acre tracts lettered as follows:

D	С	В	A
Е	F	G	Н
М	L	K	J
И	Р	Q	R

Wells are numbered within each 40-acre tract according to the chronological sequence in which they have been assigned State Well Numbers. For example, a well which has the number 16S/15E-17K1 M would be in Township 16 South, Range 15 East, Section 17, M.D.B. & M., and would be further located as the first well assigned a State Well Number in Tract K. In this report, well numbers are referenced to the Mount Diablo Base and Meridian (m) or the San Bernardino Base and Meridian (S).

<u>Ground surface elevation</u>--The numbers in this column give the elevation in feet above mean sea level (U.S.G.S., datum).

<u>Date</u>--The date shown in this column is the date upon which the depth measurement given in the next column was made.

Ground surface to water surface in feet—This is the measured depth in feet from the ground surface to the water surface in the well. Certain of the depth measurements in the column may be followed with an asterisk superscript to indicate a questionable measurement. Depth to ground water measurements may be questionable for such reasons as (a) well being pumped while undergoing measurement, (b) nearby pump operating, (c) casing leaking or wet, (d) well pumped recently, (e) air gage measurement, (f) recharge operation at well or nearby. The specific reason for any asterisk on any given measurement may be obtained through the San Joaquin Valley Branch Office of the Department of Water Resources.

Other code symbols used in this column are as follows:

- □ No measurement
- # Measurement discontinued
- @ Well has been destroyed

The words FLOW and DRY are shown in this column to indicate a flowing or dry well, respectively.

The word DISCONTINUED indicates records from this well will no longer be published.

<u>Water surface elevation</u>--This is the elevation in feet above mean sea level (U.S.G.S. datum) of the water surface in the well. It was derived by machine computation by subtraction of the depth measurement from the reference point elevation.

Agency supplying data--The numbers in this column are the code numbers for the agencies supplying water level data. The agency code consists of a five-digit number, the first of which is a region number. Thus, 54200 refers to agency 4200 in Region 5. Because of the limitations of punch-card space, the agency code has been shown as a four-digit number without the region number.

The first digit of the four-digit agency code designates the type of well numbering system used by the agency as follows:

Code	Well Numbering System
4	Local numbers
5	State or U. S. G. S.
6	U. S. B. R.
7	South San Joaquin Irrigation District
8	Kern County Land Company

The last three digits of the agency code are numbers that designate, within specified serial limits, the type of agency from which the data were obtained, as follows:

Code	Type of Agency
000-049	Federal
050-099	State
100-199	County
200-399	Municipal
400-699	DistrictWater, Irrigation, Conservation, etc.
700-999	Private

In the Central Valley Region, the agency code for <u>districts</u> is further broken down to the geographic areas, as follows:

Code	Area in Central Valley Region
500-599	American River to San Joaquin River
600-699	San Joaquin River to Tehachapi Mountains

In this list of water levels, the agency furnishing the measurement is listed. The agencies and code numbers assigned to them are as follows:

Agency Code	Agency
4200	City of Fresno
4520	Oakdale Irrigation District
4521	Modesto Irrigation District
4524	Turlock Irrigation District
4525	Merced Irrigation District
4636	Consolidated Irrigation District
4637	Alta Irrigation District
4640	Buena Vista Water Storage District
	C-7

Agency Code	Agency
5000	U. S. Geological Survey
5050	Department of Water Resources
5120	Kern County Surveyor
5529	Poso Soil Conservation District
5631	Fresno Irrigation District
6001*	U. S. Bureau of Reclamation
7518	South San Joaquin Irrigation District
8700	Kern County Land Company

^{*}A large amount of data listed under this agency code has been gathered by irrigation and water districts and compiled by the Bureau of Reclamation for transmittal to the Department of Water Resources.

STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR, IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD, SUR. TO WATER SUR, IN FEET	WATER SURFACE ELEVATION N FEET	AGENCY SUPP Y NG CATA
SAN JOAGUIN VALLEY	ĒΥ		5-22.00			OAKDALE IRRI	OAKDALE IRRIGATION DISTRICT	CT	5-22.06		
SO SAN JOAQUIN	UIN IRRIGATION DIST	N DIST	5-22.05			1S/09E-16J01 M	119.0	3-01-62	59.8	59.2	4520
15/07E-15J01 M	45.0	1-26-63	6.9	32.7	7518			12-05-62	58.0	61.0 62.8	
25/07E-12R01 M	55.0	1-03-62	14.5	40.5	2050			2-01-63	55.8 55.9	63.2	
		3-05-62	14.5	40.0				4-01-63	55.8	63.2	
		4-03-62	14.1	40.0				6-01-63	57.8	61.2	
		6-06-62	14.2	40.8		15/09E-36A01 M	145.0	12-13-62	6.05	94.1	4520
		8-06-62		9.07				1-03-63	50°8	94.2	
		9-05-62	14.3	7.004				2-03-63	51.0	0.46	
		11-05-62	14.4	9.04				2-15-63	51.2	93.8	
		12-05-62		8 0 7				3-01-63	51.2	9 ° C	
		1-07-63	13.7	41.0		15/10F-19L01 M	146.5	10-31-61	59.3	87.2	4520
		3-01-63		42.0				3-02-62		89.4	
		4-03-63		6.04				12-05-62		4.000	
		5-03-63		42.3				2-01-63		7 O	
		6-03-63		41.9				3-01-63	52.8	93.7	
		1-03-62		42.8	5050			4-01-63	52.8	93.7	
25/07E-12R02 M	0.00	2-03-62	12.3	42.7	0			5-01-63	52.8	93.7	
		3-05-62		43.5				6-01-63	52.0	6.46	
		4-03-62	_	0 • 44		M 101 95 - 70 53 91	103.0	12-05-62	87.5	105.5	4520
		5-03-62	-	44.7			0.661	1-03-63	4.08	106.6	
		6-06-62		4 4 4				1-17-63	86.2	106.8	
		79-60-7	0.00	4.44				2-03-63	86.0	107.0	
		9-05-62		44.1				2-15-63	86.1	106.9	
		10-04-62		43.8				3-01-63	85.8	70101	
		11-05-62	11.5	43.5		20,005-24501 M	132.0	12-05-62	52.5	79.5	4520
		12-05-62		43.6				1-03-63	52.2	79.8	
		1-07-63		43.1				1-17-63	52.7	79.3	
		2-14-63	0	7.4.7				2-03-63	52.8	79.2	
		3-01-03		43.6				2-15-63	51.7	80.3	
		5-03-63		44.3				3-01-63	52.0	000	
		6-03-63		44.2				3-28-63	52.8	79.6	
					7518			6-01-63	01.0 E	7 • 0 0	
25/09E-08H01 M	0.511	7-01-62	3 **						1	0	000
						25/10E-04H01 M	185.5	10-31-61	85.0	100.2	0764

AGENCY SUPPLYING DATA		4520	4520		4521	4521	5050		(L	0606				4521
WATER SURFACE ELEVATION IN FEET		101.1 101.6 99.3	105.0 105.6 105.6 105.8 106.0		61.0	67.1	46.2 46.4 45.7	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	49.8	00044 0004 0004 0001	4 4 4 8 • 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2000	50.8	50.8
GRD SUR TO WATER SUR IN FEET	5-22.06	50.9 50.4 52.7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5-22.07	36.2	33.2	17.8 17.6 18.3	100 100 100 100 100 100 100 100 100 100	14.2	13.5	15.9	13.9	13.2 13.2	23.2
DATE	13	3-28-63 4-29-63 6-01-63	12-12-62 1-03-63 1-17-63 2-03-63 2-15-63	T	11-01-62 3-01-63	11-01-62 3-01-63	7-05-62 8-06-62 9-05-62	11-05-62 12-05-62 1-07-63 2-13-63 3-01-63 4-03-63	6-05-63	8-06-62 9-05-62	11-05-62	2-13-63	5-06-63 6-05-63	11-01-62
GROUND SURFACE ELEVATION IN FEET	OAKDALE IRRIGATION DISTRICT	152.0	162.0	MODESTO IRRIGATION DISTRICT	97.2	100.3	0 • 4 • 0			0 †				74.0
STATE WELL NUMBER	OAKDALE IRRIG	35/10E-15A01 M CONT.	35/11E-18D01 M	MODESTO IRRIG	25/08E-25P01 M	25/09E-31G01 M	35/08E-22C01 M		, c	20,00E-2002 M				35/08E-24C01 M
. 9		0				0		0		0	0	0		
AGENCY SUPPLYING DATA		4520				4520		4520		4520	4520	4520		
WATER AGENCY SURFACE SUPPLYIN ELEVATION DATA		101.6 102.5 103.3	1004.1 1004.5 1004.8 107.8	108.2	108.3	103.4 45. 103.8 103.7	103.8 103.8 103.8		123.5	112.4 452	144.5 452 145.0	99.3 452	1000	0.101
WATER SURFACE ELEVATION IN FEET	5-22.06							115.1 121.3 123.5 123.5 124.9 124.7	92.7 125.3 94.5 123.5					
WATER SURFACE T ELEVATION IN FEET		101.6	811.6 811.2 811.0 81.0 77.0 77.0 77.0 77.0	77.3	77.2	103.4 103.8 103.7	61.2 61.1 61.2	102.9 115.1 96.7 121.3 94.5 123.5 94.5 123.5 93.1 124.9 93.3 124.9		112.4	144.5	99.3	0.10.0 0.10.0 0.10.0	0.10
GRD SUR SURFACE TO WATER SURFACE SUR. IN FEET IN FEET	OAKDALE IRRIGATION DISTRICT 5-22+06	83.9 101.6 83.0 102.5 82.2 103.3	811.2 811.2 81.0 80.0 770.7	77.3	77.2	61.6 103.4 61.2 103.8 61.3 103.7	61.2 61.1 61.2	102.9 115.1 96.7 121.3 94.5 123.5 94.5 123.5 93.1 124.9 93.3 124.9	92.7 94.5	79.6 112.4 78.8 113.2	45.0 145.0	52.3 99.3	0.10.0 0.10.0 0.10.0	0.10

AGENCY SUPPLYING DATA		5050							4554											4764	4524										70 37	*7C#	452	452		264	452
WATER SURFACE ELEVATION IN FEET		63.8	61.3	62.9	7 5 5 7	63.4	64.2	64.5	69.3	69.2	68.6	4.19	67.3	4.29	67.6	0 4	68.5	68.2	,	54.4	69.1	70.2	4.89	68.6	64.49	67.2	4 6 0	68.5	689	70.1	6	0 • 80	84.5	118.7	4	108.3	104.5
GRD SUR TO WATER SUR IN FEET	5-22.08	6.2	8 • 7	7.1	ν. Συ	0 • 0	5.0	5+5	5.7	5 • 8	10.	7.6	7 - 7	7.6	7.4		0 4 0 4 0 5 0 5	8 9		9 • 8	5 • 9	4.8	9.9	4.0	7.1	7 . 8	9.9	U 4	0 4	6 • 4		12.0	7.5	6.3		11.7	45.5
DATE	CT	11-01-62	12-05-62	1-07-63	2-14-63	3-06-63	5-14-63	6-04-63	7-03-62	8-02-62	9-05-62	11-01-62	12-04-62	1-03-63	2-01-63	3-02-63	4-02-63	6-04-63		12-00-62	7-03-62	8-02-62	9-05-62	10-02-62	12-04-62	1-03-63	2-01-63	3-05-63	4-02-63	5-02-03		12-00-62	3-00-63	89-00-6		12-00-62	12-00-62
GROUND SURFACE ELEVATION IN FEET	ATTON DISTRI	0	•						75.0											63.0	75.0											0.06	92.0	30	0 • 6 7 1	120.0	150.0
STATE WELL NUMBER	TURLOCK IRRIGATION DISTRICT		55/09E-03D02 M						N 1000	55/09E-14K01 H										55/09E-22N01 M	M 104,500,200	33/07E-24N01										55/10E-21001 M	55/10E-21R01 M		55/11E-21N01 M	5S/11E-29F01 M	55/12E-31N01 M
AGENCY SUPPLYING DATA			4521	4521		_	4521		4521	_	4521		16.53	1761		4521			4521			7097	*7C*	4554		4554	4554		4554	i i	4554	4554	4524		5050		
WATER SURFACE ELEVATION IN FEET			52.4	0.84	67.6		61.2	61.5	42.9	44.5	96.8	6 • 96	100	1301	1 . 7 !	65.4	66.4		9.94	0 1			0 • † †	67.0		96.5	0403		118.5		106.4	47.3	41.5		63.1	65.1	65.0
GRD SUR TO WATER SUR IN FEET	5-22-07		21.6	24 5	24.9		33.8	33.5	39.6	38.0	36.3	36.2	i.	45.5	40.0	57.6	56.6		16.4		5-22.08		10.4	15.0		12.5	14.7		12.5		23.6	5.7	CI.	0		1 0 4	
DATE		į.	3-01-63	11 01-63	3-01-63		11-01-62	3-01-63	11-01-62	3-01-63	11-01-62	3-01-63	,	11-01-62	3-01-63	11-01-62	3-01-63		11-01-62	3-01-63	101		3-01-63	3-01-63		3-01-63	13 00-62	70-00-71	3-01-63		12-00-62	3-01-63	29-00-61	70-00-71	7-05-62	8-06-62	10-04-62
GROUND SURFACE ELEVATION	OF A COLD	ALION DISTA	74.0	6	6.26		95.0		82.5		1.661	1		119.2		0	163.0		63.0		SATION DISTR		55.0	0 - 6 a	1	109.0	0	0 • 60 1	131.0		130.0	53.0	(0.00	70.0		
STATE WELL NUMBER	1 4 4 4 N	MODESTO TRKIS	35/08E-24C01 M		35/09E-05N01 M		35/09F-21A02 M		35/09F-30P01 M			35/10E-08601 M		35/10E-29K01 M			35/10E-32601 M		45/08E-03E01 M		TURLOCK IRRIGATION DISTRICT		45/08E-27D01 M	I CALC LOCAL		45/10E-21R01 M		45/10E-21R02 M	2000		45/11E-32P01 M	5.5.708F-01N01 M		55/08E-C2R01 M	55/09E-03D02 M		

AGENCY SUPPLYING DATA		4525				4525							4575	5050														4575		
WATER SURFACE ELE VATION IN FEET		164.0	166.4	166.0	166.1	163.4	163.4	162.6	166.5	164.1	165.6	164.8	80.9	103.4	105.2	104.7	104.2	106.5	105.2	106.6	107.0	106.8	106.7	107.8	107.7	108.2	108.3	0.89	98.6	
GRD SUR TO WATER	5-22.09	16.7	14.3	14.7	14.6	14.7	14.7	15.5	11.6	14.0	12.5	13.3	88	14.6	12.8	13.3	13.0	11.5	12.8	11.4	0.01	11.2	11.3	10.7	10.3	9.6	2.6	4	80	
DATE		1-08-63	3-04-63	5-01-63	6-27-63	7-03-62	9-06-62	11-05-62	2-05-63	4-02-63	5-02-63	5-29-63	3-05-63	1-02-62	3-05-62	4-05-62	20-20-6	7-02-62	8-02-62	9-06-62	11-01-62	12-05-62	1-07-63	3-05-63	4-02-63	5-03-63	6-04-63	7-03-62	7-30-62	
GROUND SURFACE ELEVATION IN FEET	MERCED IRRIGATION DISTRICT	180.7				178.1							2.06	118.0														106.6		
STATE WELL NUMBER	MERCED IRRIGA	65/13E-19N01 M				65/14E-32N01 M							75/10F-01N01 M	75/11E-01H01 M														75/11F-13N01 M		
(2														 										-			-			
AGENCY SUPPLYING DATA		4554	4554	4554	4554	4554		4525							4525											4525				
WATER AGENCY SURFACE SUPPLYING ELEVATION DATA		54.5 4524	82.8 4524	77.1 4524	101.8 4524	109.4 4524		104.5 4525 103.8	103.2	105.3	104.1	104.2	103.5			128.9	129.4	127.6	128.4	127.9	128.9	128.8	128.8	125.9	7 6 1 6 7		165.9	164.7	164.6	
	5-22.08						5-22.09			, , ,				**	127.9			16.2 127.6		15.9 127.9		15.0 128.8		16.9 125.9		165.9		16.0 164.7		
SUR SURFACE SURFACE IN FEET IN FEET		54.5	82.8	77.1	101.8	109.4		103.8	. 8	, , ,	7.2			6-04-63 #	15.9 127.9	14.9		16.2	15.4	15.9		15.0	15.0			14.8 165.9	14.8		16.1	
GRO SUR SURFACE TO WATER ELEVATION SUM IN FEET IN FEET	TURLOCK IRRIGATION DISTRICT 5-22.08	5.5 54.5	4.2 82.8	6.9 77.1	13.2 101.8	8.6 109.4	MERCED IRRIGATION DISTRICT 5-22.09	6.8 104.5 7.5 103.8	. 8	0.0	7.2	7.1	7 • 8		15.9 127.9	14.9	1404	16.2	15.4	15.9	14.9	15.0	15.0	16.9		14.8 165.9	14.8	16.0	16.1	

AGENCY SUPPLY NG DATA		4525	4525		4 5 2 5	4 5 2 8
WATER SURFACE ELE VATION N FEET		174.4 174.3 176.2 177.0 179.7			1113.00 1113.00 11113.00 111110.00 11110.00 1110.00 110.00 110.00 11	1333.6 1333.6 1333.6 1286.0 1286.0 1290.2 1290.2 1290.6
GRD SUR TO MATER JR IN FEET	5-22.09	13.1 13.2 11.3 10.5 7.8	00000XXXXX	00000000000000000000000000000000000000	0040886660	5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
DATE		2-05-63 3-05-63 4-01-63 5-02-63 5-29-63	7-02-62 7-30-62 9-06-62 10-02-62	11-04-62 12-04-62 1-04-63 3-05-63 4-01-63 5-29-63	8-01-62 9-05-62 10-02-62 11-04-62 12-04-63 3-04-63 3-04-63 5-01-63 5-01-63 5-01-63	6-27-63 8-02-62 9-05-62 11-01-62 12-05-62 12-05-63 12-05-63 13-05-63 13-05-63 13-05-63 13-05-63 13-05-63
GROUND SURFACE ELEVATION IN FEET	MERCED IRRIGATION DISTRICT	187.5	234.2		120*2	135.0
STATE WELL NUMBER	MERCED IRRIGA	75/14E-16R01 M CONT.	75/15E-36N01 M		85/12E-01D01 M	85/13E-09R01 M
AGENCY SUPPLYING DATA		4525		4525	4525	4 525
WATER SURFACE ELEVATION IN FEET		4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	101.4 101.4 98.4 98.0 97.9	134.1 131.8 130.7 131.9 131.9 132.0 132.9	11337 1337 1347 1347 1347 1347 1347 1347	14400.9 14400.9 13400.9 1883.1 1813.7 1771.1 1771.1 175.0 175.0 175.0
GRD SUR TO WATER SUR IN FEET	5-22.09	9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	888999	1133 1155 1155 1155 1155 1155 1155 1155	133.6 123.6 112.0 11.2 11.2 11.2.4 11.3.6 11	
-	1	unnamma	n m m m m	21 21 21 21 21 21 21 21 21 21 21		MUNUNUN MUNUNU
DATE			2-02-63 3-05-63 4-02-63 5-02-63 6-03-63 6-30-63	7-30-62 9-05-62 10-02-62 10-29-62 12-04-63 1-07-63 3-04-63	5-29-63 5-29-63 6-27-63 7-30-62 10-28-62 10-29-62 112-03-62 12-03-62 1-08-63	4-01-63 5-01-63 5-01-63 5-27-63 6-27-63 6-23-62 8-03-62 10-04-62 11-05-62 12-10-62
GROUND SURFACE ELLONION IN FET	MERCED IRRIGATION DISTRICT		0 - 1 - 0 - 1	147.3 7-30-62 10-05-62 10-29-62 12-04-62 12-04-62 12-04-62	152.1 152.1 152.1 1-29-62 10-29-62 11-29-62 11-29-62 12-9-62 12-9-62 12-9-62 12-9-62 13-68-63	187.5 10.06-6 10.06-6 10.06-6 10.06-6 11.06-6 12.10-6

AGENCY SUPPLYING DATA		6001	6001	6001	6001	6001	6001	6001		6001	1009	6	6001	6001	2050	6001 5050 6001	5050	5050
WATER SURFACE ELEVATION IN FEET		84.4	- 8.0	86.0	31.9	64.9	23.0	0.84	44.5	68.0		51.5	55.1 51.5	8 0 7 0 0 4 0 0 4	231.1 235.8	38 • 8	51.9	63.1
GRD SUR TO WATER SUR IN FEET	5-22.11	127.7	88°0	13.3	31.6	98.4	143.3*	241	23.8	117.4		55.5	75.3	17.9	17.2*	п 25 • 55	77.6	51.4
DATE		3-08-63	10-15-62 3-05-63	10-16-62	3-08-63	10-11-62 2-28-63	10-11-62 2-28-63	10-18-62	3-01-03	10-12-62	10-18-62	3-21-63	10-17-62 3-18-63	10-31-62 3-28-63	10-08-62	11-01-62 2-25-63 3-28-63	10-08-62 2-25-63	10-09-62
GROUND SURFACE ELEVATION IN FEET	AREA	212.1	80.	88.68	63.5	163.3	166.3	0	0	185.4	0	•	130.4	58.7	248.3	64.3	129.5	114.5
STATE WELL NUMBER	DELTA-MENDOTA AREA	35/05E-26K01 M	35/06E-16001 M	35/06E-18N01 M	35/06E-25D01 M	45/06E-04H01 M	45/06E-09R01 M		43/07E=27M01 M	45/07E-31D01 M	2000		55/07E-14D01 M	55/08E-06K01 M	65/07E-12P01 M	65/08E-12L01 M	65/08E-16M01 M	65/08E-27J01 M
AGENCY SUPPLYING DATA		4525	4525						4525	4525		6001	6001	6001	6001	6001	6001	6001
WATER SURFACE ELEVATION IN FEET		132.2	184.2	186.1 186.3 186.1	184.7	184.8	186.1		55.7	83.7		71.0	0.00 0.00 0.00 0.00	61.8	54.2	51.6 66.8 64.5	65.0	86.5
GRD SUR TO WATER SUR IN FEET	5-22.09	3.0	12.6	10.5	12.5	12.0	10.5	5-22.10	78.3	67.3	5-22.11	7.0	21.0	125.2	21.8	128.9	130.7	120.5
DATE		5-27-63	7-02-62	9-06-62 10-02-62 11-01-62	1-09-63	5-01-63	6-27-63	CT	2-20-63	2-20-63		10-08-62	10-09-62	3-01-63	10-08-62	3-04-63 3-06-63	10-11-62	3-08-63
GROUND SURFACE ELEVATION IN FEET	TION DISTRIC	135.0	196 • 8					ATION DISTRI	134.0	151.0	AREA	78.0	80.4	187.0	76.0	195.7	195.7	207.0
STATE WELL NUMBER	MERCED IRRIGATION DISTRICT	85/13E-09R01 M CONT.	85/14E-01A01 M					EL NIDO IRRIGATION DISTRICT	95/13E-14R01 M	95/14E-20801 M	DELTA-MENDOTA AREA	2S/04E-16H01 M	2S/04E-25J01 M	25/04E-28A01 M	25/05E-32A01 M	35/05E-08R01 M	3S/05E-08R02 M	35/05E-25001 M

TABLE C-1

GROUND WATER LEVELS AT WELLS

AGENCY SUPPLYING DATA		6001		6001	6001								6001	
WATER SURFACE ELEVATION IN FEET		127.8	139.9 132.5 138.6 126.0	187.0 182.8	133.3	143.6	145.8	174.8	155.5	147.6	149.3	163.2 172.6 171.7 174.1	223.1 223.4 223.4 224.1 224.9	223.6
GRD SUR TO WATER SUR IN FEET	5-22.12	88.7 92.0 79.0	76.6 84.0 77.9 90.5	45.0	74°7 39°4 47°3	64.4 69.2*	40.3	1 0 0 0 1 0 0 0 1 0 0 0	6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	400	500000000000000000000000000000000000000	346 346 36 36 36 36 36 36 36 36 36 36 36 36 36	44444444444444444444444444444444444444	44.5
DATE		11-23-62 12-20-62 1-24-63	2-14-63 3-28-63 4-25-63 5-23-63 6-26-63	10-31-62	7-21-61 8-25-61 9-20-61	10-26-61	1-17-62	5-21-62	7-25-62	10-18-62	12-20-62 1-24-63 2-14-63	3-28-63 4-25-63 5-23-63 6-26-63	7-21-61 8-25-61 9-19-61 10-25-61 11-21-61	1-17-62
GROUND SURFACE ELEVATION IN FEET	CHOWCHILLA WATER DISTRICT	216.5		232.0	208.0								267.0	
STATE WELL NUMBER	CHOWCHILLA W	95/15E-22R02 M CONT.		95/15E-25J02 M	95/15E-33801 M								95/16E-22R01 M	
AGENCY SUPPLYING DATA		6001	2000		6001	6001	6001	6001	6001		6001	6001		
WATER SURFACE ELEVATION IN FEET		134.1	337. 366. 37. 37. 37.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		107.6	162.4	140.2	128.9		115.3	1111.5 119.2 120.1 123.5	143.5 130.5 115.3	103.5
GRD SUR TO WATER SUR IN FEET	5-22.11	8 8 8 0 8 0	130°2 131°4 131°4 130°4	130°1 129°6 129°4	•	69.4	14.6	3 • 8	25.1 23.3	5-22.12	69.79	105.0 97.3 96.4 93.0 75.1	73.0 86.0 101.2	113.0
DATE		10-23-62	8-14-62 9-10-62 10-08-62 11-05-62 3-26-63	5-21-63 6-18-63	10-01-62	10-24-62 3-13-63	10-24-62 3-13-63	10-24-62 3-13-63	10-24-62		10-25-62	10-26-61 11-21-61 12-20-61 1-17-62 2-27-62	3-21-62 4-25-62 5-21-62 6-19-62 7-25-62	9-24-62 9-20-62 10-18-62
GROUND SURFACE ELEVATION N FEET	A AREA	138.0	168.0		183.0	177.0	177.0	144.0	154.0	ATER DISTRICT	185.0	216.5		
STATE WELL NUMBER	DELTA-MENDOTA	12S/12E-04D01 M	12S/12E-16H05 M		12S/12E-20J01 M	12S/12E-25D01 M	12S/12E-25D02 M	12S/13E-10N01 M	125/14E-30C01 M	CHOWCHILLA WAT	95/14E-25R01 M	95/15E-22R02 M		

TABLE C-1

AGENCY SUPPLYING DATA		6001	6001	6001	6001					6001
WATER SURFACE ELEVATION IN FEET		84.0 81.7 83.3 81.8		111.1	40000 4000 6000 6000 6000	101.7	0.479	99.0	100.3	134.1 128.1 141.1 149.2 157.2 158.1 158.5 154.8
GRD SUR TO WATER SUR IN FEET	5-22-12	66.0 68.3 66.7 68.2 72.1	DRY *	82.9	98 • 1 90 • 8 * 87 • 7 84 • 5	82.0 81.3 77.1	, d	88 60 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7 725.0	1034 1034 1034 1034 1034 1034 1034 1034
DATE		2-14 3-28-63 4-125-63 5-123-63 6-125-63	10-30-62	10-29-62 2-18-63	9-20-61 10-26-61 11-21-61 12-20-61	3-21-62	6-19-62	9-20-62 10-19-62	12-21-62 12-21-62 2-14-63 3-28-63 4-25-63 6-26-63	7-20-61 8-25-61 10-25-61 11-21-10-25-61 11-21-10-61 12-10-62 2-21-62 3-21-62 5-21-62
GROUND SURFACE ELEVATION IN FEET	CHOWCHILLA WATER DISTRICT	150.0	156.0	194.0	183.0					232.0
STATE WELL NUMBER	CHOWCHILLA W	105/14E-08B03 M CONT.	105/14E-26C01 M	10S/15E-23K01 M	10S/15E-27D03 M					10S/16E-09E01 M
AGENCY SUPPLYING DATA		6001				6001	6001	6001	6001	
WATER SURFACE ELEVATION IN FEET		222.8 222.8 222.6 223.1 223.7	225.1 225.8 226.4	226.1	223 ° 8	221.5	244.5	314.9	72.1 71.3 72.6 74.0 75.9 80.5	88 88 88 88 88 88 88 88 88 88 88 88 88
GRD SUR TO WATER SUR. IN FEET	5-22-12	0046 0046 0046 0046 0046 0046 0046 0046	41.9 40.6	4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4444 9529 80720 80720	98.5	75.5	50.1	77 ° ° 5 78 ° ° 5 77 ° ° 5 75 ° ° 1 74 ° 1 69 ° 5	665.00 665.00
DATE		3-21-62 4-25-62 5-21-62 6-19-62 7-25-62	8-24-62 9-20-62 10-18-62	11-43-62 12-20-62 1-24-63 2-14-63	3-28-63 4-24-63 5-23-63 6-26-63	10-23-62 2-13-63	10-23-62 2-13-63	10-22-62 2-13-63	7-21-61 8-25-61 9-20-61 10-26-61 11-21-61 12-20-61 1-17-62	2-27-62 3-22-62 4-25-62 5-21-62 7-25-62 7-25-62 8-24-62 8-26-62 10-18-62 11-21-62 12-21-62
GROUND SURFACE ELEVATION IN FEET	CHOWCHILLA WATER DISTRICT	267.0				320.0	320.0	365.0	150.0	
STATE WELL NUMBER	CHOWCHILLA W	95/16E-22R01 M CONT.				98/17E-21L01 M	95/17E-35J01 M	95/18E-33001 M	105/14E-08803 M	

TABLE C-I

AGENCY SUPPLYING DATA		6001	6001					6001	6001	6001
WATER SURFACE ELEVATION IN FEET		127.8 127.2 125.8 125.5	1256.3 1256.3 1256.8 1266.4 126.0 128.3	128.7 129.3 129.7 129.6	130.1	135.4	135.0 135.1 134.7 133.5	179.7	201.9	203.5 203.7 204.9 204.7 204.7 204.6 204.8
GRD SUR TO WATER SUR IN FEET	5-22.13	68°2 68°8 70°2 70°5	799.4 799.7 79.2 78.6 78.0 76.1	775.37	72.0	69.6	700.0	40.07	72.5	88000000000000000000000000000000000000
DATE	<u></u>	3-28-63 4-25-63 5-23-63 6-26-63	7-21-61 8-24-61 9-18-61 10-25-61 11-21-61 12-19-61 1-18-62 2-26-62	5-24-62 5-22-62 6-18-62 7-24-62	8-24-62 9-19-62 10-19-62	12-20-62	2-14-00 3-28-63 4-25-63 5-24-63 6-26-63	2-19-63	12-21-62 2-19-63	7-20-61 9-24-61 9-25-61 10-25-61 11-21-61 12-19-61 12-19-61 12-19-62 3-21-62 4-24-62 3-21-62
GROUND SURFACE ELEVATION IN FEET	MADERA IRRIGATION DISTRICT	196.0	205.0					250.6	274.4	284.0
STATE WELL NUMBER	MADERA IRRIGA	115/16E-06A01 M CONT.	115/16E-10N01 M					115/17E-27C01 M	11S/18E-20N01 M	115/18E-27M01 M
AGENCY SUPPLYING DATA		1009		6001	6001	6001	6001			
WATER SURFACE ELEVATION IN FEET		142.5	1554 1649 1656 1656 1656 1656 1656 1656 1666 166	127.3	263.8 263.6	369.7	121.0 116.1 117.3 117.8	121.2	125.4	122.6 122.6 122.6 120.0 121.0 121.0 122.8 124.2 124.2 124.2
GRD SUR TO WATER SUR IN FEET	5-22-12	89 ° 5 86 ° 1 86 ° 1	77.2 77.2 77.2 82.6 71.0 76.2 77.8 80.5	82.2 77.9 5-22.13	62.2	17.3	75.0 79.9 78.7 78.2	74.8	70.6	72.5 73.6 75.0 75.0 76.4 74.9 772.2 772.2 68.4
DATE		6-19-62 7-25-62 8-24-62 9-19-62	11.21.62 12.24.63 12.44.63 2.14-63 3.28-63 4.25-63 5.23-63	10-29-62 2-19-63	10-22-62	10-22-62 2-13-63	7-20-61 8-24-61 9-19-61 10-25-61	12-19-61	2-26-62 3-21-62 4-24-62	5-22-62 6-18-62 7-4-62 8-24-62 9-19-62 10-19-62 11-21-62 12-20-62 1-23-63 2-14-63
GROUND SURFACE ELEVATION IN FEET	CHOWCHILLA WATER DISTRICT	232.0		6E-29R01 M 209.5 MADERA IRRIGATION DISTRICT	326.0	387.0	196.0			
STATE WELL NUMBER	HILLA W	105/16E-09E01 M CONT.		10S/16E-29R01 M MADERA IRRIGA	10S/18E-20B01 M	10S/19E-16D01 M	11S/16E-06A01 M			

AGENCY SUPPLYING DATA	,	1009																						6001		1004																		
WATER SURFACE ELEVATION IN FEET			124.2	127.1	138.5	136.8	146.1	149.0	140.8	139.0			130.4	30.6	133.5	143.5	140.1	140.3	150.5	138.1	190.9			160.0	•	0	145.4	167.0	166.2	165.1	167.4	16.8	120.1	170.7	167.2	167.1		1070	10/07	168.9	0 0 0 0	1/1.0	1 / 1 . /	
GRD SUR TO WATER SUR IN FEET	5-22.13		93.8*	*6*06	19.5*	81.2*	71.9	0.69	77.2	19.0			œ	ם	C • 7 6	74.5	77.9	77.7	67.5	79.9	1.6/	D 1		0	• 🗆	6	±7.87	60.4	0 0 0	6.69	67.6		0000		1 1							0 * 4 9		
DATE		7-20-61	9-18-61	10-24-61	11-20-61	12-18-61	1-16-62	2-26-62	3-20-62	4-24-62	5-21-62	6-18-62	7-24-62	8-23-62	9-19-62	11-20-62	12-20-62	1-23-63	2-12-63	3-27-63	4-24-63	5-23-63	6-25-63		2-19-63		7-19-61	8-23-01	10-34-61	11-20-61	12.78.61	10-01-71	1-16-62	79-97-7	3-20-62	79-72-7	2-71-6	6-18-62	7-24-62	8-22-62	9-19-62	10-17-62	11-20-62	
GROUND SURFACE ELEVATION IN FEET	TION DISTRIC	218.0																							228.0		235.0																	
STATE WELL NUMBER	MADERA IRRIGATION DISTRICT	12S/17E-20P01 M																							12S/17E-21H01 M		125/17E-26C01 M																	
AGENCY SUPPLYING DATA		6001	_				_								,	6001		1004	1000		6001																							
WATER SURFACE ELEVATION IN FEET			204.2	2000 2000	202	0000	000		203.0	203.7	203.8	203.8	203.5	203.3		308.3	303.1	0 761	139.4		143.1	139.3	139.1	143.8	147.2	150.5	153.3	152.2	150.4	149.5	146.5	144.3	142.7	143.5	145.6	147.8	149.8	151.3	152.0	149.7	0.041	150.1	146.1	
GRD SUR TO WATER SUR IN FEET	5-22.13		79.8	6.08	81.0	*	0 10	2 6	0. [8		80.2	80.2	80.0	80.7		107.7	112.9		4.0.4		85.9	89.7	6.68	85.2	81.8	78.5	75.7	76.8	78.6	79.5					63.4			77.7					0 0	100
DATE		5-21-62	6-18-62	7-24-62	8-23-62	79-07-6	11 20-11-02	12-21-62	1-21-02	2-12-63	3-27-63	4-25-63	5-24-63	6-26-63		10-15-62	2-11-63		12-26-62	00-61-3	7-20-61	8-23-61	9-18-61	10-24-61	11-20-61	12-16-61	2-26-62	3-20-62	4-24-62	5-21-62	6-18-62	7-24-62	8-23-62	9-19-62	10-17-62	11-20-62	12-20-62	1-23-63	00-07-1	69-71-7	012710	4-24-03	2-22-63	0-03-0
GROUND SURFACE ELEVATION	ATION DISTRIC	284.0														416.0			205.4		229.0	0 = 6 7 7																						
STATE WELL NUMBER	MADERA IRRIGATION DISTRICT	M LOWE-27MO1 M	CONT													115/20E-22M01 M			125/16E-23A01 M		M 10000 Pt 1, 200	123/1/E-U8GUI M																						
L		110	1													110			2 12			71																						

TABLE C-1

AGENCY SUPPLYING DATA		6001	6001	1	0000	6001
WATER SURFACE ELE VATION IN FEET		204.8 205.3 205.1 205.9 206.8 207.1	207.7 206.3 208.0 206.5 183.8	184.8	1083	225.4
GRD SUR TO WATER SUR IN FEET	5-22.13	82.2 84.7 81.9 81.1 80.2 79.9	80.7 79.5 79.0 80.5	80.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	82.3 81.6
DATE	17	7-23-62 8-22-62 9-18-62 10-17-62 11-21-62 12-20-62	2-12-63 3-27-63 4-24-63 5-23-63 6-25-63 12-20-62	2-18-63	7-19-61 9-18-61 10-24-61 11-20-61 11-20-62 2-18-62 2-26-62 4-24-62 4-24-62 6-21-62 6-21-62 6-21-62 10-17-62 11-27-62 11-27-63 12-26-63 12-	12-20-62 2-11-63
GROUND SURFACE ELEVATION IN FEET	MADERA IRRIGATION DISTRICT	288.0	2 6 5 • 0		9	307.0
STATE WELL NUMBER	MADERA IRRIG	125/18E-13R01 M CONT.	12S/18E-21G01 M			12S/19E-28A01 M
AGENCY SUPPLYING DATA		6001	6001		0000	
WATER SURFACE ELEVATION IN FEET		172.2 173.0 173.2 170.4 170.4	157.8 153.5 163.0 164.8 166.7	171.7	100 100 100 100 100 100 100 100 100 100	208.3 206.4 206.4 204.6
GRD SUR TO WATER SUR. IN FEET	5-22.13	62.8 62.0 61.8 64.6 64.6 64.8	77.2 81.5 72.0 70.2 68.3	59.4	74444444444444444444444444444444444444	78.7 80.6 80.6 82.4
DATE	1	12-20-62 1-23-63 2-12-63 3-27-63 4-24-63 5-23-63	7-19-61 8-23-61 9-18-61 10-24-61 11-20-61 12-18-61	1-16-62	3-20-62 5-21-62 5-21-62 7-28-62 10-10-10-10-10-10-10-10-10-10-10-10-10-1	3-20-62 4-24-62 5-21-62 6-18-62
GROUND SURFACE ELEVATION IN FEET	MADERA IRRIGATION DISTRICT	235.0	235 • 0		° 0 8 8 7 9 8 0	
STATE WELL NUMBER	MADERA IRRIG	125/17E-26C01 M CONT.	125/17E-34R01 M		125/18E-13R01 M	

TARIE CIT

AGENCY SUPPLYING DATA		6001			6001	6001	600 1	
WATER SURFACE ELEVATION IN FEET		92.1	91.8 92.2	98.5 97.1 95.9 95.9	116.6 120.0 120.0 121.0 122.2 122.4 123.0 123.0 121.0	131.4	1122 12 12 12 12 12 12 12 12 12 12 12 12	123 124 125 125 135 135
GRD SUR TO WATER SUR IN FEET	5-22.14	п 55*9	55.8	64 50 50 50 50 50 50 50 50 50 50 50 50 50	188.0 15.0 15.0 12.8 12.6 11.0 11.0	26.6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 t 7 t t t t t t t t t t t t t t t t t
DATE	4	9-20-62	11-21-62 12-21-62 1-24-63	2-14-63 3-28-63 4-25-63 5-23-63 6-26-63	7-24 9-124-62 9-13-62 10-119-62 111-20-62 12-20-62 12-20-63 2-19-63 4-25-63 5-23-63	10-19-62 2-19-63	7-20-61 9-19-61 10-25-61 11-22-61 11-19-61 12-19-62 2-26-62 3-20-62	2-22-62 6-18-62 7-24-62 8-23-62 9-19-62 10-19-62 11-21-62
GROUND SURFACE ELEVATION IN FEET	WEST CHOWCHILLA-MADERA AREA	148.0			135.0	158.0	10 00 00 00	
STATE WELL NUMBER	WEST CHOWCHIL	105/14E-34H01 M CONT.			115/14E-33L01 M	11S/15E-33E01 M	11S/15E-33P01 M	
AGENCY SUPPLYING DATA		6001	6001	6001			6001	
WATER SURFACE ELEVATION IN FEET			106.4	102.4 101.6 100.6 99.4	1000 11112 1112 1112 1112 1112 1112 111	103.6 104.1 105.0	1110.4 1110.4 97.2 97.0 99.0 99.0 99.0	99999999999999999999999999999999999999
GRD SUR TO WATER SUR IN FEET	5-22 • 14	= =	70.6	2 2 2 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	28 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	27.4 26.9 26.0	2000 1000	523 - 6 52 - 3 52 - 4 56 - 9 56 - 9
DATE	AREA	10-24-62 2-20-63	10-29-62 2-12-63	7-21-61 8-25-61 9-20-61 10-26-61 11-21-61	12-20-61 1-17-62 2-2-62 4-25-62 5-21-62 5-11-62 6-19-62 6-19-62 6-19-62 10-18-62 11-162	1-24-63 2-14-63 3-28-63	5-23-63 6-26-63 7-21-61 8-25-61 9-20-61 11-21-61 1-17-62	2-27-62 3-22-62 4-25-62 5-21-62 6-19-62 7-25-62 7-25-62
GROUND SURFACE ELEVATION IN FEET		120.5	177.0	131.0			148.0	
STATE WELL NUMBER	WEST CHOWCHILLA-MADERA	105/13E-14M01 M	105/14E-01R01 M	10S/14E-31H01 M			105/14E-34H01 M	

AGENCY SUPPLYING DATA		6001		6 0 0 1	5631	6001
WATER SURFACE ELEVATION IN FEET		134.9 136.1 134.7 132.9 124.9	111111111111111111111111111111111111111	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	32 33 33 33 33 33 33 33 33 33 33 33 33 3	445.4
GRD SUR TO WATER SUR IN FEET	5-22.14	60.1 588.9 60.3 70.1 80.2	78.00 77.00	966.9996.9996.999999999999999999999999	88 89 10 10 10 10 10 10 10 10 10 10 10 10 10	27.6
DATE	V 2	2-26-62 3-20-62 4-24-62 5-21-62 6-18-62	777	7-22 8-22 8-22 11-25 12-19-62 12-19-62 1-23-63 2-23-63 2-23-63 2-23-63 2-23-63 2-23-63 2-23-63	7-27 9-18-20 9-18-20 10-18-27 111-27-62 112-27-62 2-18-63 3-18-63 5-18-63 6-27-63	10-15-62
GROUND SURFACE ELEVATION IN FEET	WEST CHOWCHILLA-MADERA AREA	195.0	FRESNO IRRIGATION DISTRICT	360.0	587 · T	473.0
STATE WELL NUMBER	WEST CHOWCHIL	135/16E-02C01 M CONT.	FRESNO IRRIG	125/20E-14A01 M	125/21E-34D01 M	125/22E-21E01 M
AGENCY SUPPLYING DATA		6001	6001		6001	
WATER SURFACE ELEVATION IN FEET		136.4 128.4 128.9 124.5 123.9	133.5 133.3 133.1 136.7 136.6 138.0	1336.2 1336.0 1357.9 1356.0 136.0 137.4	131.1 131.1 126.7 125.3 119.8 124.3	135.2
GRD SUR TO WATER SUR. IN FEET	5-22.14	223 24.06 31.1 35.05 37.8	П 106.5 116.7 112.9 113.9 113.0 11.1	113.8 114.0 114.0 112.0 112.0	uu ww orrro ww ww orrro 	59.8
DATE	EA	1-23-63 2-19-63 3-27-63 4-25-63 5-24-63 6-26-63	7-20-61 8-24-61 9-19-61 10-25-61 11-22-19-61 12-19-61 12-19-61 1-18-62 3-20-62 4-24-0-62 4-22-62	7 - 24 - 62 8 - 24 - 62 8 - 24 - 62 9 - 19 - 62 10 - 19 - 62 11 - 21 - 62 12 - 20 - 62 12 - 20 - 62 1 - 23 - 63 3 - 27 - 63 5 - 25 - 63 6 - 25 - 63 6 - 25 - 63 7	10-25-62 2-19-63 10-24-62 2-19-63 7-19-61 8-23-61 10-24-61 11-20-61	12-18-61
GROUND SURFACE ELEVATION IN FEET	A-MADERA AR	160.0	150.0		165.0	
STATE WELL NUMBER	WEST CHOWCHILLA-MADERA AREA	115/15E-33P01 M CONT.	12S/14E-25H01 M		125/14E-28G01 M 125/15E-14L01 M 135/16E-02C01 M	

TABLE C-I

AGENCY SUPPLYING DATA		6001			6001	6001
WATER SURFACE ELEVATION IN FEET		201.0	202.6 201.4 201.4 201.0 201.0 201.8 201.8 202.8 202.8 203.5 200.6	204.0 202.0 202.0 202.0 200.0 200.0 200.0	199.5	1882.7 1882.7 1882.8 1882.9 1882.9 1882.0 1882.0 1882.0 1882.0 1882.0 1882.0
GRD SUR TO WATER SUR IN FEET	5-22.15	57.0	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	56.3 56.8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DATE		7-19-61	9-18-61 11-23-61 11-23-61 12-18-61 1-16-62 3-20-62 3-20-62 4-23-62 5-18-62 6-18-62 8-12-62 9-18-62	10-16-62 11-21-62 12-19-62 12-19-62 1-23-63 3-25-63 4-23-63 6-24-63	10-22-62 2-20-63	7-19-61 9-18-61 9-18-61 10-23-61 10-23-61 12-18-61 11-6-62 2-26-62 3-20-62 3-20-62 5-21-62 7-23-62 7-23-62 8-22-62
GROUND SURFACE ELEVATION IN FEET	TION OISTRIC	258.0			255.8	245.0
STATE WELL NUMBER	FRESNO IRRIGATION OISTRICT	135/18E-10P01 M			135/18E-16D01 M	135/18E-34D01 M
AGENCY SUPPLYING DATA		6001	5631	6001		
WATER SURFACE ELEVATION IN FEET		448.5	176.7 178.7 180.2 180.2 179.8 179.8 179.8 177.8 178.4 178.4 177.9	148.4 150.2 150.7 151.8	160.7 161.5 160.3 160.9	15.6 % % % % % % % % % % % % % % % % % % %
GRD SUR TO WATER SUR IN FEET	5-22.15	24.5	44444444444444444444444444444444444444	663 66 61 65 65 65 65 65 65 65 65 65 65 65 65 65	51.3 50.5 51.7 51.1	00000000000000000000000000000000000000
DATE		2-12-63	7-02-62 7-25-62 9-26-62 10-24-62 11-30-62 12-29-63 2-25-63 4-29-63	7-19-61 8-21-61 9-18-61 10-23-61 11-20-61 12-18-61	2-26-62 3-20-62 4-23-62 5-21-62	6-18-62 8-22-62 8-22-62 10-18-62 11-21-62 12-19-62 12-19-63 12-19-63 12-13-63 13-25-63 6-22-63 6-22-63
GROUND SURFACE ELEVATION	FRESNO IRRIGATION DISTRICT	473.0	2 2 0 • 8	212.0		
1	\ \S			135/17E-33D01 M		

AGENCY SUPPLY:NG DATA		6001	5631		4200
WATER SURFACE ELEVATION IN FEET		212.2 217.0 215.7	262.8 262.3 264.0 263.6 263.6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	255.8 8 255.8
GRD SUR TO WATER SUR IN FEET	5-22.15	77.8 73.0 74.3	73.9* 72.7 73.1	10000000000000000000000000000000000000	7488899 8810 98 98 98 98 98 98 98 98 98 98 98 98 98
DATE	1	4-23-63 5-21-63 6-24-63	7-20-61 8-31-61 9-25-61 10-27-61	12-30-61 2-130-61 2-01-62 3-29-62 4-20-62 5-31-62 6-21-62 9-27-62 10-27-62	12-27-6-2 2-27-6-2 2-27-6-2 2-27-6-2 2-27-6-3 5-28-6-3 8-29-6-2 10-91-6-2 11-90-6-3 11-30-
GROUND SURFACE ELEVATION IN FEET	FRESND IRRIGATION DISTRICT	290.0	336 • 7		364.0
STATE WELL NUMBER	FRESND IRRIG	135/19E-16K01 M CONT.	135/20E-02L01 M		135/20E-21J01 M
AGENCY SUPPLYING DATA		6001		5631	0009
WATER SURFACE ELEVATION IN FEET		182.9	183.0 183.0 179.5 181.0	2222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
GRD SUR TO WATER SUR IN FEET	5-22.15	62.1 66.2 62.8	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0000000 4 4440000 • 0 • • • • • • • • • • • • • • • •	77777777777777777777777777777777777777
DATE		10-16-62 11-21-62 12-19-62	1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	7-25-62 8-28-62 9-26-62 11-30-62 11-28-62 12-28-63 3-28-63 4-29-63	7-19-61 9-12-61 9-12-61 10-23-61 11-20-61 11-20-62 3-20-62 5-21-62 7-21-62 10-18-62 11-21-62 11-21-62 11-21-62 11-21-63
GROUND SURFACE ELEVATION (N FEET	FRESNO IRRIGATION DISTRICT	245.0		2 8 8 8 8	0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
STATE WELL NUMBER	IO IRRIGA	135/18E-34D01 M CONT.		135/19E-09G01 M	135/19E-16K01 M

TABLE C-1

AGENCY SUPPLYING DATA		6001		5631										5631												2695										
WATER SURFACE ELEVATION IN FEET		143.7		159.1	147.2	158.4	160.0	162.3	162.5	162.5	159.6	160.3	159.9	197.3	195.2	192.5	193.5	194.1	194.5	191.7	193.8	190.8	191.1	190.7	0	210.7	210.7	217.6	217.9	218.2	218.4	218.9	211.5	217.2	211.3	
GRD SUR TO WATER SUR IN FEET	5-22.15	71.3	םם	68.3	80.2	0.69	9,99	65.1	64.9	6.49	67.8	67.1	67.5	6.64	52.0	00°	53.0	53.1	52.7	55.5	53.6	30.00	56.1	56.5		71.8*	13.0*	k 0 0 7 7	64.0	64.3	64.1	63.6	71.0*	71.62*	71.2	
DATE		3-25-63	6-24-63	7-02-62	8-28-62	9-26-62	10-24-62	12-29-62	1-28-63	3-28-63	4-29-63	5-27-63	6-25-63	7-02-62	7-25-62	79-67-8	10-25-62	11-29-62	12-29-62	1-31-63	2-26-63	4-30-63	5-27-63	6-26-63		7-26-61	8-29-61	19-17-6	11-26-61	12-26-61	1-26-62	2-27-62	4-11-62	4-27-62	6-29-62	
GROUND SURFACE ELEVATION IN FEET	TION DISTRICT	215.0		227.4										247.2	1											282.5										
STATE WELL NUMBER	FRESNO IRRIGATION DISTRICT	145/17E-13H02 M CONT.		145/18E-08J01 M										M 10805-2010	2 10003-361011											145/20E-06H01 M										
AGENCY SUPPLYING DATA		5631							5631										1004																	
	1					۰ ۲	4	9	9	0 0	20 0	o rc			n س	00	0	6.	4.0.4	38.4		141.3	45.0	_ u	4.00	, LC	4	5	2	2	ω u	136.7	1 2 4 6 7	143.8	145.5	140.0
WATER SURFACE ELEVATION IN FEET		326.8	327.8	326.3	325.4	324.9	325.4	325.6	371.6	371.0	371.8	373.5	373.0	372.	372.3	371.8	372.0	371	14.0	138	137.3	141	145	145.	147	138.5	139.4	144.5	140.3	130.5	126.8	13	٦,			
	5-22.15	37.2 326.8 35.8 328.2				39.1 324. 39.3 324.						34.6			34.2 372.					74.7					67.65									71.2	69.5	4 . 8 9
		8-30-62 37.2 9-27-62 35.8	36.2	37.7	38.6		38.6			35.5	34.7		0 .0 0 .0 0 .0 0 .0	34.2		34.7	34.5		,		7-77		70.0	69.3	, (76.5	75.6	70.5	7.47	84.5	88.2	78.5				2-25-63 68.4
GRD SUR TO WATER SUR IN FEET	RICT	8-30-62 37.2 9-27-62 35.8	36.2	37.7	38.6	39 · 1	38.6	38.4	34.9	8-29-62 35-5	34.7	34.6	0 .0 0 .0 0 .0 0 .0	34.2	34.0 0.4 0.0	34.7	34.5	34.6	7	74.0	7-77	73.7	70.0	69.3	6/•3	76.5	75.6	70.5	7.47	84.5	88.2	78.5	72.0			

TABLE C-1

GROUND WATER LEVELS AT WELLS

AGENCY SUPPLY NG DATA		5631	5631		4 2 0 0
WATER SURFACE ELE VATION IN FEET		349°9 349°4 354°0	2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2010 2010 2010 2010 2010 2010 2010 2010	7.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2
GRD SUR TO WATER SUR IN FEET	5-22.15	500 1 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18488 888888888888888888888888888888888	5 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3
DATE		2+27-63 3+28-63 4-30-63 5-29-63 6-26-63	7-27-61 8-30-61 9-28-61 10-30-61 11-30-61 12-29-61	2-26-62 4-10-62 5-29-62 5-29-62 6-28-62 7-27-62 9-27-62 9-27-62 11-28-62 11-28-62	7-01-61 10-01-61 11-01-61 12-01-62 2-01-62 4-01-62 5-01-62 5-01-62 5-01-62 5-01-62 5-01-62 5-01-62 5-01-62 5-01-62
GROUND SURFACE ELEVATION IN FEET	TION DISTRICT	4 00 • 0	282.5		325+0
STATE WELL NUMBER	FRESNO IRRIGATION DISTRICT	145/22E-01P01 M CONT.	155/20E-13E02 M		CITY OF FRESNO 135/20E-23801 M
AGENCY SUPPLYING DATA	•	5631		5631	5631
WATER SURFACE ELEVATION IN FEET		214.4 208.3 216.1 215.5 210.5	212.2 212.2 212.0 217.2 216.1	28 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	98 98 98 98 98 98 98 98 98 98 98 98 98 9
GRD SUR TO WATER SUR IN FEET	5-22.15	68.1 74.2 66.4 67.0 72.0	711.4 700.0 700.0 665.0 656.0 656.0	44444444 00004400400 0000440000000000	4 444444444444444 0 0000000000000000000
DATE	E	7-25-62 8-30-62 9-27-62 10-25-62 11-28-62	1-31-63 2-28-63 3-28-63 4-30-63 5-29-63	7-27-62 9-29-62 9-29-62 10-26-62 11-28-62 11-27-62 12-27-63 3-27-63 3-27-63 5-27-63 5-27-63	7-28-61 9-29-61 9-29-61 10-31-61 112-31-61 2-01-62 2-01-62 5-02-62 6-28-62 6-28-62 11-28-62 1
GROUND SURFACE ELEVATION N FEET	TION DISTRICT	282.5		0 • 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
STATE WELL NUMBER	FRESNO IRRIGA	145/20E-06H01 M CONT.		145/21E-14A01 M	145/22E-01P01 M

TABLE C-I

AGENCY SUPPLYING DATA		4200	000	0007	6001	000
WATER SURFACE ELE VATION IN FEET		228.6 227.0 226.1 228.0 228.9 229.1 230.0 229.9	230.2	201.7 201.0 201.0 205.3 205.3 201.4 211.4 215.0 215.0 215.0 215.0		97.9 1000.3 1115.0 1115.0 1127.5 1138.4 1132.4 1132.4 1132.4 1132.4 1132.4 1132.4 1132.4 1132.4 1132.4 1132.4 1133
GRD SUR TO WATER SUR IN FEET	5-22.16	75.3 75.9 75.0 75.0 75.0 75.0 73.0 73.0	73.7	89.7 88.8 86.1 86.1 83.3 86.2 76.2 75.4 75.4 75.4	0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
DATE		7-01-62 8-01-62 9-01-62 10-01-62 11-01-62 12-01-63 1-01-63 1-01-63 1-01-63 1-01-63	5-01-63	8-03-62 8-03-62 10-03-62 10-31-62 11-28-62 12-26-63 1-30-63 5-02-63 5-02-63	10-19-62 2-07-63	7-19-61 8-21-61 9-23-61 10-23-61 11-21-61 11-21-62 1-16-62 1-1
GROUND SURFACE ELEVATION IN FEET	9	9 0 9 9		291°4	162.0	
STATE WELL NUMBER	CITY OF FRESMO	145/20E-01D01 M CONT.		145/20E-10M01 M 291	135/15E-28H01 M	138/15E-35D02 M
AGENCY SUPPLYING OATA		4 2 0 0		4 2 0 0		4 200
WATER SURFACE ELEVATION IN FEET		241.8 240.0 238.7 239.1 240.3 242.9 242.9 242.9	242.4	2226. 2224. 2221. 2221. 2224. 2224. 2224. 2224. 2224. 2224. 2224. 2224. 2224. 2224. 2224. 2224. 2224. 2224. 2224. 2224. 2224.	219.2	2 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
GRD SUR TO WATER SUR IN FEET	5-22.16	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	82 8 82 9 8 9 9 9	00000000000000000000000000000000000000	866.1 86.1 86.0	8866.9 8878.0 171.4 91 978.0 171.7 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0
DATE		7-01-62 8-01-62 9-01-62 10-01-62 11-01-62 12-01-62 12-01-63 3-01-63	4-01-63 5-01-63 6-01-63	7-01-61 8-01-61 10-01-61 11-01-61 12-01-62 7-01-62 9-01-62 9-01-62	12-01-62 1-01-63 2-01-63 3-01-63	4-01-63 5-01-63 5-01-63 7-01-63 10-01-61 11-01-61 12-01-62 3-01-62 3-01-62 5-01-62 5-01-62 5-01-63
GROUND SURFACE ELEVATION IN FEET	1	325.0		3 05 • 3		6 ° 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
STATE WELL NUMBER	ON SEE FOR SON	135/20E-23801 M		135/20E-35H02 M		145/20E-01D01 M

TABLE C-I

AGENCY SUPPLY NG DATA		6001						6001									6001									
WATER SURFACE ELEVATION IN FEET		140.9 140.8 137.4	132.4	131.8	139.4	136.2	136.2	153.5	137.6	141.3	139.0	148.3	150.6	151.6	145.6	138.2	129.8		135.9	130.9	144.0	145.1	145.9		134.4	130.8
GRD SUR TO WATER SUR IN FEET	5-22.17	19.2 22.6 24.1	26.3 27.6 28.5	28.2	20.6	23.08	2000	26.5	45.4	38°7 35°1	41.0	31.7	29.4	34.1	34.4	41.8	35.2	п	29.1	28.1	21.0	19.9	19.8		30.6	34.2
DATE		2-26-62 3-20-62 4-23-62 5-21-62	6-18-62 7-24-62 8-22-62	9-18-62	12-19-62	3-25-63	5-22-63	3-06-62	8-23-62	9-18-62	10-23-62	12-19-62	1-23-63	3-25-63	4-22-63	6-24-63	7-19-61	8-21-61	9-18-61	10-23-61	12-18-61	1-16-62	3-20-62	4-23-62	5-21-62	7-23-62
GROUND SURFACE ELEVATION IN FEET	SH AREA	160.0						0.081	9								165.0									
STATE WELL NUMBER	FRESNO SLOUGH AREA	145/15E-25H02 M CONT.						145716F-03C01 M									145/16F-08001 M									
AGENCY SUPPLYING DATA		6001			6001	6001									·				_			6001				
WATER SURFACE ELEVATION IN FEET		118.5 132.3 134.2 130.7	122.5 111.6 128.0	123.6			183.6	184.0	184.6	185.6		184.8	184.9	184.2	185.1	185.5	185.4	184.9	185.1	184.3	101	126.7	126.1	130.0	135.5	140.5
GRD SUR TO WATER SUR IN FEET	5-22.17		42°0 43°0 50°0	41.9	□ *	п	21.4	21.0	20.4	19.4		20.2	20.1	20.8	19.9	19.6	19.6	20.1	19.9	20.7	•	33.3	93.0	30.0	24.5	19.5
GRD SUR DATE TO WATER SUR IN FEET	5-22.17	44.0 % % % % % % % % % % % % % % % % % % %			10-19-62 H	7-19-61 п				3-20-62 19.4		5-21-62 20.2		8-22-62 20.8 9-18-62 20.0			1-23-63 19.6		_	5-22-63 20.7			8-21-61 33.9			
	FRESNO SLOUGH AREA 5-22.17	44.0 % % % % % % % % % % % % % % % % % % %	4 5 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9																_							

TABLE C-1

TABLE C-I

AGENCY SUPPLYING DATA		6001																									2000																			
WATER SURFACE ELEVATION IN FEET		150.8	153.1	155.1	153.4	153.5	152.3	151.7	151+1	150.2	150.5	149.2	148.7	148.7	148+5	14000	148.9	148.	148.4	147.9	147.1	146.9	147.3	146.7	145.6		131.8	132.0	1000	0 6 6 6	134.3	133.8	133.7	133.5	132.7	132.6	130.2	131.4	130.1	130.5	132.6	132.8	128.3	132.5	132.9	
GRD SUR TO WATER SUR IN FEET	5-22.17	20.2	17.9	15.9	17.6	17.5	18.7	19.3	19.9	20.8	20.5	21.8	22+3	22.3	22.5	1077	22.1	22.3	22.6	23.1	23.9	24.1	23.7	24.3	25.4		33.2	33,0	210	0 - 10	20.00	21.0	31.3	31.5	32.3	32.4	34.8	33.6	34.9	34.5	32.4	32.2	36.7	32.5	32.1	
DATE		7-20-61	8-21-61	9-19-61	10-23-61	11-20-61	12-19-61	1-17-62	2-27-62	3-20-62	4-23-62	5-21-62	6-18-62	7-24-62	8-22-62	9-18-65	10-16-62	11-21-62	12-19-62	1-23-63	2-25-63	3-25-63	4-23-63	5-22-63	6-24-63		7-18-61	8-21-61	9-18-6	10-10-01	12-13-01	1-15-62	2-10-62	3-12-62	4-09-62	5-14-62	6-18-62	7-16-62	8-06-62	9-18-62	10-21-62	11-24-62	12-21-62	1-23-63	2-18-63	
GROUND SURFACE ELEVATION IN FEET	H AREA	171.0																									165.0																			
STATE WELL NUMBER	FRESNO SLOUGH AREA	M 60761-13603	133/185-18503 1																								155/16E-17L01 M																			
AGENCY SUPPLYING DATA		_	6001			_							_	6001)																						,000	1009		6001			1004			
WATER SURFACE ELEVATION IN FEET		,	129.9	131.2	135.4	140.3	141.9	143.4	143.9	138.2	138.5	137.0	150°5	143.4	142.7	142.3	140.1	141.3	142.1	143.0	142.9	142.6	142.0	140.3	140.0	138.0	137.8	1	138.1	138.8	139.0	140.4		140.0				145.1	14/0/	121.1	132.6	1 2 2 4 0		1 4 1 4	141.) • • • •
GRD SUR TO WATER SUR: IN FEET	5-22-17		35.1	33 8	59.6	24.7	23.1	21.6	21.1	26.8	26.5	28.0	34.1	34.4	37.3	37.7	0.06	38.7	0 . 6	27.0	27.0	37.4	20.00	000	0.04		4.1.4		41.9	41.2	41.0	39.6	В	0.04		推		21.9	19.3		100				20.62	7 • 67
DATE			8-23-62	9-18-62	10-16-62	11-21-62	12-19-62	1-23-63	2-26-63	3-25-63	4-22-63	5-22-63	6-24-63	7-10-41	8-21-61	0-18-61	10-23-61	11-21-61	12-18-61	12-10-01	20-11-1	2-20-62	79-07-7	4-63-06	5-61-62	20-01-0	0-23-62	9-18-62	10-16-62	11-21-62	12-19-62	1-23-63	2-27-63	3-25-63	4-22-63	5-01-63		10-19-62	2-19-63		10-23-62	2-62-63		10-22-62	10-23-62	C0-90-2
GROUND SURFACE ELEVATION	4 H H		165.0												180.0																							167.0			211.0			171.0		
STATE WELL NUMBER	A PROPERTY OF CAMPRICA	Section 1	145/16E-08D01 M	CONT.											145/16E-10J01 M																							145/16E-22N01 M			145/17E-25A01 M			155/16E-01L01 M		

TABLE C-I

AGENCY SUPPLY:NG DATA		6001				6001	56.31	6001
WATER SURFACE ELE VATION N FEET		123.5	115.0	117.7	117.5	119.7	135.4 138.2.6 138.2.6 14.2.6.1 138.2.6.6 138.2.6.9 138.2.6.9 138.2.6.9 138.2.6.9 138.2.6.9 138.2.6.9 138.2.6.9 138.2.6.9 138.2.6.9 138.2.6.9 138.2.6.9 138.2.6.9 138.2.6.9	86.2
GRD SUR TO WATER SUR IN FEET	5-22-17	80.5 79.5 84.3		86.3 83.4	86.5	86.1 83.1 82.8	9919 88888 88888 995 995 995 995 995 995 99	102.8
DATE		4-23-62 5-21-62 6-18-62 7-24-62	9-18-62 10-16-62	12-19-62 1+23-63 2-13-63	3-25-63 4-23-63 5-22-63 6-25-63	10-23-62 2-12-63 2-19-63	7-29-61 10-30-61 112-02-61 112-02-61 113-02-62 4-111-62 5-29-62 7-26-62 10-25-62 113-63 11-29-62 11-29-62 11-29-62 11-29-63 11-29	10-18-62
GROUND SURFACE ELEVATION IN FEET	AREA	204•0				205.8	227.3	189.0
STATE WELL NUMBER	FRESNO SLOUGH AREA	155/18E-07A02 M CONT.				155/18E-16G01 M	15 S/19E-29C01 M	16S/17E-23N01 M
AGENCY SUPPLYING DATA		2000	6001	6001	6001		9001	
WATER SURFACE ELEVATION IN FEET		132.3 131.9 130.7	97.5		94.0 100.3 96.0 106.1	112.3	00000000000000000000000000000000000000	128.2
GRD SUR TO WATER SUR IN FEET	.17							
GRD TO V	5-22.17	32°7 33°1 34°3	89.5	□ *	91.0 84.7 89.0 78.9	72.7	188 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	75.8
GRD DATE TO	5-22	3-19-63 32.7 4-21-63 33.1 5-20-63 34.3 6-17-63	10-22-62 89.5 2-08-63 73.8	10-19-62 n	7-20-61 91.0 8-22-61 84.7 9-19-61 89.0 10-23-61 78.9			2-27-62 76-7 3-20-62 75.8
	FRESNO SLOUGH AREA 5-22							

AGENCY SUPPLYING DATA		5050	5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0		4636	4636
WATER SURFACE ELEVATION IN FEET		137.2	15.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		318891989919899198999999999999999999999	171.6
GRD SUR TO WATER SUR IN FEET	5-22-17	82.8 n 90.6	748 710 70 70 70 70 70 70 70 70 70 70 70 70 70	5-22.18	00000440000000000000000000000000000000	75.0
DATE		8-29-61 9-27-61 10-31-61 11-29-61	12-28-61 3-05-62 3-05-62 4-27-62 7-31-62 7-31-62 111-05-62 112-28-	ISTRICT	7-05-62 9-04-62 10-05-62 11-05-62 12-04-62 12-04-63 3-04-63 4-09-63 5-02-63	7-05-62
GROUND SURFACE ELEVATION IN FEET	AREA	220.0	199.0	CONSOLIDATED IRRIGATION DISTRICT	355.7	246.6
STATE WELL NUMBER	FRESNO SLOUGH AREA	16S/19E-34P01 M CONT.	175/17E-12H01 M	CONSOLIDATED	145/22E-22N01 M	155/19E-24NO1 M
AGENCY SUPPLYING DATA		6001	0 0 0 0	ć ć	0000 0000 0000 0000 0000	5050
WATER SURFACE ELEVATION IN FEET			12277 122956 122996 122996 122996 12296 12209 12	6	1113.9 11	90.8 85.6 83.1
GRD SUR TO WATER SUR IN FEET	5-22.17		777 775.0 77		84.1 82.2 101.8 1118.0 107.6 97.7 98.5 97.9 94.9 94.9	100.2 105.4 107.9
DATE		2-13-63	7-24-61 9-37-61 9-37-61 10-31-61 110-31-61 110-31-62 2-28-61 1-26-62 3-37-62 8-03-62 8-03-62 8-03-62 11-05-62 11-05-62 12-04-63 12-04-63 12-04-63 12-04-63 12-04-63 12-04-63 12-04-63 12-04-63 13-04-63 1	6-28-63	2-11-63 2-21-63 7-02-62 8-29-62 9-27-62 11-05-62 112-28-62 1-25-63 3-04-63	4-29-63 5-31-63 6-28-63 7-24-61
GROUND SURFACE ELEVATION IN FEET	AREA	189.0	5 O O O O O O O O O O O O O O O O O O O		198.0	220.0
STATE WELL NUMBER	FRESNO SLOUGH AREA	165/17E-23N01 M CONT.	165/18E-10A01 M		165/18E-27C01 M	165/19E-34P01 M

TABLE C-I

AGENCY SUPPLYING DATA		4636	4636		7636		9697		4636
WATER SURFACE ELE VATION IN FEET		300.5 299.8 298.6 299.8	281.6 281.7 282.3 282.6 282.6	281.9 281.9 281.9 281.0 280.7 280.0	152.5 150.7 151.9 156.4 158.0	159.0 161.0 161.0 154.0 154.0 155.0	1844. 1844. 1855. 1855. 1876.	1886.3 1886.3 186.0 183.1	216.9
GRO SUR TO WATER SUR IN FEET	5-22.18	36.5 37.5 37.5	0448860 00000 000000 000000	400.00 400.00 400.00 410.20	83.0 84.8 83.6 77.5	76.5 74.5 73.8 78.2 81.2 81.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	54.1
DATE	ISTRICT	3-04-63 4-09-63 5-02-63 6-04-63	7-05-62 8-04-62 9-05-62 10-05-62 11-05-62	11	7-05-62 8-04-62 9-05-62 10-05-62	12-04-63 1-04-63 3-04-63 4-09-63 5-02-63 6-04-63	7-05-62 8-04-62 9-05-62 10-05-62 11-05-62	1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	7-05-62
GROUND SURFACE ELEVATION IN FEET	CONSOLIDATED IRRIGATION DISTRICT	337.0	321.9		235 • 5		247.7		271.0
STATE WELL NUMBER	CONSOLIDATED	155/22E-16A01 M CONT.	155/22E-29D01 M		165/19E-14A01 M		165/20E-22N01 M		165/21E-22N01 M
AGENCY SUPPLYING DATA		4636 .		4636		4636		0 0 0	
WATER SURFACE ELEVATION IN FEET		169.6 171.5 171.5	175.1 175.1 165.6 170.8	208.8 208.6 211.7 213.0 212.2 212.0	213.2 213.2 208.8 211.6 209.3	2665 2665 2665 2665 2665 2665 2665 2665	26666 266666 266666 266666 266666 266666	3000 3001 3001 301 301 900 900	300.4
GRD SUR TO WATER SUR IN FEET	5-22.18	77.0	71.5 71.5 70.4 81.0 75.8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 U U U U U U U U U U U U U U U U U U U	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	000000 0	7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	36.6
DATE	DISTRICT	9-05-62 10-05-62 11-05-62 12-04-62	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	7-05-62 8-04-62 9-05-62 10-05-62 11-05-62	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7-05-62 8-04-62 9-05-62 10-05-62 11-05-62 12-04-63	2-06-63 4-09-63 5-02-63 6-04-63	0.05-62 0-05-62 10-05-62 11-05-62 12-04-62 1-04-63	2-06-63
GROUND SURFACE ELEVATION N FEET	IRRIGATION	246.6		264.8		301.2	6	0	
STATE WELL NUMBER	CONSOLIDATED	15S/19E-24N01 M CONT.		155/20E-28A01 M		155/21E-15D01 M	27	E	

AGENCY SUPPLYING DATA		4637						4637											1.627	-											7677	4021										
WATER SURFACE ELEVATION IN FEET		327.8	326.4	356.1	326.B	331.0		348.2	345.2	335.2	33.00 0.00 0.00 0.00	332.7	331.7	333.0	333.4	333°9	335.0	337.8	0	200	4067	298.6	3000	301.3	300 • 2	301.5	301.2	301.5	300.8	303.6	, , , ,	40000	22.00	0000	332.0	220.00	327.B	332.0	332.1	335.5	338.6	
GRD SUR TO WATER SUR IN FEET	5-22-19	63.2	9.49	64.3	63.5	0.04		46.8	8 • 6 7	59.8	0.09	67.9	6363	62.0	61.6	61.1	0.09	51.5		0 0 0 0	200	59.4	57.9	56.4	57 ° B	56.5	56.8	56.5	57.2	24.4	:	41.6	t .	2040	00 (0 00 (0	0.00	19.4° L	56.0	50.0	52.5	4.64	
DATE		12-28-62	2-27-63	3-28-63	4-21-63	6-24-63		7-30-62	8-28-62	9-56-62	10-27-62	12-28-62	1-20-63	2-27-63	3-28-63	4-27-63	5-29-63	6-26-63	0	7-30-67	79-97-9	9-26-62	10-27-62	11-27-62	1-28-63	2-27-63	3-27-63	4-27-63	5-29-63	6-26-63		7-27-62	8-30-62	79-87-6	10-30-62	11-29-62	12-31-62	3-01-63	3-30-63	5-02-63	5-30-63	
GROUND SURFACE ELEVATION IN FEET	ION DISTRICT	391.0						395.0											,	358.0												388.0										
STATE WELL NUMBER	ALTA IRRIGATION DISTRICT	145/23E-36R01 M	,					M [00[8-3700] M	10.110											155/23E-23A02 M												15S/24E-22D01 M										
AGENCY SUPPLYING DATA		4636			-				_	_		4636												4636														4637				
WATER SURFACE ELEVATION IN FEET		216.1	218.4	220.5	221.2	221.2	221.4	222 - 8	222.4	219.9		264.2	265.2	265.6	265.6	246	265.7	266.0	266.1	266.2	266.2	266.2		261.2	559.9	260.0	7.797	20.00	25000	256.9	257.4	254.4	256.8	257.8				337.0			328.5	
GRD SUR TO WATER SUR. IN FEET	5-22.18	54.9	50.00	50.5	8.64	8.64	9.67	48.2	4 4 4 9 9	51.		33.3	32.3	31.9	32.0	51.67	3 1 ° C	31.5	31.4	31.3	31.3	31.3		24.8	26.1	26.0	23.8	28.0	2.62	29.1	28.6	31.6	29.5	28.2		5-22-19		54.0			64.8	
DATE	ISTRICT	8-04-62	10-05-62	11-05-62	12-04-62	1-04-63	2-06-63	3-04-63	6-009-63	6-04-63		7-05-62	8-04-62	9-05-62	10-05-62	79-60-11	12-04-62	2-04-63	3-04-63	4-09-63	5-02-63	6-04-63		7-05-62	8-04-62	8-05-62	10-05-62	11-05-62	12-04-62	2-04-63	3-04-63	4-09-63	5-02-63	6-04-63				7-30-62	8-28-62	9-56-62	10-27-62	
GROUND SURFACE ELEVATION IN FEET	IRRIGATION D	271.0										297.5												286.0												TON DISTRICT		391.0				
STATE WELL NUMBER	CONSOLIDATED IRRIGATION DISTRICT	165/21E-22N01 M	CDNT.									65/22E-23R01 M												175/22F-03C01 M												ALTA TRRIGATION DISTRICT		145/23E-36R01 M				

TABLE C-I

AGENCY SUPPLYING DATA		4637																	4637																						
WATER SURFACE ELEVATION .N FEET		239.4	242.6	243.4		235.6	7.007		233.5	237.6	241.62	242.4	242.4	239.2		237.6			240.6	240.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	242.0	242.6	243.0	243.7	244.0	242.3	242.5	241.2	239.7	239.2	240.9	241.9	242.4	242.8	242.8	245.6	240.3	241.1	240.5	239.3
GRD SUR TO WATER SUR IN FEET	5-22.19	35.6	32.4	31.6	n	39.4	• =		41.5	37.4	2 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	32.6	32.6	35.8	n	37.4	a		34.4	34.9	10	0 0 0	32.4	32.0	31.3	31.0	32.7	32.5	33.8	35.3	35.8	34.1	33.1	32.6	32.2	32.2	32.4	34.7	33°6	34.5	35.7
DATE		11-27-61	1-27-62	3-28-62	4-30-62	5-28-62	7-28-62	8-29-62	9-27-62	10-29-62	12-28-62	1-28-63	2-28-63	3-29-63	5-01-63	5-31-63	6-27-63	0	19-87-7	9-28-61	10-28-61	11-27-61	12-28-61	1-27-62	2-56-62	3-28-62	4-30-62	5-31-62	79-67-9	7-31-62	8-29-62	9-27-62	10-29-62	11-28-62	12-28-62	1-28-63	2-28-63	3-29-63	5-01-63	5-31-63	6-27-63
GROUND SURFACE ELEVATION IN FEET	ION DISTRICT	275.0																	0.672																						
STATE WELL NUMBER	ALTA IRRIGATION DISTRICT	175/22E-25A01 M CONT.																7000	113/22E-23301 M																						
AGENCY SUPPLYING DATA		4637	4637										4637												4637													4637			
WATER SURFACE ELEVATION IN FEET		345 • 3	278.1	280.3	280.5	280.6	280.3	280.4	278.2	2.612	279.0		294.2	291.7	292.6	294.2	293.7	292.2	0.062	290.0	7000	292.1	294.5		305.3	297.3		301.1				304.0	299.7	3000	305.8	308.4			229.8	235.3	238.6
GRD SUR TO WATER SUR IN FEET	5-22-19	42.7	35.9	33.7	33.5	33.4	33.7	33.6	35.8	34.00	3 to 0		41.8	44.3	43.4	41.8	42.3	8	0.04	0.24	2 2 2	000	41.5		58.7	2.99		65.9	0		1	0.09	64.3	63.8	58.2	55.6		п	45.2	39.7	36.4
DATE		6-27-63	7-31-62	9-26-62	10-29-62	11-28-62	1-28-63	2-28-63	3-28-63	5-01-63	6-25-63		7-28-62	8-30-62	9-52-65	10-26-62	11-26-62	12-27-62	1-28-63	3-27-63	4-27-63	5-78-63	6-25-63		7-28-62	8-30-62	79-57-6	10-26-62	79-97-11	12-29-62	1-28-63	2-26-63	3-27-63	4-21-63	5-28-63	6-25-63		7-28-61	8-30-61	9-28-61	10-28-61
GROUND SURFACE ELEVATION IN FEET	TON DISTRICT	388.0	314.0										336.0												364.0													275.0			
STATE WELL NUMBER	ALTA IRRIGATI	155/24E-22D01 M	165/23E-23E01 M										165/24E-21J01 M												165/25E-29A01 M													175/22E-25A01 M			

AGENCY SUPPLYING DATA	!	4637		5000	5050																					2050										
WATER SURFACE ELEVATION IN FEET		254.4 253.1		156.6	130.0	151.6	133.3	163.8	165.5	167.5	131.3	161.9	163.7	162.9	159.4	157.3	163.1	169.1	167.1	167.0	136.2	160.5	9 4 4	131 • 8		211.6	211.2	0	216.3	217.2	218.0		0 310	210.8	218.3	
GRD SUR TO WATER SUR IN FEET	5-22-19	9.99	5-22.20	63.4	*0*66	71.4	*******	59.2	57.5	56.0	91.7*	6101	59.3	60.1	63.6	H 45.7	- 0 0	50.00	55.9	26.0	86 • 8 *	62+5	**10	01.2#		45.6	0.94	מ	0.24	0.04	39.2	п	E .	0.54	****	V • 00
DATE		5-27-63		2-18-63	7-24-61	8-30-61	9-27-61	11-29-61	12-28-61	1-26-62	3-05-62	4-27-62	5-31-62	7-02-62	8-03-62	8-29-62	11-05-62	12-04-62	12-28-62	1-25-63	3-04-63	3-29-63	4-29-63	5-31-63		7-02-62	8-03-62	8-29-62	9-27-62	12-04-62	12-28-62	1-25-63	3-04-63	3-28-63	4-67-63	5-31-63
GROUND SURFACE ELEVATION IN FEET	ION DISTRICT	321.0	RIVER AREA	220.0	6	0.622																				257.2										
STATE WELL NUMBER	ALTA IRRIGATION DISTRICT	175/25E-18R01 M CONT.	LOWER KINGS RIVER AREA	175/19E-14J02 M		178/20E-20001 M																				175/21F-11G01 M	10011 11761									
AGENCY SUPPLYING DATA		6001															4637											4637								
WATER SURFACE ELEVATION IN FEET		258.0	259.0	267.7	271.6	274.0	262.3	257.4	255.5	254.1	254.7	263.0	265.9	269.5			287.0	285.0	283.9	763.4	783.4	282.5	283.9	284 • 1	285.1	285.4	6.182	251.3	249.6	250.0	253.0	254.0	755.7	256.6	254.5	253.7
GRD SUR TO WATER SUR IN FEET	5-22.19	45.0	44.0	33.6	32.0	29.0	40.7	45.6	40.7	48.9	48.3	0.04	37.1	22.5) 0 1	:	0 • 8 •	50.0	51.1	51.9	01.0	52.5	51.1	50.9	6.64	9.64	47.5		71.4			66.5	65.3			67.3
DATE		7-25-61 9-01-61	9-19-61	11-27-61	3-01-62	3-27-62	5-22-62	6-21-62	1-24-62	9-19-62	10-16-62	11-20-62	12-17-62	1-22-63	2-25-63	000000000000000000000000000000000000000	7-26-62	8-27-62	9-52-65	10-26-62	11-26-62	1-28-63	2-26-63	3-27-63	4-25-63	5-29-63	6-26-63	67-76 -	8-27-62	9-25-62	10-26-62	11-26-62	12-21-02	2-26-63	3-27-63	4-25-63
GROUND SURFACE ELEVATION :N FEET	10N DISTRICT	303.0															335.0												321.0							
STATE WELL NUMBER	ALTA IRRIGATION DISTRICT	175/24E-15A01 M															175,25F-10C01 M	10000											175/25E-18R01 M							

TABLE C-I

AGENCY SUPPLYING DATA		5050																		6001											6001			6001		
WATER SURFACE ELEVATION IN FEET		180.3	179.5	179.9	180.3	180.8	180.7	180.5	180.6	179.8	180.0	184.0	181.1	180.2	180.4	180 8	180.8			427.7	429.8	450.2	7-124	426.6	425.5	426.2	426.7	427.5	429.2	1	1.17.	478.2		367.9		
GRD SUR TO WATER SUR IN FEET	5-22.20	30.7	31.5	31.1	30.7	30.2	30.3	30 ° E	30.4	31.2	30.4	27.0	59.9	300	0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 °	30.2	30.2		5-22-21	15.3	13.2	12.0	16.3	16.4	17.5	16.8	16.3	15.5	13.8		32.3			37.1		
DATE		7-24-61	9-27-61	11-29-61	3-06-62	3-30-62	5-31-62	8-03-62	8-30-62	9-27-62	12-05-62	12-28-62	1-25-63	3-04-63	0-63-63	5-31-63	6-28-63		ISTRICT	7-25-62	8-21-62	79-61-6	11-20-62	12-17-62	2-04-63	3-05-63	4-03-63	5-02-63	6-03-63		10-10-62	2-12-63		7-25-62		
GROUND SURFACE ELEVATION IN FEET	RIVER AREA	211.0																	ORANGE COVE IRRIGATION DISTRICT	443.0											510.0			405.0		
STATE WELL NUMBER	LOWER KINGS	20S/22E-19M01 M																;	ORANGE COVE	145/24E-20801 M											145/25E-30D01 M			155/24E-14D01 M		
AGENCY SUPPLYING DATA		2050	5050		5050	5050		0606											5050		5050													2050	1009	>
WATER SURFACE ELEVATION IN FEET					203 • 8	219.6		181.2	175.4	185.7	190.9	196.7	191.0	195.4	0	189.6	185.6	178.3	203.5		146.5	141.1	1 0 4 ¢ C	1000	145.7	147.2	140.5	145.9	147.9	143.2	141.4	140.1	K • KC T	201.1	201.8	
GRD SUR TO WATER SUR IN FEET	5-22.20		DRY	OR∀ **	6 • 2	10.4		75.6	78.6	68.3	63.1	57.3	63.0	58.6	1,2	70.07	4 4 4	75.7	4.5		70.5	75.0	7 0 0	100	71.3	8 9 9	76.5	71.1	69.1	73.8	75.6	76.9	1 • 1	6 • 4	18.2	, ,
DATE		6-28-63	7-02-62	8-29-62	2-20-63	2-21-63		8-03-62	8-29-62	9-27-62	11-05-62	12-28-62	1-25-63	2-14-63	3-04-63	4-29-63	5-31-63	6-28-63	2-21-63		7-02-62	8-03-62	20-06-0	11-05-62	12-03-62	12-28-62	1-25-63	2-21-63	3-04-63	3-29-63	4-29-63	5-31-63	000000	2-20-63	2-19-63	,
GROUND SURFACE ELEVATION IN FEET	RIVER AREA	257.2	221.0		210.0	230•0		254.0											208.0		217.0													206.0	220.0	2
STATE WELL NUMBER	LOWER KINGS R	75/25E-11G01 M	185/18E-12N02 M		185/19E-26E01 M	185/20E-16A01 M		185/21E-10R01 M											195/19E-25A01 M		195/20E-21A01 M													205/20E-09C01 M	205/21F-03A01 M	

AGENCY SUPPLYING DATA		6001				6001																				6001													
WATER SURFACE ELEVATION IN FEET		341.8	344.6			257.0	245.0	259.5	260.6	262.4	263.8	264.6	258.0	255.0	247.5	546.9	250 • 8	261.0	262.1		262.8	263.6	264.1	264.4	763.0		265.5	264.9	264.7	264.2	264.3	265.9	764.07	265.4	265.5	266.5	267.0	267.6	,
GRD SUR TO WATER SUR IN FEET	5-22.22	22.2	19.4	•	5-22.23	93.0	105.0	90.5	4.68	87.6	86.2	7 • 98	000	95.0	102.5	103.1	99.2	91.2	97.9		87.2	86.4	85.9	85.6	87.0	1	33.5	. 70	9 6 4 9 9	00 00	7 . 4 a	0 7 6	, v	200		0 0 0	0 0 0	91.6	• 10
DATE	STRICT	3-26-63	5-21-63	60-87-9	E	8-01-61	8-31-61	10-31-61	12-01-61	1-02-62	1-31-62	2-28-62	4-05-62	5-01-02	6-10-62	8-01-62	8-31-62	10-03-62	12-05-62	1-03-63	2-04-63	3-04-63	4-01-63	5-01-63	6-06-63		7-25-61	1011010	19-19-0	10-24-61	10-12-01	10-16-01	10-17-11	12-10-71	1-02-04	1-23-02	2-22-2	4-07-04	7010714
GROUND SURFACE ELEVATION IN FEET	STONE CORRAL IRRIGATION DISTRICT	364.0			IVANHOE IRRIGATION DISTRICT	350.0																					349.0												
STATE WELL NUMBER	STONE CORRAL	175/26E-07R01 M CONT.			IVANHOE IRRIG	175,25F-27R01 M	113/575-51404																				17S/25E-35M01 M												
AGENCY SUPPLYING DATA		6001						6001												6001													6001						
WATER SURFACE ELEVATION IN FEET		371.2	370.9	371.9	373.1 373.9	374.9	31300	398.5	397.4	2.00%	397.7	397.6	396.4	396.9	397.0	397.8	376.4			402.7	402.4	402.	402.	402	405.4	404.2	404 • 0	403.8	404.2	403.7	403.1		340.0	333.3	340.0	342.3	342.9	343.0	338.2
GRD SUR TO WATER SUR IN FEET	5-22.21	33 • 8 32 • 8	34.1	33.1	31.9	30.1	31.5	16.5	17.6	16.8	17.3	17.4	18.6	18.1	18.0	17.2	16.6	5-22.22		2.3	5.6	2.3	2.3	٠ د د د د	0 0) a	1.0	1.2	00	1.3	1.9		24.0	30.7	24.0	21.7	21.1	21.0	25.8
DATE	151	9-19-62	11-20-62	2-04-63	3-05-63	5-02-63	6-04-63	7-25-62	8-21-62	9-19-62	10-16-62	12-17-62	2-04-63	3-05-63	4-04-63	5-03-63	6-05-63) STRICT		7-24-62	8-20-62	9-19-65	10-16-62	11-20-62	12-11-52	20-30-6	2-25-63	3-26-63	4-22-63	5-21-63	6-28-63		7-25-62	8-20-62	0-10-62	10-16-62	11-20-62	12-17-62	1-22-63
	STR	0, 0																-	•																				
GROUND SURFACE ELEVATION	OD ANGE COVE TRRIGATION DISTRICT	405.0		•				415.0	1									TOBERTION DISTRICT	ואומיותי	0.504													0.776	200					

TABLE C-I

AGENCY SUPPLYING DATA		6001												1003																					1009		
WATER SURFACE ELEVATION IN FEET		354.0	361.0	372.1	371.0	369.B	3/2°4	371.5	367.9	368.9	369.9	370.4	372.0	2 7 0 2	305.1	307.1	306.9	304.4	307.0	307.8	309.0	309.1	308 • 4	309.8	310.6	310.9	311.3	310.1	310.8	2110	312.9	314.0	314.6		333.1	332.8	334.7
GRD SUR TO WATER SUR IN FEET	5-22-23	40.0	33.0	21.9	23.0	24.2	22.2	22.5	26.1	25.1	24.1	23.6	22.0	77 0	79.9	77.9	78.1	200	78.0	77.2	76.0	75.9	76.6	75.2	74.4	74.1	73.7	74.9	7.41	0 00	72.0	71.0	70.4	;	82 • 9	83.2	81.3
DATE	13	2-28-62	5-02-62	6-01-62	8-01-62	9-04-62	10-03-62	12-05-62	1-04-63	2-05-63	4-01-63	5-02-63	6-10-63	17-10-0	8-31-61	9-29-61	10-31-61	12-01-61	1-31-62	2-28-62	4-05-62	5-02-62	6-01-62	8-01-62	9-04-62	10-03-62	10-31-62	12-06-62	1-04-63	2 0 - 0 2 - 0 3	4-02-63	5-02-63	6-10-63	:	8-01-61	9-21-61	10-31-61
GROUND SURFACE ELEVATION IN FEET	ATION DISTRIC	394.0												0 300	0 • 0 0 0																				416.0		
STATE WELL NUMBER	IVANHOE IRRIGATION DISTRICT	175/26E-21E01 M CONT.													113/20E=35/01 M																				175/26E-34D01 M		
AGENCY SUPPLYING DATA		6001											6001			_																	6001				
WATER SURFACE ELEVATION IN FEET		265.8	266.1	265.0	264.3	264.0	261.3	265.7	266.5	267.2	267.8		271.1	268•1	276.0	278.1	280.3	281.5	278.5	286.2	286.5	285.5	285 . 2	285.5	286.5	284.7	284.1	284.6	287.4	288.5	290.0	0 • 6 0 7	352.3	351.1	352.0	257.0	357.8
GRD SUR TO WATER SUR IN FEET	5-22.23	83.2	82.9	0.48	84.97	85.0	87.7	00 00 00 00 00 00 00 00	82.5	81.8	81.2	1	63.6	6.96	89.0	86.9	84.7	00 0 0 0 0 0 0 0	86.5	0 0 0	78.5	79.5	79.8	70.7	78.5	80.3	80.9	80.4	77.6	76.5	75.0	7.67	41.7	45.9	42.0	26.7	36.2
DATE	_	5-23-62	7-25-62	8-21-62	10-16-62	11-20-62	12-17-62	2-04-63	3-04-63	4-01-63	5-01-63		8-01-61	8-31-61	10-31-61	12-01-61	1-02-62	1-31-62	2-28-62	5-01-62	5-31-62	6-10-62	8-01-62	10-03-62	10-31-62	12-05-62	1-03-63	2-04-63	3-04-63	4-01-63	5-01-63	0010010	8-01-61	8-31-61	9-29-61	12-01-61	1-02-62
GROUND SURFACE ELEVATION IN FEET	IVANHOE IRRIGATION DISTRICT	349.0											365.0																				394.0				
STATE WELL NUMBER	I VANHOE IRRI	175/25E-35M01 M CONT.											175/25E-36G01 M																				175/26E-21E01 M				

AGENCY SUPPLYING DATA		6001					6001																						6001			6001		1004	•		1004					
WATER SURFACE ELEVATION IN FEET		262.5	262.0	272.6	279.9		229.3	232.2	238.3	233.7	247.4	249.8	251.2	250.4	248.8	245.3	239.5	4 4 6 6	22200	232.8	226.0	225.5	232.1	240.5	232.5	237.6	730 5	7.000	365.4	362.1		459.3	451.62	173 0	1000	• 0 1	0.0%	147.0	146.0	147.3	150.2	
GRD SUR TO WATER SUR IN FEET	5-22.24	35.0	35 • 5	24.9	17.6		105.7	101.1	7 9 9 7	101.3	87.6	85.2	83.8	84.6	86.2	89.7	95.5	п °	99.5	102.2	109.0	109.5	102.9	94.5	102.5	97.4	113.0	104.0	10.6	22.9		10.7			1 -			0 0 0			94.8	
DATE	/ DIST	2-25-63	3-25-63	5-21-63	6-28-63		7-25-61	8-31-61	10-24-01	11-27-61	12-18-61	1-22-62	3-01-62	3-28-62	4-26-62	5-23-62	6-21-62	7-25-62	8-21-62	10-16-62	11-20-62	12-17-62	1-22-63	2-25-63	3-25-63	4-22-63	5-21-63	6-28-63	10-10-62	2-04-63		10-11-62	2-05-63		79-01-01	2-04-63		14-07-1	0-20-61	10-25-61	11-28-61	1
GROUND SURFACE ELEVATION IN FEET	WATER CONSERV	297.5					335.0																						0	0		470.0		;	251.0			245.0				
STATE WELL NUMBER	KAWEAH DELTA WATER CONSERV DIST	175/24E-34801 M	CONT.				175/25E-21A01 M																							1/5/20E-1/PU2 M		17S/27E-34P01 M			18S/22E-29A01 M			18S/22E-36P01 M				
AGENCY SUPPLYING DATA		6001						_												6001	0505	1009			6001																	
WATER SURFACE ELEVATION IN FEET		336.8	339.1	340.0	342.1	24.6	345.5	344.5	345.6	346.7	348.7	7,00	2400	0 0 0 0 0	25.1.2	20100	356.0	350.5		297.0	316.3	301.5			246.8	243.5	242.4	245.6	244.4	248.4	250.4	251.2	257.6	260.0	260.0	264.7	263.0	261.8	261.5	262.5	262.5	260.3
GRD SUR TO WATER SUR, IN FEET	5-22.23	70.0	76.9	76.0	73.9	0.0	400	71.5	70.4	69.3	67.3	67.2	6.99	4.00	0 0 0 0	0.40	0.09	65.5		0.99	46.7	55.8	F-32.24	47.77-C	50.7	54.0	55.1	51.9	53.1	49.1	0 0 0 0	40.4	0 0	37.5	37.5	32.8	34.5	35.7	36.0	35.0	35.0	37.2
DATE	1 5	13 01-61	1-02-62	1-31-62	2-28-62	4-02-62	5-01-62	6-10-62	8-01-62	9-04-62	10-03-62	10-31-62	12-06-62	1-04-63	2-05-63	3-04-63	5-02-63	6-10-63		10-12-62	2-13-63	2-25-63	F 0 + 0	1810 0	7-25-61	8-31-61	9-19-61	10-24-61	11-27-61	12-20-61	79-67-1	3-27-62	4-25-62	5-22-62	6-19-62	7-24-62	8-21-62	9-19-62	10-16-62	11-20-62	12-17-62	1-22-63
GROUND SURFACE ELEVATION IN FEET	ATION DISTRI		0.014																	363.0				WATER CONSER	1	C + 1 6 7																
STATE WELL NUMBER	TVANHOF TRRIGATION DISTRICT		175/26E-34D01 M																	85/25E-12001 M				KAWEAH DELTA WATER CONSERV DIST		175/24E-34801 M																

TABLE C-I

AGENCY SUPPLYING DATA		6001	6001	6001	6001																	1003	1000	1009							
WATER SURFACE ELEVATION IN FEET		241.3	283.8	363.5	325.7	324.7	324.6	325.4	327.5	330.8	336.5	336.1	337.5	336.8	337.1	335.9	334.1	335.9	336.5	339.9	340.2	176.0	7 0 6 1 1	6.76	7.46	0.00	101.0	105.2	109.1	110.0	
GRD SUR TO WATER SUR IN FEET	5-22.24	71.2	54+2 m	26.5	41.3	42.3	45.4	41.6	39.5	36.2	30.5	30.9	29.5	30.2	29.9	31.1	32.9	31.1	30.5	27.70	26.8	0	0 * 6	137.1	140.3	139.6	134.0	129.8	125.9	125.0	
DATE	V DIST	10-12-62	10-11-62 2-23-63	10-12-62	7-25-61	9-20-61	11-29-61	12-19-61	3-01-62	3-28-62	5-23-62	6-20-62	7-24-62	9-19-62	10-16-62	11-20-62	1-22-63	2-26-63	3-26-63	5-22-63	6-28-63		59251-7	7-26-61	8-31-61	10-02-6	11-28-61	12-20-61	1-23-62	3-27-62	
GROUND SURFACE ELEVATION IN FEET	WATER CONSER	312.5	338.0	390.0	367.0																	4	0 + 6 + 7	235 • 0							1
STATE WELL NUMBER	KAWEAH DELTA WATER CONSERV DIST	185/24E-26A01 M	185/25E-33F01 M	185/26E-27E01 M	18S/26E-30N01 M																		INSTACE = OINGS M	195/22E-19A01 M							
AGENCY SUPPLYING DATA		6001										6001																			5050
WATER SURFACE ELEVATION IN FEET		152.6	161.6	151.8	147.1	154.3	158.5	159.0	0	9	• • • • • • • • • • • • • • • • • • • •	219.8	217.0	219.1	223.2	223.9	227.2	226.0	226.3	222.5	218.5	214.6	216.9	222.0	224.7	7.677	224.5	225.9	226.0	C • # 7 7	182.8
GRD SUR TO WATER SUR IN FEET	5-22.24	92.4	0 00 00 00 0 00 00 0 0 0 0 0 0 0 0 0 0 0 0	93.2	97.9	90.7	86.5	86.0		E 0	7 • 6 0	62.7	65.00 0.00	63.4	59.3	58.6	50.00	56.5	56.2	0.00	64.0	64.6	65.6	60.5	57.8	21.03	0.00	56.6	56.5	•	88.2
DATE	7 5137	12-20-61 1-25-62 2-28-62	3-27-62	6-19-62 7-23-62 8-21-62	9-18-62	11-19-62	1-21-63	2-25-63	4-22-63	5-20-63	50-17-0	7-25-61	9-20-61	10-24-61	11-27-61	12-20-61	2-28-62	3-27-62	4-25-62	6-19-62	7-23-62	8-21-62	10-15-62	11-19-62	12-17-62	2-12-63	3-25-63	4-22-63	5-20-63	50-17-0	2-13-63
GROUND SURFACE ELEVATION IN FEET	WATER CONSERV DIST	245.0										282.5																			271.0
STATE WELL NUMBER	KAWEAH DELTA	185/22E-36P01 M CONT.										18S/23E-12H01 M																			185/23E-34A01 M

AGENCY SUPPLYING DATA		1009							5050)	6001																							6001		6001						
WATER SURFACE ELEVATION IN FEET		270.7	265.8	265.6	264.4	265.2	267.9	277.1	264.9	,		183.5	196.2	211.0	2000	227. 6	237.0	9	217.8	214.5					230.0	221.7	227.4	238.3		247.6		220.8		104.8		197.6	193.5	202.9	202.0	0.612	217.8	
GRD SUR TO WATER SUR IN FEET	5-22.24	51.8	54.2	54.4	55.6	54.8	52.1	45.9	72.1	**7/	п	157,5	144.8	130.0	1.421	11/00	106.0) • E	123.2	126.5			п	п	111.0	1 0 1	112.6	102.7		4.80		120.2		121.2		106.9	111.0	101.6	5 • 86 0 0 0 0	89.0	86.7	
DATE	v DIST	10-15-62	12-18-62	2-25-63	3-26-63	4-22-63	5-20-63	6-28-63	2-13-63	50-51-7	7-25-61	9-01-61	9-20-61	10-25-61	11-29-61	12-19-61	3-01-62	3-10-6	4-25-62	5-23-62	6-20-62	7-24-62	8-23-62	9-19-62	10-16-62	13 10 43	12-10-02	2-26-63	3-26-63	4-22-63	5-20-63	6-28-63		2-19-63		7-25-61	8-30-61	9-20-61	10-25-61	19-87-11	12-21-61	
GROUND SURFACE ELEVATION IN FEET	WATER CONSER	320.0							0	00156	341.0																							226.0		304.5						
STATE WELL NUMBER	KAWEAH DELTA WATER CONSERV DIST	195/25E-07K01 M CONT.								195/25E-25D01 M	105/26F-34802 M																							205/22E-10C01 M		205/25E-14F01 M						
AGENCY SUPPLYING DATA		6001	_		_										6001													6001														
WATER SURFACE ELEVATION IN FEET		114.0	118.5	132.3	135.5	134.7	120 7	142.9	145.0	144.8	140.0	147.0	145.9	•	130.4	131.3	130.2	129.7	129.6	129.5	129.5	129.3	129.7	128-7	128.9	128.2		259.1	256.0	255.2	255.0	254.7	224.8	254 • U	25.00	261.3	269.0	274.2	271.7	270.8	271.1	
GRD SUR TO WATER SUR IN FEET	5-22.24	121.0	116.5	102.7	6.66	100.3	900	92.1	0.06	90.2	95.0	91.4	80.1		103.6	102.7	103.8	104.3	104.4	104.5	104.5	104.7	104.0	100	105.1	105.8		6.09	0.49	8.49	65.0	65.3	5.69	65.5	0407	20.00	51.0	8 - 14	4.8°3	6000	0 87	
DATE	v DIST	4-23-62	6-19-62	7-23-62	8-21-62	9-19-62	10-13-62	12-17-62	1-21-63	2-25-63	3-25-63	5-22-63	6-27-63		7-23-62	8-22-62	9-18-62	10-15-62	11-19-62	12-17-62	1-21-63	2-19-63	2 25-63	7-22-63	5-20-63	6-27-63		7-25-61	8-31-61	9-19-61	10-26-61	11-27-61	12-19-61	1-24-62	79-87-7	4-25-62	5-22-62	6-19-62	7-24-62	8-23-62	0-10-62	70 (4-6
GROUND SURFACE ELEVATION N FEET	WATER CONSER	235.0													234.0													320.0														
STATE WELL NUMBER	KAWEAH DELTA WATER CONSERV DIST	195/22E-19A01 M													195/22E-36E01 M													195/25E-07K01 M														

TABLE C-I

AGENCY SUPPLYING DATA		6001	6001					6001	
WATER SURFACE ELEVATION IN FEET		257.7 269.1 267.8	1268.9 1266.7 1125.6 1129.0 1129.0 1131.3 1131.4 117.5	125.8	111.1 126.9 129.5 131.4	133.3	130.9	125.7 125.7 124.8 126.0 126.1 130.0	127.7
GRD SUR TO WATER SUR IN FEET	5-22.25	59.00	11125	115.2	129.9 1114.1 1111.5 109.6	110.5	110.1	1117 - 4 115 - 3 116 - 2 117 - 0 111 - 0 110 - 8	113.3
DATE	1	10-02-61 2-07-62 10-08-62 2-05-63 3-21-63 6-28-63	7-26-61 9-31-61 10-25-61 11-28-61 11-28-61 11-28-61 11-28-61 11-28-62	7-23-62	9-18-62 10-15-62 11-19-62 12-17-62	3-25-63	5-20-63 5-20-63 6-27-63	7-26-61 9-31-61 0-25-61 10-25-61 11-28-61 12-27-61 12-3-62 3-27-62 4-23-62	5-22-62 6-19-62 7-23-62
GROUND SURFACE ELEVATION IN FEET	TULARE IRRIGATION DISTRICT	327.0	241.0					241.0	
STATE WELL NUMBER	TULARE IRRIGA	195/25E-17J01 M	20S/23E-08B02 M					20 5/23E -08G01 M	
AGENCY SUPPLYING DATA		6001			6001	6001	6001		6001
WATER SURFACE ELEVATION IN FEET		219.9 220.3 220.3 209.4 211.0	1966.0 207.0 217.0 217.0 219.7 218.5 213.5 213.5 213.6 217.9		179.2 163.0 181.0	142.6	179.7	1998.7 1998.7 1998.3 204.6 203.0 182.0 192.6	197.5
GRD SUR TO WATER SUR, IN FEET	5-22.24	\$2000000000000000000000000000000000000	100 900 900 900 900 900 900 900 900 900	5-22.25	90.8 107.0 89.0	107.9	110.3 n 95.5	991.99 985.09 985.00 1080.00 108.00	92.5
DATE	V DIST	2-28-62 3-28-62 4-25-62 5-25-62 6-129-62	8-22-62 10-15-62 11-18-62 12-18-62 12-18-62 12-18-62 12-18-62 12-18-62 13-26-63 4-22-63 5-20-63 5-20-63	-	10-10-62 2-20-63 5-20-63 6-27-63	10-10-62	7-24-62 8-22-62 9-18-62	11111111111111111111111111111111111111	5-20-63
	~			210					
GROUND SURFACE ELEVATION IN FEET	KAWEAH DELTA WATER CONSERV DIST	304.5		TULARE IRRIGATION DISTRICT	270.0	250.5	290.0		290•0

AGENCY SUPPLYING DATA		6001		6001																					6001												6001	
WATER SURFACE ELEVATION IN FEET		121.9		360.0	361.2	357.2	357.6	360.0	365.0	367.8	367.5	360.4	369.4	369.2	360.2	369.7	370.3	368.9	371.7	376.3	0.770	376.1	378.6		410.2	0.00	400	405.3	410.9	404.0	410.5	409 • 3	410.0	415.9	41107			234.4
GRD SUR TO WATER SUR IN FEET	5-22.25	10001	5-22.26	76.0	76.9	78.8	78.4	76.0	100	68.2	68.5	75.6	9.99	66.8	0 0 0	000	65.7	67.1	64.3	59.7	59.0	7 - 1 - 1	57.4		36.8	41.0	000	70.07	36.0	6.00	36.5	37.7	37.0	31.1	100 100			140.6
DATE		6-28-63		7-25-61	8-30-61	10-25-61	11-29-61	12-19-61	3 01-62	3-78-62	4-26-62	5-23-62	6-20-62	7-24-62	79-67-8	10-16-62	11-20-62	12-18-62	1-22-63	2-26-63	3-25-63	4-22-63	6-28-63		7-24-62	8-23-62	79-61-6	11-20-62	12-18-62	1-22-63	2-06-63	2-25-63	3-26-63	4-22-63	5-20-63	000000	7-25-61	8-30-61
GROUND SURFACE ELEVATION IN FEET	TULARE IRRIGATION DISTRICT	222.0	EXETER IRRIGATION DISTRICT	436.0																					0.744												375.0	
STATE WELL NUMBER	TULARE IRRIGA	215/23E-05R01 M	EXETER IRRIGA	185/26E-25K01 M																					185/27E-29001 M												195/26F-14E01 M	
AGENCY SUPPLYING DATA		6001		_			6001						6001																						6001			
WATER SURFACE ELEVATION IN FEET		122.4	125.3	128.2	130.7		164.6	179.8	167.7	180.0	1 / 4 • 1	104.4				152.1	153.2	154.0	154.	151.9						150.6	152.2	142.7		144.6	153.1				120.6	122.1	120.1	122.8
GRD SUR TO WATER SUR, IN FEET	5-22.25	118.6	115.7	112.8	110.3	*2	4.801	93.2	105.3	93.0	98.9	11301	5	=		6.16	96.8	95.5	000	98.1		п	ם	D 1	n E	4.66	97.8	107.3		105.4	6.96	ום	o :	3				99.2
DATE			9-18-62	11-19-62	1-21-63	2-01-63	10-05-61	2-09-62	10-10-62	2-06-63	5-20-63	6-77-9	7-26-61	8-31-61	9-20-61	10-25-61	11-28-61	12-20-61	79-67-1	3-27-62	4-23-62	5-22-62	6-19-62	7-23-62	0-18-62	10-15-62	11-19-62	12-17-62	1-21-63	2-25-63	3-25-63	4-22-63	5-70-63	0-77-0	10-03-61	2-07-62	10-09-62	5-21-63
GROUND SURFACE ELEVATION IN FEET	TION DISTRIC	241.0					0	7.79.0					0	0.002																					222.0			
STATE WELL NUMBER	THE IRRIGATION DISTRICT	205/23E-08G01 M	CONT.					205/24E-16H01 M						205/24E-30302 M																					215/23F-05R01 M			
													,	,	Λ	2																						

TABLE C-I

AGENCY SUPPLYING DATA		6001		6001			6001					6001			6001																					6001	
WATER SURFACE ELEVATION IN FEET		346.3	354.8	351.4			220.4	251.0	251.0	250.0	261.0	214.1	222.0		249.0	2000	255.7	259.1	260.7	262.6	265.7	263.0	264.3	265.0	264.6	268.7	270.6	273.9	270.0	276.3	274.0	277.7	276.7	275.4		180.6	
GRD SUR TO WATER SUR IN FEET	5-22.27	67.7	59.2	9.49	000	97.77-6	139.6	109.0	109.0	110.0	0 * 6 6	126.9	119.0		113.5	110 2	106.8	103.4	101.8	6.66	96.8	99.5	98.2	97.5	6.16	93.8	91.9	88.6	0 4 6 0	86.2	88	84.8	85.8	87.1		150.9	
DATE	1810	2-05-62	2-04-63	2-04-63	101		9-30-61	10-08-62	2-05-63	5-20-63	6-82-93	10-09-62	2-06-63		7-25-61 8-30-61	0-00-0	10-25-61	11-29-61	12-19-61	1-24-62	3-28-62	4-25-62	5-23-62	7-23-62	8-22-62	9-18-62	10-15-62	11-19-62	1-22-63	2-26-63	3-21-63	4-25-63	5-20-63	6-27-63		7-25-61 8-30-61	
GROUND SURFACE ELEVATION IN FEET	LINDSAY-STRATHMORE IRRIG DIST	414.0		406.0	STORY MOTTAGE	LINDMONE IRRIGATION DISTRICT	360.0					341.0			362.5																				;	331.5	
STATE WELL NUMBER	LINDSAY-STRA	20S/27E-21F01 M		205/27E-29J01 M	DOCK CALL	LINDMOKE IKH	205/26E-01P01 M					205/26E-22C02 M			205/26E-24K01 M																					205/26E-32AU1 M	
AGENCY SUPPLYING DATA		6001																	6001				6001		6001											6001	
WATER SURFACE ELEVATION IN FEET		239.5	255.3	262.0	262.4	263.4	25.8.3	257.1	263.0	266.6	268.1	271.6	270.3	271.2	273.1				244.0	262.5			293.4		307.1	309.2	300	300 × V	300	307.6	306.1	305.3	304.6	304.5	304.2		
GRD SUR TO WATER SUR IN FEET	5-22.26	135.5	119.7	113.0	112.6	112.1	116.7	117.9	112.0	108.4	104.2	103.4	104.7	103.8	101.9		1 11		115.0	96.5	5-22.27		91.6		6.49	62.8	62.7	62.5	62.0	4 • 49	65.9	66.7	67.4	67.5	67.8		
ОАТЕ	1	9-20-61	11-29-61	1-23-62	3-01-62	4-26-62	5-23-62	7-23-62	8-23-62	9-19-62	11-20-62	12-18-62	1-22-63	59-97-7	4-22-63	5-20-63	6-28-63		10-10-62	2-01-63	DIST		10-12-62		7-24-62	8-23-62	9-19-62	11-20-62	12-19-62	1-22-63	2-26-63	3-26-63	4-22-63	5-20-63	6-28-63	10-03-61	
GROUND SURFACE ELEVATION IN FEET	EXETER IRRIGATION DISTRICT	375.0																	359.0				385.0		372.0											414.0	
STATE WELL NUMBER	EXETER IRRIG	195/26E-14E01 M CONT.																	195/26E-23E01 M		LINDSAY-STRATHMORE IRRIG		195/2/E-29D01 M		20S/27E-06B01 M											205/27E-21F01 M	

AGENCY SUPPLY:NG DATA		6001	6001															6001															
WATER SURFACE ELEVATION IN FEET		331.6	220.8	255.6 270.9 255.9	279.0	285.6	268.9	249.0	255.6	273.2	279.6	286.4	286.8	290.7	287.2	266.5		379.4	01000	376.3		376.0	376.1	377.5	380 0 3	2.974	380.3		385.4	387.0	387.8	286.0	•
GRD SUR TO WATER SUR IN FEET	5-22.28	4.09	151.2* 134.5	116.4 101.1 116.1*	93.0	86.4 85.0	103.1	123.0	116.4	98.8	92.4	85.6	90.5	81.3	84.8	103.9		9.64	75.5	100 c		53.0	52.9	51.5	48.7	8 • 6 4	000		43.6	42.0	41.2	49-14	1 + 7 +
DATE	CT	5-20-63	7-26-61 8-29-61	9-20-61 10-26-61 11-28-61	12-21-61	2-27-62	4-25-62	6-20-62	7-24-62	9-18-62	10-15-62	11-19-62	12-18-62	2-26-63	4-25-63	5-20-63	001770	7-26-61	8-29-61	19-07-6	11-28-61	12-19-61	1-24-62	3-01-62	3-28-62	4-25-62	2-23-02	7-23-62	8-22-62	9-18-62	10-15-62	11-19-62	12-18-62
GROUND SURFACE ELEVATION IN FEET	GATION DISTRI	392.0	372.0															429.0															
STATE WELL NUMBER	LINDMORE IRRIGATION DISTRICT	205/27E-29E01 M CONT.	215/26E-01001 M															215/27E-02E01 M															
AGENCY SUPPLYING DATA		6001													6001																		
WATER SURFACE ELEVATION IN FEET		190.2	203.6	214.5	207.0	0 6 6	• 60	199.5	211.5	212.2	211.5	216.0	212.6	195.5		310.9	310.4	318.4	319.5	319.8	321.3	364.1			323.3	326.8		328.1	329.9	331.3	320.0	333.0	334.8
GRD SUR TO WATER	5-22.28	141.3	127.9	117.0	124.5	136.5	† • • • • • • • • • • • • • • • • • • •	132.0	120.0	119.3	120.0	115.5	118.9	136.0	c	81.1	81.6	73.6	72.5	72.2	70.07	67.3		D 6	7 2 4	65.2		63.9	62.1	60.7	0.04	20.00	57.5
DATE		9-20-61	11-28-61	2-28-62	4-25-62	7-00-62	9-18-62	10-15-62	12-19-62	1-21-63	2-26-63	4-25-63	5-20-63	6-27-63	7-26-61	8-30-61	9-20-61	10-25-61	12-19-61	1-24-62	3-01-62	3-28-62	4-25-62	5-23-62	7-23-62	8-22-62	9-19-62	10-15-62	11-19-62	12-18-62	1-22-63	3-21-63	4-25-63
GROUND SURFACE ELEVATION	ATSTON DISTR	331.5													0 000	20760																	
STATE WELL NUMBER	TOTALINATION DISTRICT	205/26E-32A01 M	• 200													203/2/E=29E01 M																	

TABLE C-I

AGENCY SUPPLY NC		6001	6001	6001			1009															:	6001												.007	1000
WATER SURFACE ELEVATION IN FEET		362.9	375.5	380.6	380.9				369.0	370.1	•	371.1		, ,,,,	373.0			275.0	376.1	377.3			305.5	300.00	9046	306.2	277.8	301.1		309.2	310.6	309.9	306.9	305.3	0	0.40
GRD SUR TO WATER JR IN FEET	5-22.29	46.1	60.5	39.4	39.1				45.0	0.00		45.9	п	_ C	41.0		D 1	30.0	37.0	36.7	žt.		89.0	; c	26.	0 0	117.2	63.6		85.8	84.4	85.1	88.1	89.7	4 70	1.00.2
DATE	STRICT	6-27-63	10-12-62 2-01-63	1-24-63	5-27-63		7-26-61	9-20-61	10-26-61	12-19-61	1-24-62	2-27-62	3-28-62	4-24-62	6-20-62	7-23-62	8-22-62	10-15-62	11-19-62	12-18-62	1-24-63	4	10-00-01	2-04-61	4-25-62	6-11-62	8-17-62	10-08-62	1-22-63	2-08-63	3-22-63	4-26-63	5-27-63	6-17-63	200	70-67-1
GROUND SURFACE ELEVATION IN FEET	RRIGATION DI	0.607	436.0	420.0			414.0															i i	395.0													•
STATE WELL NUMBER	PORTERVILLE IRRIGATION DISTRICT	215/27E-21E01 M CONT.	21S/27E-23N01 M	215/27E-28E01 M			215/27E-29H01 M																225/26E-01301 M												M 10001 7567 366	M 10801 B
AGENCY SUPPLYING DATA		6001				6001										6001																				
WATER SURFACE ELEVATION IN FEET		381.9	388.7	385.5		294.3	304.1	299.9	310.1	307.1	305.9	307.9	306.9	306.3	00100	359.2	355.7	355.6	356.6	357.1	357.5	358.1	350.0	358.6	356.9				355.3	358.7	358.8	359.7	361.4	361.0	302.1	•
GRD SUR TO WATER SUR IN FEET	5-22,28	47.1	40°3 8°04 6°24	43.5	5-22.29	79.7	6.69	74.1	80°3	6.99	68.1	66.1	67.1	1.19	• 00	49.8	53.3	73.4	52.4	51.9	51.5	50.0	1 t t	50.4	52.1	DRY	DRY	DRY	53.7	50.3	50.2	49.3	47.6	0 . 8 .	0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	• • • • • • • • • • • • • • • • • • • •
DATE	ICT	1-22-63 2-26-63	3-21-63	6-27-63	STRICT	10-09-61	4-25-62	6-07-62	8-16-62	1-22-63	2-06-63	3-22-63	4-26-63	5-21-63	010110	7-27-61	8-29-61	10-26-61	11-28-61	12-19-61	1-24-62	29-17-7	79-62-67	5-23-62	6-20-62	7-23-62	8-22-62	9-18-62	10-15-62	11-19-62	12-18-62	1-21-63	2-26-63	3-21-63	5-20-63	00000
GROUND SURFACE ELEVATION IN FEET	LINDMORE IRRIGATION DISTRICT	429.0			PORTERVILLE IRRIGATION DISTRICT	374.0										0.607																				
STATE WELL NUMBER	LINDMORE IRR	21S/27E-02E01 M CONT.			PORTERVILLE	215/26E-23N01 M										215/27E-21E01 M																				

AGENCY SUPPLYING DATA		6001							6001	6001	6001	
WATER SURFACE ELE VATION IN FEET		152.1	150.3 151.0 151.9 158.0	157.9 155.9 151.1 150.0	154.2	155.4 155.0 155.6	155.4 158.0 155.0	154.0	20002	217.0 225.0 224.0 229.5 229.5 229.0	1665 17665 20166 20166 20166 20166 2017 2017 2017 2017 2017 2017 2017 2017	181.3
GRD SUR TO WATER SUR IN FEET	5-22,30	98.9 99.8 101.7	100.7 100.0 99.1 93.0	93.1 95.1 99.9 101.0	96.8	95.6 96.0 95.4	95.6 93.0 96.0	97.0	84.5	74.0 66.0 61.5 62.0 27.0	156.8* 158.0* 143.1* 112.5 105.5 96.6 94.6 108.5	140.7
DATE	ON DIST	8-30-61 9-18-61 10-25-61	11-28-61 12-20-61 1-24-62 2-28-62	3-27-62 4-23-62 5-22-62 6-19-62 7-23-62	8-22-62	10-15-62 11-19-62 12-17-62	1-14-63 2-06-63 4-03-63	5-01-63 6-03-63	10-10-62 2-06-63	10-02-61 2-20-62 10-10-62 1-14-63 2-06-63 6-05-63	7-26-61 8-30-61 9-20-61 10-26-61 11-28-61 12-21-61 12-61	6-19-62
GROUND SURFACE ELEVATION IN FEET	RIVER IRRIGATION DIST	251.0							285.0	291.0	322.0	
STATE WELL NUMBER	LOWER TULE R	215/24E-35M01 M CONT.							215/25E-08H01 M	215/25E-16A01 M	215/26E-06G02 M	
AGENCY SUPPLYING DATA		6001				6001	6001	6001				6001
WATER SURFACE ELEVATION IN FEET		345.0	24 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	386.8 386.8 384.1 351.2		102.2	179.1	142.4	141.1 140.3 140.0	1399.1 1399.1 1399.9 1399.2 1399.5	14400.2 14410.0 14411.0 14411.0 1440.0 1440.0 1440.0 1440.0 1440.0	155.6
GRD SUR TO WATER SUR IN FEET	5-22.29	122.0 123.0	120.2	80.2 78.9 82.9 115.8	5-22.30	119.3	73.9	87.6	88.9 89.7 90.0	9000 9000 9000 9000 9000 9000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	95.4
DATE	DISTRICT	8-22-62 9-18-62	11-20-62 12-18-62 1-22-63	3-22-63 4-26-63 5-27-63 6-19-63	ON DIST	10-09-62 2-21-63	10-09-62 2-05-63	7-26-61	9-18-61 10-24-61 11-28-61	12-20-61 1-24-62 2-28-62 3-27-62 4-23-62 5-22-62 6-19-62	7-23-62 8-22-62 9-18-62 10-19-62 11-19-62 12-17-62 12-17-63 5-01-63 5-03-63 6-03-63	7-26-61
GROUND SURFACE ELEVATION 'N FEET	IRRIGATION DI	0.467.0			NIVER IRRIGATION DIST	221.5	253.0	230.0				251.0
STATE WELL NUMBER	PORTERVILLE	225/27E-10R01 M CONT.			LOWER TULE R	215/23E-22J01 M	215/24E-15H01 M	21S/24E-31D01 M				215/24E-35M01 M

TABLE C-I

IN FEET	DATE	TO WATER SUR IN FEET	SURFACE ELEVATION IN FEET	SUPPLYING	STATE WELL NUMBER	SURFACE ELEVATION IN FEET	DATE	TO WATER	SURFACE ELE JATION IN FEET	SUPPLYING
RRIGATI	LOWER TULE RIVER IRRIGATION DIST	5-22.30			LOWER TULE RI	LOWER TULE RIVER IRRIGATION DIST	ON DIST	5-22.30		
322.0	7-24-62 8-22-62 9-18-62	136.8 131.9 125.7	185.2 190.1 196.3	6001	225/25E-10E01 M CONT.	294•0	8-08-61 9-15-61 9-28-61	121.5 130.3 118.5	172.5 163.7 175.5	6001
	10-15-62	102.8 94.3	219.2				11-14-61 12-18-61 1-23-62	119.5	179.5	
	1-14-63	92.5	229.5				2-15-62	119.5	174.5	
	4-03-63	99.5	222.5				4-17-62	125.5	168.5	
	6-05-63	103.5	218.5				6-19-62	120.5	173.5	
359.0	7-24-62			6001			7-19-62	123.5	170.5	
	8-22-62	100.0	259.0				9-13-62	126.5	167.5	
	10-15-62	86.9	272.1				11-21-62	115.5	178.5	
	11-19-62	86.2	272.8				1-15-63	117.9	176.1	
	12-18-62	α . • τ	21301				3-06-63	117.5	176.5	
	2-06-63	0.06	269.0				4-03-63	118.5	175.5	
	3-03-63	65.0	294.0				5-02-63	120.5	173.5	
	5-01-63	E3 E					6-05-63	119.5	174.5	
		1			225/25E-15A01 M	300.5	7-19-62	145.5	155.0	6001
244.0	9-28-61	122.0	122.0	6001			8-16-62	139.5	161.0	
	2-15-62	118.0	126.0				9-13-62	139.5	161.0	
	1-15-63	120.3	111.0				11-21-62	120.5	168.0	
	2-07-63	126.0	118.0				12-12-62	127.5	173.0	
	6-05-63	126.0	118.0				1-15-63	134.5	166.0	
4	7-10-62	t		1003			2-07-63	120.5	180.0	
	8-16-62	157.0	94.5				4-03-63	151.5	149.0	
	9-13-62	155.0	96.5				5-02-63	130.5	170.0	
	10-10-62	156.0	95.5				6-03-63	139.5	161.0	
	12-12-62	163.0	88.5		225,26F-06A01 M	337.0	10-08-62		217.0	6001
	1-15-63	םנ					2-05-63	113.7	223.3	
	2-06-63	D								
	3-06-63	151.0	100.5		225/26E-06F04 M	331.0	7-27-61	157.6	173.4	6001
	4-03-63	141.0	110.5				0-20-61	140.7	181.3	
	6-03-63	153.0*	98.5				10-26-61	140.2	190.8	
							11-30-61	130.1	200.9	
294.0	7-22-61			6001			19-61-71	16/04	20200	

AGENCY SUPPLYING DATA		6001	6001		6001	6001
WATER SURFACE ELEVATION IN FEET		3882.1 3842.2 409.8 408.2 419.5 415.9 427.0 431.7 411.0	272.7 281.5 274.0	278.4 278.0 282.1 282.6 277.2	2223 2223 2223 2223 2223 2223 2233 223	176. 180. 179. 180. 180. 189. 192. 1
GRD SUR TO WATER SUR IN FEET	5-22.31	155.8 1155.8 1125.8 1125.8 1115.2 1119.2 1108.0 108.0 103.3 124.0	123.3 114.5 122.0	117.6 118.0 113.9 113.6	11474 11474 11466 11966 11966 11996 11966	1562.9 1583.6 1598.6 11598.1 1498.1 1468.9 1598.9
DATE	101	8-22-62 10-15-62 11-20-62 12-18-62 12-18-63 1-23-63 2-26-63 4-25-63 6-27-63	10-04-61 2-08-62 8-17-62	10-08-62 10-12-62 2-04-63 4-26-63 6-18-63	7-23-62 9-22-62 9-18-62 10-18-62 11-20-62 11-29-63 2-26-63 3-21-63 4-25-63 5-20-63 6-27-63	7-27-61 8-30-61 9-20-61 10-26-61 11-29-61 12-20-61 12-26-2 2-27-62 3-28-62
GROUND SURFACE ELEVATION IN FEET	VANDALIA IRRIGATION DISTRICT	E-18A01 M 535.0 8-10-10-10-10-10-10-10-10-10-10-10-10-10-	396.0		371.0	9399
STATE WELL NUMBER	VANDALIA IRR	225.728E-18A01 M	225/26E-12R02 M		225/26E-15J01 M	225/26E-32E01 M
AGENCY SUPPLYING DATA		6001		6001		6001
WATER SURFACE ELEVATION IN FEET		205.9 207.2 200.8 2004.1 203.6 196.7 196.7 197.2 201.7 201.7 201.7 208.7	207.5	372.0	00000000000000000000000000000000000000	391.0 392.5 3974.3 3994.0 401.1 401.1 402.0 399.9
GRD SUR TO WATER SUR IN FEET	5-22.30	125.1 123.8 1123.8 1126.9 127.4 1134.3 1140.4 1140.9 1129.3 1129.3	123.5 121.5 119.5	5-22.31 152.0 135.6	136.0 134.8 132.8 129.7 127.3 127.5 131.0 139.5 136.0	133.0 131.5 1256.0 1256.0 125.0 1322.0 133.0
DATE	DN DIST	1-25-62 2-27-62 3-27-62 4-28-62 5-22-62 6-20-62 7-23-62 10-15-62 110-15-62 112-18-62 113-18-63	5-01-63 5-01-63 6-03-63	7-27-61 9-01-61 9-20-61	10-26-61 11-30-61 12-20-61 1-25-62 1-25-62 3-24-62 4-24-62 4-24-62 4-24-62 4-24-62 4-24-62 4-24-62 4-24-62 4-24-62 9-23-62 6-20-62 9-23-62 9-23-62	111-20-62 12-18-62 12-26-63 2-26-63 3-21-63 4-25-63 5-20-63 6-27-63
GROUND SURFACE ELEVATION N FEET	LOWER TULE RIVER IRRIGATION DIST	331.0		VANDALIA IRRIGATION DISTRICT 8E-07G01 M 524.0 9		0 9 9
STATE WELL NUMBER	LOWER TULE RI	225/26E-06F04 M		VANDALIA IRR 225/28E-07001 M		225/28E-18A01 M

TABLE C-I

AGENCY SUPPLYING DATA		000		6 001 6 001
WATER SURFACE ELEVATION IN FEET		88 9 8 8 9 8 8 9 9 8 9 9 9 9 9 9 9 9 9	117.2 120.8 121.9 124.7 114.5 116.9	7
GRD SUR TO WATER SUR IN FEET	5-22.33	2220.3 2211.4 211.6 201.6 1195.6 1195.7 1195.3 1195.3 202.3 203.5 203.5 203.5 203.5	192.8 189.2 188.1 185.3 195.3 197.6 193.1	33 H 1266 3 1200 6 1000
DATE	—	10000000000000000000000000000000000000	11-19-62 12-17-62 1-23-63 2-26-63 3-21-63 4-25-63 5-20-63	10-10-10-10-10-10-10-10-10-10-10-10-10-1
GROUND SURFACE ELEVATION IN FEET	PIXLEY IRRIGATION DISTRICT	910.0		207.0
STATE WELL NUMBER	PIXLEY IRRIG	225/25E-25N01 M		235/234E-16R01 M
AGENCY SUPPLYING DATA		6001	6001	
WATER SURFACE ELEVATION IN FEET		1993. 1994. 1994. 1995. 1996. 1996. 1999. 1999. 1999. 1999.	233.0 229.0 181.4 187.6 193.9 197.2	1897.7 1897.7 1993.9 1993.9 1811.3 1871.0 200.1 200.1 1990.4 1990.4
GRD SUR TO WATER SUR IN FEET	5-22.32	110 140 140 140 140 140 140 140	164.0 168.0 199.6 193.4 187.1 183.8 181.2	183.3 193.3 194.0 194.0 194.0 196.0 196.0 196.0 196.0
		**************************************	222222	ппппппппппппппппппппппппппппппппппппппп
DATE	RICT	4-24-62 6-201-62 6-20-62 7-23-62 10-15-62 11-118-62 11-13-63 12-18-63 13-18-63 13-18-63 13-18-63 13-18-63 13-18-63 13-18-63 13-18	10-111-62 2-07-63 2-07-63 9-19-61 10-26-61 11-29-61 1-25-62 2-26-62	3-26-62 5-21-6-52 5-21-6-52 7-24-62 9-18-62 10-15-62 11-17-62 11-17-62 11-17-62 12-17-62 12-17-62 12-17-62 13-17-62 13-17-62 14-17-62 15-17-62 16-17-62 17-18-63 18-18-6
GROUND SURFACE ELEVATION IN FEET	SAUCELITO IRRIGATION DISTRICT	ਜਕਾਰ	397.0 10-11-6 2-07-6 381.0 9-10-6 11-29-6 12-19-6 12-19-6 12-19-6	3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -

AGENCY SUPPLYING DATA	6001					T 0009		2000
WATER SURFACE ELEVATION IN FEET	211.5	210.0	207.3	205.4 205.4 205.4 205.8 205.8	207.6 208.1 208.3 208.8	54.6 771.6 91.8 104.2 108.0 118.6 1109.9 100.3 107.5 73.1 73.1	94.1 123.6.3 123.6.0 125.9 125.9 126.0 120.0 120.0	68.3
GRD SUR TO WATER SUR IN FEET	5-22-33	7.00	8833 848 848 848 848	88 88 88 88 88 88 88 88 88 88 88 88 88	82.0 81.0 81.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	236. 2136. 1999. 186. 186. 173. 181. 181. 181. 181. 213. 223. 223.		
DATE		9-19-61 10-25-61 11-29-61	12-19-61 1-25-62 2-26-62 3-28-62 4-24-62	5-21-62 6-20-62 7-24-62 8-22-62 9-18-62	11-19-62 12-17-62 1-23-63 2-26-63 3-22-63	7-26-61 9-19-0-61 10-25-61 10-25-61 11-29-61 11-29-61 12-19-61 12-26-62 2-26-62 3-26-62 4-21-6-2 5-21-6-2 6-20-62 6-20-62 8-22-6-2 8-21-6-2 7-24-62	9-18-62 10-15-62 11-19-62 12-17-62 12-13-63 1-28-63 1-26-63 3-21-63 4-25-63 5-20-63	7-18-62
GROUND SURFACE ELEVATION IN FEET	PIXLEY IRRIGATION DISTRICT	290•0				291.0		263.0
STATE WELL NUMBER	PIXLEY IRRIG	235/25E-15A01 M CONT.				235/25E-15J02 M		235/25E-16N03 M
AGENCY SUPPLYING DATA		6001		6001			6001	6001
WATER SURFACE ELEVATION IN FEET		97.3	9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	27 - 5 - 5 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	107.6 117.3 122.0 86.5	100 100 100 100 100 100 100 100 100 100	212.1 213.0 214.0 217.0 217.4 2217.2 221.2	209.8
GRD SUR TO WATER SUR IN FEET	5-22.33	122.7	120.2 120.8 122.3 122.5	250.5 243.6 217.4 190.6 178.6	17004 16007 15600 19105 18307	DRY DRY DRY DRY DRY DRO DEC. 5 166.5 166.5 162.6 1163.5 173.9	00000000000000000000000000000000000000	80.2
DATE		-	2-26-63 3-22-63 4-26-63 5-21-63	7-26-61 8-30-61 9-19-61 10-25-61	12-19-61 1-25-62 2-26-62 3-28-62 4-24-62	6-20-62 6-20-62 8-22-62 8-22-62 10-115-62 11-13-62 12-117-62 12-117-62 12-126-63 3-22-63 4-25-63 5-20-63	7-23-62 8-22-62 9-18-62 10-15-62 11-19-62 12-17-63 1-23-63 3-20-63	7-26-61 8-30-61
GROUND SURFACE ELEVATION	PIXLEY IRRIGATION DISTRICT	220.0		278.0			0.000	290.0
STATE WELL NUMBER	PIXLEY IRRIG	235/24E-16R01 M CONT.		235/25E-09002 M			235/25E-14C01 M	235/25E-15A01 M

TABLE C-I

AGENCY SUPPLY NG DATA		6001		6001		6001
WATER SURFACE ELEVATION N FEET		1447111996471199999999999999999999999999	156. 150. 155. 151. 5.	32.1 85.5 104.4 112.8 1112.9 1115.1 98.0	70.0 61.2 87.2 93.8 1114.5 1118.2 118.9 120.9 120.9	196.0
GRO SUR TO WATER SUR IN FEET	5-22.33	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	190.5 194.3 189.3 189.2 193.5 5-22.34	162.9 109.5* 90.6 82.2 76.2 77.0 82.7	11255 11325 11325 11325 125 125 125 125 125 125 125 125 125 1	14.0
DATE	_	2-26-62 3-28-62 5-21-62 6-20-62 7-23-62 8-28-62 8-28-62 9-18-62 10-15-62 11-17-62 11-13-62 11-13-62	2-26-63 3-21-63 4-25-63 5-20-63 6-27-63	7-27-61 9-1-29-61 10-25-61 11-29-61 11-29-61 12-18-61 2-26-62 3-29-62 4-23-62 6-20-62	7-24-62 9-13-62 10-16-62 11-17-62 12-17-62 12-17-62 12-17-62 12-17-62 12-17-62 12-17-62 12-17-63 12-17-63 12-17-63 12-17-63 12-17-63 12-17-63 12-17-63 12-17-63	7-26-61
GROUND SURFACE ELEVATION IN FEET	PIXLEY IRRIGATION DISTRICT	0.646.	NSWORTH AREA	0 • 9 • 9		210.0
STATE WELL NUMBER	PIXLEY IRRIG	235/26E-08R01 M	ALPAUGH-ALLENSWORTH AREA	225/23E-28L01 M		235/23E-33A01 M
AGENCY SUPPLYING DATA		0000	0000	2000	6001	
WATER SURFACE ELEVATION IN FEET		63.2 67.0 90.0 102.4 1110.3 120.7 120.7 104.0	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	158.6 158.6 158.6 158.9 152.7 153.2 154.5 158.9	1602.1 1602.0 1600.0 1600.0 161.0 1225.0 1325.0 1400.0 161.7	145.1
GRD SUR TO WATER SUR IN FEET	5-22+33	10000000000000000000000000000000000000	1115. 1114. 1113. 1104. 1106. 1106. 1106. 1106. 1106. 1106.	1005.3 1005.3 1105.3 1115.6 1112.6 1110.5 110.5	1006.9 1008.1 1008.1 1008.1 107.7 2219.7 2210.5 204.0	199.9
DATE		8-117-62 110-62 110-08-62 12-04-62 12-05-63 3-27-63 4-24-63 5-22-63	7-18-62 8-17-62 9-11-62 10-09-62 11-08-62 11-06-62 1-05-63	3-27-63 5-12-63 6-12-63 7-18-62 8-11-62 9-11-62 11-08-62 11-08-62 11-08-62	2-27-63 4-1-63 4-1-63 4-1-63 6-19-63 7-19-63 7-19-61 11-19-61 11-19-61 11-19-61 11-19-61 11-19-61 11-19-61 11-19-61	1-25-62
GROUND SURFACE ELEVATION N FEET	ATION DISTRICT	263.0	2 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	0 *692	34.5.0	
STATE WELL NUMBER	PIXLEY IRRIGAT	235/25E-16N03 M	235/25E-16N04 M	235/25E-17G03 M	235/26E-08R01 M	

AGENCY SUPPLYING DATA		6001	6001	6001
WATER SURFACE ELEVATION IN FEET		136.4 136.2 136.6	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	1112223 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
GRD SUR TO WATER SUR IN FEET	5-22.34	73.6	1122 1225	111111 12221 12221 1222221 122221 122221 122221 122221 122221 122221 122221 122221 1222221 122221 122221 122221 122221 122221 122221 122221 122221 1222221 122221 122221 122221 122221 122221 122221 122221 122221 1222221 122221 122221 122221 122221 122221 122221 122221 122221 1222221 122221 122221 122221 122221 122221 122221 122221 122221 1222221 122221 122221 122221 122221 122221 122221 122221 122221 1222221 122221 122221 122221 122221 122221 122221 122221 122221 1222221 122221 122221 122221 122221 122221 122221 122221 122221 1222222
DATE		4-26-63 5-21-63 6-28-63	7-26-61 9-18-29-61 10-28-61 111-29-61 111-29-61 11-29-62 2-26-62 3-29-62 4-23-62 6-21-62 6-21-62 6-21-62 6-21-62 6-21-62 6-21-62 6-21-62 6-21-62 6-21-62 6-21-62 7-26-62 10-16-62 11-16-6	3-22-63 5-22-63 6-28-63 10-09-62 2-09-61 10-29-61 110-29-61 110-29-61 110-29-61 110-29-61 110-29-61 110-29-61 110-29-61 110-29-61 110-29-61 110-29-61 12-18-61 12-18-61 12-18-61 13-18-
GROUND SURFACE ELEVATION IN FEET	SWORTH AREA	210.0	21000	204.0
STATE WELL NUMBER	ALPAUGH-ALLENSWORTH AREA	235/23E-33A04 M CONT.	235/23E-33A05 M	245/23E-21B02 M 245/23E-22E01 M
AGENCY SUPPLYING DATA		6001		6001
WATER SURFACE ELEVATION IN FEET		196.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GRD SUR TO WATER SUR. IN FEET	5-22.34	14.0		11111111111111111111111111111111111111
DATE		8-29-61 9-18-61 10-25-61	12.1.62 1.24-62 3.29-65 3.29-65 4.23-62 6.21-62 7.24-62 10.10-62 11.10-62 11.10-62 12.17-62 12.17-62 12.17-62 13.12-63 3.22-63 4.26-63	7 7 2 6 6 6 1 1 2 6 9 6 1 1 1 2 9 6 1 1 1 2 9 6 1 1 1 2 9 6 1 1 1 2 9 6 1 1 1 2 9 6 2 1 6 2 9 9 6 2 9 9 6 2 9 6 2 9 9 6 2 9 9 6 2 9 9 6 2 9 9 9 9
GROUND SURFACE ELEVATION IN FEET	NSWORTH AREA	210.0		210.0
STATE WELL NUMBER	ALPAUGH-ALLENSWORTH AREA	235/23E-33A01 M CONT•		235/23E-33A04 M

TABLE C-I

AGENCY SUPPLYING DATA		6001																		1009						6001			6001		6001		6001		
WATER SURFACE ELEVATION IN FEET			139.0	150.4	153.8	158.6					7 0 7 1	† • •		149.4	155.4				,	133.6	91.9	110.5	119.3	104.6		188.0	192.0		150.0	159.0	120.3	181.6	212.5	213.4	
GRD SUR TO WATER SUR IN FEET	5-22.34	םם	110.0	98.6	95.2	7. 06		1 11	в с	1 0	7 801	• =	ם	9.66	v • c	п	п	п		115.8	134.1	115.5	106.7	121.4	5-22.35	108.0	104.0		206.5	197.5	413.0	351.7	107.5	105.9	
DATE		8-29-61	10-24-61	12-18-61	1-24-62	2-26-62	4-23-62	5-21-62	6-21-62	8-23-62	9-19-62	11-19-62	12-17-62	1-24-63	3-22-63	4-26-63	5-21-63	6-28-63		2-02-62	10-10-62	2-04-63	5-21-63	6-28-63	ST	10-09-62	2-07-63		10-09-62	2-08-63	10-10-62	1-31-63	7-26-61	9-19-61	
GROUND SURFACE ELEVATION IN FEET	ALPAUGH-ALLENSWORTH AREA	249.0																		7.66.0					MART IRRIG DIST	296.0			356.5		533.3	•	320.0		
STATE WELL NUMBER	ALPAUGH-ALLE	245/24E-25F01 M CONT.																		445/24E-32KU4 M					DELANO-EARLIMART IRRIG	235/25F-27J02 M			235/26E-29P01 M		235/27F-28.101 M		245/25E-02H01 M		
AGENCY SUPPLYING DATA		6001								6001			6001																				7009	4001	
WATER SURFACE ELEVATION IN FEET		140.9	135.5	139.2	137.7	134.8	135.6	135.2	130.1	56.3	29.8	0.00	20.8	20.5	14.0	48.4	65.4	82.4	93•3	4.7.4	69.2	51.2			25.0	59.1		84.8		56.2	30.0	2.46	187.9		
GRD SUR TO WATER SUR IN FEET	5-22.34	64.1	69.5	65.8	67.3	70.2	4004	69.8	74.9	149.7	176.2	C • 7 C T	197.2	197.5	201.0	169.6	152.6	135.6	124.7	150.4	148.8	166.8	ם	0 0	193.0	168.9		133.2	"	161.8	178-8	0 • 0	47.1	Е	
DATE		8-23-62	10-15-62	12-17-62	1-24-63	2-26-63	4-26-63	5-21-63	6-28-63	2-05-62	10-09-62	001	7-26-61	8-29-61	10-25-61	11-29-61	12-18-61	1-24-62	2-26-62	3-29-62	5-21-62	6-21-62	7-24-62	9-19-62	10-16-62	11-19-62	1-25-63	2-26-63	3-22-63	4-25-63	5-27-63	601770	2-04-63	7-00-61	
GROUND SURFACE ELEVATION IN FEET	ALPAUGH-ALLENSWORTH AREA	205.0								206.0			218 • 0																			i,	0.00	249.0	
STATE WELL NUMBER	ALPAUGH-ALLE	245/23E-22E01 M CONT.								245/23E-34R01 M			245/24E-20R01 M																			1,000		245/24E-25F01 M	

AGENCY SUPPLYING DATA		2000	6001	2000							6001		2000							6001		2000				
WATER SURFACE ELEVATION IN FEET		235.5	242.5	166.8	175.0	181.6	178.5	162.7	173.4	174.4	116.5		83.8	83.6	144.7	145.8	52.5	124.5	135.6	182.5	188.0	276.2	275.5	275.7	275.4	273.7
GRD SUR TO WATER SUR IN FEET	5-22-35	164.5	153.5	278.2	270.0	263.4	266.5	282.3	271.6	270.6*	410.0		421.7	421.9	360.8	359.7	453.0*	381.0	369.9*	247.5	241.5	111.8	112.5	112.3	112.6	113.1
DATE	15	5-23-63	10-11-62 2-11-63	7-17-62	10-09-62	12-04-62	2-28-63	3-27-63	5-27-63	6-19-63	10-08-62	9	7-17-62	9-11-62	11-09-62	12-05-62	3-27-63	5-22-63	6-19-63	10-11-62	2-11-63	7-21-61	9-1/-6	10-20-61	11-16-61	12-22-61
GROUND SURFACE ELEVATION IN FEET	IART TRRIG DIS	400.0	396.0	445.0							526.5		505.5							430.0		388.0				
STATE WELL NUMBER	DELANO-EARLIMART IRRIG DIST	245/26E-29R02 M CONT.	245/26E-32G01 M	245/26E-34F01 M							245/27E-31P01 M		255/26E-01A02 M							255/26E-10803 M		255/26E-16P01 M				
AGENCY SUPPLYING DATA		6001										6001		6001		6001	6001		2000	į	5000			6001	2000	
WATER SURFACE ELEVATION IN FEET		215.2	213.9	214.1 214.4 213.4	213.4	216.4	216.4	218.6	216.3	215.1	214.7		173.5	207.8	212.0	176.0	169.0	159.0	234.4	239.9	223.0	243.1	240.4	239.0	237.7	236.8
GRD SUR TO WATER SUR IN FEET	5-22-35	104.8	106.1	105.9 105.6 106.6	106.6	105.1	103.6	101.4	103.7	104.9	105.3	п	130.5	83.7	79.5	200.0	209.0	219.0	165.6	160.1	177.0	156.9	159.6	161.0	162.3	163.2
DATE	ST	10-25-61	1-19-61 1-24-62 2-26-62	3-28-62 4-24-62 5-21-62	6-21-62	8-23-62	10-16-62	12-17-62	1-23-63	4-25-63	6-27-63	10-08-62	2-07-63	10-09-62	1-31-63	10-09-62 2-08-63	10-11-62	2-08-63	7-20-62	9-20-62	10-11-62	11-25-62	12-15-62	2-11-63	2-22-63	3-19-63
GROUND SURFACE ELEVATION IN FEET	ART IRRIG DI	320.0										3.04.0		291.5		376.0	378.0		400.0							
STATE WELL NUMBER	DELANO-EARLIMART IRRIG DIST	245/25E-02H01 M CONT.										245/25F-10A01 M		245/25E-33J01 M		245/26E-05R01 M	245/26E-20H01 M		245/26E-29R02 M							

TABLE C-I

AGENCY SUPPLYING DATA		2000	6001	2000														6001		2000										
WATER SURFACE ELEVATION IN FEET		149.9	178.8	12.9 15.8 29.0	73.6 96.1 121.7	133.4	151.2	135.7	114.2	87.2	100.9	126.9	144.5	152.7	122.9	117.1	130.5	139.2	156.4	186.3	200.2	203.8	205.3	208.1	209.7	211.8	214.1	213.7	213.4	
GRD SUR TO WATER SUR IN FEET	5-22.36	103.1	80•2	273.1 270.2 257.0	212.4* 189.9 164.3	152.6	134.8	150.3	171.8	198.8	185.1	159.1	141.5	134.0	163.1	168.9	155.5	182.8	165.6	70707	193.8	190.2	188.7	185.9	184.3	182.2	179.9	180.9	180.6	
DATE		5-23-63 6-19-63	10-09-62	7-21-61 8-23-61 9-21-61	11-16-61 12-21-61	1-18-62	3-15-62	4-13-62 5-18-62	6-21-62	8-08-62	10-14-62	11-25-62	1-26-63	3-18-63	4-28-63	5-23-63	6-19-63	10-09-62	1-30-63	7-21-61	8-17-61	9-21-61	10-20-61	11-16-61	12-22-61	1-18-62	2-22-2	4-13-62	5-18-62	1
GROUND SURFACE ELEVATION IN FEET	JOAQUIN MUD	253.0	259.0	286.0														322.0		394.0										
STATE WELL NUMBER	SOUTHERN SAN JOAQUIN MUD	255/24E-12A02 M CONT.	255/25E-06H01 M	255/25E-22D01 M														255/25E-35P01 M		255/26F-28F01 M										
AGENCY SUPPLYING DATA		2000							6001			5000																		
WATER SURFACE ELEVATION IN FEET		272.7 271.9	271.5	273.2	274.9	271.8	268.5	266.0	372.2	364.0		132.8	135.5	147.7	153.7	160.5	163.8	167.7	158.6	148.8		141.6	144.3	154.0	157.9	164.1	160.0		156.0	2
GRD SUR TO WATER SUR IN FEET	5-22.35	115.3	1116.5	1114.8 1113.6	113.1	116.2	119.5	122.0 118.6	377.8	386.0	5-22.36	120.2	117.5	105.3	99.3	92.5	89.2	85.3	5.46	104.2		1111.4	108.7	0.66	95.1	88.9	93.0	3 5	0.70	
DATE	_	2-22-62 3-15-62	5-18-62	8-08-62 9-20-62 10-14-62	12-15-62	2-22-63	4-28-63	5-23-63 6-19-63	10-05-62	1-31-63		7-21-61	8-23-61	10-19-61	11-16-61	12-21-61	1-18-62	3-15-62	4-13-62	6-21-62	7-19-62	8-08-62	9-20-62	10-14-62	11-25-62	12-15-62	1-26-63	2-18-63	4-28-63	
GROUND SURFACE ELEVATION IN FEET	DELANO-EARLIMART IRRIG DIST	388.0							750.0		JOAQUIN MUD	253.0																		
STATE WELL NUMBER	DELANO-EARLIM	255/26E-16P01 M CONT.							25S/27E-22H01 M		SOUTHERN SAN JOAQUIN MUD	255/24E-12A02 M																		

AGENCY SUPPLYING DATA		2000		6001	2000		8700	
WATER SURFACE ELEVATION IN FEET		131.5 122.4 126.0	123.1 132.9 129.6 135.3	119.7	91.9	112.9	1130.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	92.7 90.7 114.7 154.7
GRD SUR TO WATER SUR IN FEET	5-22.36	371.5 380.6 377.0	379.9 370.1 373.4 367.7	323.3	319.1	304.2 298.1 295.8	2.044.6.8 2.714.7 2.714.7 2.715.7 2.86.9 2.8	259.6* 261.6* 237.6* 197.6*
OATE		11-25-62 12-15-62 1-26-63	2-22-63 3-19-63 4-27-63 5-23-63 6-19-63	10-11-62	7-21-61	9-21-61 10-20-61 11-16-61	1-18-62 3-15-62 3-15-62 3-18-62 5-18-62 7-20-62 10-14-62 11-25-62 11-25-62 11-25-63 12-15-63 13-13-63 5-13-63 6-19-63 6-19-63 6-19-63	8-02-62 8-29-62 9-11-62 1-02-63
GROUND SURFACE ELEVATION IN FEET	JOAQUIN MUD	503.0		443.0	411.0		NORTH KERN WATER STORAGE SE-15R01 M 352*3	
STATE WELL NUMBER	SOUTHERN SAN JOAQUIN MUD	265/26E-10R01 M CONT.		265/26E-16P01 M	265/26E-29C01 M		NORTH KERN W	
AGENCY SUPPLYING DATA		2000				6001		2000
WATER SURFACE ELEVATION IN FEET		211.2	213.6 215.5 218.9 216.0 217.2	219.3	213.6	205.7	2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	125.6
GRD SUR TO WATER SUR IN FEET	5-22.36	182.8	180.4 178.5 175.1 178.0 176.8	174.7	180.4	208.3	133.2.0 133.2.0 128.7 128.7 128.7 125.2 125.2 125.3 123.7 123.7 123.7 123.7 123.7	377.4
DATE		6-20-62 7-19-62 8-08-62	9-20-62 10-14-62 11-25-62 12-15-62 1-26-63	2-22-63 3-19-63 4-27-63	5-23-63	10-10-62	8-22-61 10-20-61 11-16-62 11-16-62 11-16-62 11-16-62 11-16-62 11-16-62 11-16-62 11-16-62 11-16-62 11-16-62 11-16-63 11-1	7-20-62 8-08-62 10-14-62
GROUND SURFACE ELEVATION IN FEET	JOAQUIN MUD	394.0				414.0		503.0
STATE WELL NUMBER	SOUTHERN SAN JOAQUIN MUD	255/26E-28E01 M CONT.				255/26E-28H02 M		265/26E-10R01 M

TABLE C-1

AGENCY SUPPLYING DATA		2000												6001		2000		8700				8700	2000	8700		2000			8700	0	8700	2000	8700		
WATER SURFACE ELEVATION IN FEET		264.7	269.9	270.1	269.6	270.8	269.8	261.03	263.6	262.9	264.5	263.8	9.697	146.0	158.7			121.3	125.1	128.6	144.9	105.3	0 111	1 m	150.3	156.7	152.3) 4	93,3	89.3	124.3	•	84.3	118.3	125.3
GRD SUR TO WATER SUR IN FEET	5-22.37	129.3	124.1	123.9	124.4	123.2	124.2	120.0	130.4	131.1	129.5	130.2	1.8.1	270.0*	65163	п		325.5*	321.7	318.2	301.9	341.5*	201 E	291.5*	296.5*	290.1	294.5		353.5*	357.5*	322.5*	- 1	362.5*	328.5*	321.5*
DATE	DIST	3-15-62	5-18-62	7-19-62	8-08-62	9-20-62	11-25-62	1-26-63	2-21-63	3-18-63	4-27-63	5-22-63	0-17-03	10-03-62	1-30-63	7-21-61	8-22-61	9-15-61	10-19-61	11-16-61	12-20-61	1-13-62	2-18-62	2-26-62	3-07-62	3-15-62	5-18-62	6-20-62	6-21-62	7-109-62	7-19-62	8-08-62	8-14-62	9-04-62	9-13-62
GROUND SURFACE ELE VATION IN FEET	NORTH KERN WATER STORAGE [394•0												416.0		446.8																			
STATE WELL NUMBER	NORTH KERN W	275/25E-01N01 M CONT.												275/26E-06H02 M		27S/26E-20D01 M																			
							00											2									-			5					
AGENCY SUPPLYING DATA		8700					8700										0	00/8									6001		4	0000					
WATER AGENCY SURFACE SUPPLYIN ELEVATION DATA			154.7	121.7	108.7	149.7	82.5 87(0 4 4 7 7 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	74.5	45.5	82.5	120.5	114.5	102.5	140.5	130.5		83.0	123.0	79.0	123.0	115.0	0.041	150.0	158.0	155.0		304.5		269.4	269.8	268.5	268.2	266.7	264.0
	5-22.37	121.7	197.6* 154.7			202.6* 149.7						216.1* 120.5			199.1* 137.5		0 311					277.0* 115.0				237.0* 155.0		304.5	7 626						130.0 264.0
WATER SURFACE ELEVATION IN FEET		230.6* 121.7 202.6* 149.7		230.6*	243.6*		254.1* 82.5		262.1*	291.1*	254.1*		222.1*	234.1*		206.1*	0 200	83.0	269.0*	313.0*	269.0*		243.0*	242.0*	234.0*	-	100.7 300.3	304.5	7 626 7 161	0.212	124.2	125.5	125.8	127.3	
GRO SUR SURFACE TO WATER SUR IN FEET IN FEET	NORTH KERN WATER STORAGE DIST 5-22.37	230.6* 121.7 202.6* 149.7	197.6*	230.6*	243.6*	202.6*	254.1* 82.5	283.1*	262.1*	291.1*	254.1*	216.1*	222.1*	234.1*	199.1*	206.1*	0 200	276.0* L16.0 309.0* 83.0	269.0*	313.0*	269.0*	27.7.0*	243.0*	242.0*	234.0*	237.0*	100.7 300.3	1-28-63 96.5 304.5	7 626 7 161	8-23-61 121.4 272.6	124.2	125.5	125.8	127+3	130.0

AGENCY SUPPLYING DATA		2000												2000					6001				2000															
WATER SURFACE ELEVATION IN FEET		216.4	219.1	219.7	220.6	222.1	223.2	225.5	224.0	222.5	7.022	220.3	219.7	220.7	220.0	221.3	221.6						6.44	37.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	117.5	141.8	142.3	151.1	149.7	114.9	B 2 - 3	0.80	58.3	84.1	107.0		
GRD SUR TO WATER SUR IN FEET	5-22.37	171.6	169.3	168.3	167.4	165.9	164.8	162.1	164.0	165.5	167.3	167.7	168.3	167.3	168.0	166.6	166.4		DRY	ORY	200	06.77-6	277.1	285.0	238•1	204.5	180.2	179.7	170.9	172.3	207.1	23012	763.4	263.7	237.9	215.0		
DATE	151	8-22-61 9-20-61	10-18-61	12-21-61	1-17-62	3-15-62	4-12-62	5-17-62	7-19-62	8-08-62	9-19-62	10-14-62	1-26-63	2-21-63	3-18-63	4-27-63	2-22-63	00-61-0	10-04-62	1-28-63		1510	7-21-61	8-23-61	9-20-61	10-19-61	12-21-61	1-18-62	2-22-62	3-15-62	4-12-62	5-18-62	7-10-62	8-08-62	9-20-62	10-14-62		
GROUND SURFACE ELEVATION IN FEET	NORTH KERN WATER STORAGE DIST	388.0																	611.0				322.0															
STATE WELL NUMBER	NORTH KERN WA	285/26E-21H01 M																	285/27E-21F01 M			SHAFTER-WASCO IRRIGATION	275/24E-01L02 M															
AGENCY SUPPLYING DATA		2000		8700		5000	00/20	2000	8700	8700	2000)	_	8700	0078											6001			8 7 0 0									
WATER SURFACE ELEVATION IN FEET		2 6 7 1) 1	172.0	210.3	153.0	145.3		148.3	20	0.00	151.2		97.3			131.1				115.1	154.1	155.1	153.1	104.1	108.4	124.6		175.0	15/00	155.0	165.0	169.0	167.0	175.0	174.0	156.0	153.0
GRD SUR TO WATER SUR IN FEET	5-22.37	п (303.2	274.8	236.5*	293.8	301.5*		298.5*	ם ניי	331.3"	295.6		349,5*	1	o 1	304.6*		ם		320.6*	281.6*	280.6*	282.6*	331.6*	418.6	402.4		186.1*	204.1*	206.1*	179.	192.1*	194.1*	186.1*	187.1*	186.1*	208.1*
DATE	TST	9-20-62	10-14-62	12-15-62	1-07-63	1-26-63	2-08-63	2-21-63	3-07-63	3-18-63	3-21-03	5-23-63	6-19-63	6-21-63		79-60-2	7-12-62	8-14-62	9-04-62	9-13-62	1-07-63	2-08-63	2-20-63	3-07-63	6-21-63	10-04-62	1-28-63		7-02-62	7-16-62	8-01-62	8-13-62	1-02-63	1-15-63	2-01-63	2-15-63	3-01-63	6-16-63
GROUND SURFACE ELEVATION IN FEET	D STORAGE D	446.8														435.7										0	0 • 1 76		361.1									
STATE WELL NUMBER	TSIG SEASONS ASTREM NOST DESCRIPTIONS	27S/26E-20D01 M	CONT.													27S/26E-20E01 M											2/5/2/E-30H02 M		285/25E-13L01 M									

TABLE C-I

AGENCY SUPPLY:NG DATA		6001	2000		0000
WATER SURFACE ELEVATION IN FEET		140.0	140.7 153.4 165.5	1500.6 1600.6 1600.0 1600.0 1600.0 1600.0 1600.0 1600.0 1600.0 1600.0 1600.0	1105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.11105050.11110505050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.11110505050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.11110505000.1111050500.1111050500.1111050500.1111050500.1111050500.1111050500.1111050500.1111050500.1111050500.1111050500.1111050500.1110505000.11110500000.11110500000000
GRD SUR TO WATER SUR IN FEET	5-22.38	189.0 163.0	п 194.3* 181.6	175.2 174.6 169.2 175.0 175.0 175.1 185.1 183.7	1746.9 11756.9 11756.9 11871.0 11871.0 11882.0
DATE	DIST	10-09-62 1-30-63 6-01-63	7-20-61 8-22-61 9-20-61 10-19-61	12-21-61 1-17-62 2-2-62 3-15-62 4-12-62 6-20-62 7-19-62 1-19-62 10-14-62	12-15-62 3-18-63 3-18-63 4-22-63 6-19-61 10-19-61 11-17-62 11-15-61 11-15-61 11-15-61 11-15-62
GROUND SURFACE ELEVATION IN FEET	SHAFTER-WASCO IRRIGATION	329.0	335.0		BLTA AREA 309.0
STATE WELL NUMBER	SHAFTER-WASC	285/24E-01R01 M	285/25E-16003 M		KERN RIVER DELTA AREA 285/24E-23D01 M 309.0
AGENCY SUPPLYING DATA				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0
WATER SURFACE ELEVATION IN FEET		133.4	112.5 112.5 116.8 111.0	94.2 81.2 83.2 76.2 125.2 125.2 125.2 130.2	86.5 10.00 - 5 10.00
GRD SUR TO WATER SUR IN FEET	5-22.38	188.6 186.5 199.9	209.5 205.2 211.0 207.9	2221. 2234. 234. 234. 234. 234. 234. 234. 23	299000 200000 2000000000000000000000000
DATE	DIST	11-25-62 12-15-62 1-26-63	3-19-63 4-28-63 5-22-63 6-19-63	7-06-62 8-11-62 8-11-62 9-11-62 1-04-63 1-07-63 2-07-63 3-05-63 3-05-63	7-21-61 9-20-61 10-10-10-6-61 110-10-60 110-60 110-60
GROUND SURFACE ELEVATION IN FEET	IRRIGATION	322.0		316.0	9.45°.0
STATE WELL NUMBER	SHAFTER-WASCO	27S/24E-01L02 M CONT.		275/24E-35C01 M	275/25E-28A01 H

NG .		2000																		0	2150			2000																							
SUPPLYING DATA		50																			0		,	Ñ																							
WATER SURFACE ELEVATION IN FEET		199.6	201.8	202.202	197.3	195.5	190.7	186.7	184.9	185.6	188.6	189.5	194.5	192.2	191 • 1	189.1	192.2	188.0	184.9		234.9	242.5		306.9	305.8	289.6	293.6	296.2	297.4	295.8	298.8	297.4	295.2	301.1	303.2	306.1	307.9	305 • 8	310.8	303.9	305.4	300.2	296.4	297.0	295.2	293.9	C+167
GRD SUR TO WATER SUR IN FEET	5-22.40	130.4	128.2	127.8	132.7	134.5	139.3	143.3	145.1	144.4	141.4	140.5	135.5	137.8	138.9	140.9	137.8	142.0	145.1		115.1	107.5		75.1	79.2	95.4*	88.4	85.8	84.6	86.2	83.2	84.6	86.8	80.9	78.8	75.9	74.1	76.2	71.2	78.1	76.6	81.8	85.6	85.0	86.8	- L 80 (80 (80 (80 (80 (80 (80 (80 (80 (80 (90.5
DATE		1-17-62	2-21-62	3-15-62	4-12-62	5-17-62	6-20-62	7-19-62	8-08-62	9-20-62	10-14-62	11-18-62	12-14-62	1-25-63	2-20-63	3-17-63	4-28-63	5-22-63	6-19-63		10-08-62	2-01-63		7-20-61	8-22-61	9-20-61	10-18-61	11-15-61	12-20-61	1-17-62	2-20-62	3-15-62	4-12-62	5-17-62	6-20-62	7-19-62	8-08-62	9-19-62	10-13-62	11-25-62	12-15-62	1-26-63	2-21-63	3-18-63	4-27-63	5-22-63	6-19-63
GROUND SURFACE ELEVATION IN FEET	ELTA AREA	330.0																			350.0			382.0																							
STATE WELL NUMBER	KERN RIVER DELTA AREA	29S/25E-12M03 M	CONT.																		295/26E-10L01 M			295/27E-33D01 M																							
AGENCY SUPPLYING DATA		000	2												6001	0						8700					1004	400								5120			0000	0000							
WATER SURFACE ELEVATION IN FEET		136.4	125.1	126.4	129.3	130.9	133.1	136.0	120.1	130.6	125.5	136.3	128.1		178.0	177.0	175.0	174.5	172.0	183.0	180.0	187.9	186.9	185.9	184.9	100.0	103.0	2000	2040	0 700	204 20	192.9	197.9	108.9		180.4	107		4 500	203.0	107.	19301	193.6	199.7			
GRD SUR TO WATER SUR, IN FEET	5-22.40	,	183.9	182.6	179.7	178.1	176.0	173.0	100	140.7	172 5	173.7	180.9	•	0.841	0 0 7 1	151.0	151.5	154.0	143.0	146.0	161-1*	162.1*	163.1*	164.14	* * * * * * * * * * * * * * * * * * * *	14964	10001	1 7 0 7 7	1.70741	166.14	156.1*	151.1*	150.14	1.00	3 0 7 1	0 1	3	, , , ,	126.4	140.0	136.3	134.8	120.3	•		
DATE		0	8-08-62	0-20-62	10-14-62	11-25-62	11-22-02	12-15-62	000000000000000000000000000000000000000	2 10 63	3-10-03	6-22-63	6-10-63	016110	0-15-62	20-17-0	10-18-62	11-15-62	12-17-62	1-28-63	6-14-63	7-02-62	7-16-62	8-01-62	27 7 0	20-14-0	79-90-6	70-00-07	1 -02-03	1-13-63	2 15-63	2-01-63	5-10-1	4-14-4	0-01-0	64 00 01	10-08-02	59-10-2		7-20-61	8-22-01	19-07-6	10-19-61	12-21-61	10-17-71		
GROUND SURFACE ELEVATION IN FEET	ELTA AREA		30%0												0 700	320.0						0.76															330.0		4	330.0							
STATE WELL NUMBER	KERN RIVER DELTA AREA		28S/24E-23D01 M	CONT												285/25E-34J01 M							203/20E-29L01 M														295/25E-12M01 M			295/25E-12M03 M							

TABLE C-I

AGENCY SUPPLYING DATA		4640																			5120	4	2000																		
WATER SURFACE ELEVATION IN FEET		255.9	256.1	256.1	257.3	255.9	254.6	253.9	253.7	252.7	2.262	252.9	253.1	253.0	252.9	252.5	251.8	251.3	249.6		285.4	261.0	7.697	7 . 1 9 7	276.1	272.5	279.9	280.5	281.3	281.1	275.5	274.3	268.7	269.0	263.1	272.0	269.6	275.5			
GRD SUR TO WATER SUR IN FEET	5-22.40	52.6	52.4	52.4	51.2	52.6	53.9	24.6	54.8	55.00	70°3	55.6	0 C C C C C C C C C C C C C C C C C C C	55.5	55.6	56.0	56.7	57.2	58.9	1	53.7	20,00	0000	100	7 7 7	7	7.00	57.5	56.7	6.95	62.5	63.7	69.3	0.69	4.0	0.99	68.4	62.5			
DATE		10-03-61	11-02-61	1-02-61	2-05-62	3-02-62	4-03-62	5-01-62	6-03-62	7-04-62	29-40-8	10-04-62	11-02-62	12-08-62	1-02-63	2-05-63	3-02-63	4-05-63	6-04-63		10-05-62	1-30-63	19-61-	19-77-0	10-17-61	11-14-61	12-20-61	1-16-62	2-21-62	3-14-62	4-11-62	5-16-62	6-19-62	7-18-62	8-08-62	9-19-65	10-13-62	11-18-62			
GROUND SURFACE ELEVATION IN FEET	ELTA AREA	308.5																			339 • I		338 • 0																		
STATE WELL NUMBER	KERN RIVER DELTA AREA	30S/25E-22D01 M	CONT.																		305/26E-16J01 M		305/26E-22P02 M																		
> ⁰		0																						0	00.0														0494		
AGENCY SUPPLYING DATA		2000																						a	0														4		
WATER AGENC SURFACE SUPPLYI ELEVATION DATA		313.0 500	310.4	302.6	306.7	305.7	304.9	304.3	303.7	302.9	302.7	302.5	303.9	305.6	306.5	307.5	316.4	308•2	307.5	306.6	305 · 8	304.6	303 • 2		194.0	231.6	193.6	189.6	190.6	224.6	224.6	224.6	230.6	229.6	235.6	212.6	186.6			255.6	0
	5-22.40				78.3 306.7					82.1 302.9			A1 303 9		78.5 306.5								81.8 303.2	7 701													132.7* 186.6				
WATER SURFACE ELEVATION IN FEET	5-22.40	72.0 313.0	74.6		70.9	79.3	80.1	80.7	81.3	82.1	82.3		0 1 0	7.67	78.5	77.5	9.89	76.8	77.5	78.4	79.2	7 0 0		***************************************	194.0	107	125.7*	120.7*	128.7*	7.46	* L * 76	* 2 * 7 6	88.7*	89.7*	83.7*				52.5 256.0		75.7
GRO SUR SURFACE TO WATER ELEVATION SUR IN FEET IN FEET	KERN RIVER DELTA AREA 5-22.40	72.0 313.0	74.6	77.4	70 - 7	79.3	80.1	80.7	81.3	82.1	82.3	0.00	0 1 0	7.67	78.5	77.5	9.89	76.8	77.5	78.4	79.2	7 0 0	81.8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	126 74 194 6	107	125.7*	120.7*	128.7*	7.46	* L * 76	* 2 * 7 6	88.7*	89.7*	83.7*	106 • 7 *	132.7*		52.5 256.0	52.9	75.7

AGENCY SUPPLYING DATA		2000	5120	0715	8700				5000				
WATER SURFACE ELEVATION IN FEET		263.3 257.8 258.7	267.4	248.3	210.5	208.5 220.5 212.5 247.5	245.5 248.5 244.5 228.5	216.5	229.9	249.6	7.2.7	1	235.1 240.1 245.5
GRD SUR TO WATER SUR IN FEET	5-22.40	95.7 101.2 100.3	65.6	56.7	130.6*	132.6* 120.6* 128.6*	95.6 92.6 96.6* 112.6*	124.6*	80.1 70.7	, 4 , 1	, , ,		6 6 9 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
DATE		4-27-63 5-22-63 6-18-63	10-02-62	10-02-62	7-11-62 7-25-62 8-07-62	8-16-62 8-16-62 9-10-62 1-08-63	1-21-63 2-11-63 2-25-63 3-07-63	5-03-63	7-19-61 8-22-61 9-19-61 10-17-61	12-20-61	2-21-62 3-14-62 4-11-62	5-16-62 6-19-62 7-18-62 8-07-62	9-19-62 10-13-62 11-18-62
GROUND SURFACE ELEVATION IN FEET	ELTA AREA	359.0	333.0	294.5	341.1				310.0				
STATE WELL NUMBER	KERN RIVER DELTA AREA	30S/28E-34R02 M CONT.		315/26E-35001 M	31S/27E-04L01 M				31S/27E-28H01 M				
AGENCY SUPPLYING DATA		2000		8700				8700		5120	6001	2000	
WATER SURFACE ELEVATION IN FEET		274.6 275.1	274.1 269.4 267.1 262.1	254.0	255.0	256.0 265.0 266.0 267.0	269.0 256.0 250.0 254.0	259.0	257.0 273.0 276.0	263.3	248.6	252.9 251.5 256.1	260°2 264°0 264°1 265°5 265°8 261°8
GRD SUR TO WATER SUR IN FEET	5-22.40	662	63.9 68.6 70.9	* 2 * 48	83°7* 84°7* 84°7*	82°7* 73°7* 72°7* 71°7*	880.7* 880.7* 840.7*	125.2*	127°2* 111°2* 108°2*	95.7	105.8	106.1 107.5 102.9	99999999999999999999999999999999999999
DATE		12-14-62 1-25-63	3-17-63 4-27-63 5-22-63 6-19-63	7-06-62	7-23-62 8-07-62 8-22-62	8-27-62 9-10-62 1-11-63 1-18-63	2-07-63 2-20-63 3-06-63 6-24-63	7-09-62	8-07-62 8-20-62 9-07-62 9-08-62	10-05-62	10-01-62	7-18-62 8-07-62 9-19-62	10-13-62 11-18-62 12-14-62 1-25-63 2-20-63 3-17-63
GROUND SURFACE ELEVATION 'N FEET	TA AREA	338.0		338.7				384.2		359.0	354.4	359.0	
STATE WELL NUMBER	KERN RIVER DELTA AREA	30S/26E-22P02 M CONT.		305/26E-27A01 M				30S/27E-03G01 M		305/27E-28A02 M	305/28E-32801 M	30S/28E-34R02 M	

TABLE C-I

AGENIY SUPPLYIN_ LATA		6001	6001	2000													2000								
WATER SURFACE E_EVAT.ON IN FEET		129.0	236.8	225.5 337.5 337.2		337.5	335.9	333.9	335.0	337.1	337.0	338.0	337.3	336.0	332.7	333.2	225.7	222.9	230.7	233.7	237.2	238.8	238.4	735.4	
GRE SUR TO WATER STR IN PEET	5-22.41	449.0	173.2	146.0* 34.0° 34.0°	1 M M M	141	36.1	38 . 1	37.0	34.0	35.0	34.0	34.7	36.0	39.3	38 • 8	146.3	149.1	141.3	138.3	130.0	133.2	133.6	139.0	
DATE		10-03-62	10-03-62	7-20-61 8-22-61 9-20-61	11-15-61 12-20-61 1-17-62	2-21-62	4-11-62	6-19-62	7-18-62	9-19-62	10-13-62	12-14-62	1-25-63	3-17-63	4-27-63	6-19-63	7-20-61	8-22-61	10-18-61	11-15-61	10-07-01	2-21-62	3-15-62	79-11-4	
GROUND SURFACE ELEVATION IN FEET	OPA AREA	578.0	410.0	372.0													372.0								
STATE WELL NUMBER	EDISON-MARICOPA AREA	295/29E-33N01 M	305/28E-02R01 M	30S/28E-10N01 M													30S/28E-10N04 M								
AGENCY SUPPLYING DATA		2000		5120	6001	8700								5120		8700				8700				6001	
-																									
WATER SURFACE ELEVAT JA			236.7	260.0		172.7	174.7	229.7	205.7	187.7	244.7	175.7	234.7	203.8	166.8	102.3	100.3	139.3	167.3	108+3	0	124.3	114.3		
GRD SUR SURFACE TO WATER ELEVAT OF	5-22.40	0 0 1	m	52.1 260.0 63.2 248.9		142.0* 172.7			109.0* 205.7		70.0* 244.7		80.0 234.7	174.2 203.8		190.3* 102.3 143.3 149.3		153.3 139.3	*	184.3* 108.3		*		0 1	3
	5-22.40	1-26-63 2-19-63 3-17-63	73.3		10-02-62 n 1-29-63 n		140.0*	85.0		127.0*		139.0*		174.2			192.3*		125.3*			168.3*		10-01-62	
GRD SUR TO WATER SUR IN FEET	KERN RIVER DELTA AREA 5-22.40		73.3	52.1 63.2		142.0*	140.0*	85.0	109 • 0 *	127.0*	70°0*	139.0*	80.0	174.2	211.2	190.3*	192.3*	153.3	125.3*	184.3*		168.3*	178.3*		

AGENCY SUPPLYING DATA		0000	6001	5120	6001	9000	2000
WATER SURFACE ELEVATION IN FEET		189.9 177.5 177.5 177.6 176.1 176.1 176.7 177.7 177.7 175.3 175.3		208.5	81.7	19999999999999999999999999999999999999	255.6
GRD SUR TO WATER SUR IN FEET	5-22.41	00000000000000000000000000000000000000		234.0	305.0	314.7 * 315.4 * 314.7 * 314.1 * 314.1 * 315.4 * 315.4 * 315.4 * 315.4 * 315.4 * 315.4 * 315.5	160.4*
DATE		7-20-61 9-20-61 9-20-61 10-18-61 11-20-61 11-17-62 2-21-62 3-14-62 3-14-62 3-14-62 5-17-62 5-17-62 5-17-62 6-20-62 7-18-62 8-10-62 8-1	10-01-62	10-01-62	10-01-62	7-18-62 8-07-62 9-19-62 10-13-62 11-18-62 12-14-62 12-14-63 12-14-63 12-14-63 12-14-63 12-14-63 12-16-33 13-11-63 13-11-63	7-20-61
GROUND SURFACE ELEVATION IN FEET	PA AREA	9.13°.	536.0	442.5	386.7	470.0	416.0
STATE WELL NUMBER	EDISON-MARICOPA AREA	315/30E-18801 #	315/30E-21G01 M	325/25E-35N02 M	32S/28E-23R01 M	325/29E-16R02 M	325/29E-19H02 M
AGENCY SUPPLYING DATA		0000	6001	2000		6001	6001
WATER SURFACE ELEVATION IN FEET		229.8 218.4 218.6 218.6 218.6 226.2 226.2 226.2 226.2 226.2 226.2 226.2 226.2 226.2 226.2 226.2 226.2 226.2 226.2 226.2 226.2	183.3	172.5	289.5	000 000 000 000 000 000 000 000 000 00	174.6
GRD SUR TO WATER SUR IN FEET	5-22.41	147.2.2 1157.2.1 1155.4.8 1157.3.8 1157.6.8 1157.6.8 1157.6.8 1157.6.8	331.7 467.0	131.9	131.5	131.0 130.0.7 1300.7 1300.7 130.0.5 1300.7 1300.7	297.9 153.1
DATE		5-17-62 19-62 1-18-62 8-07-62 8-07-62 19-13-62 10-118-62 11-18-62 12-14-63 12-14-63 12-14-63 12-14-63 12-14-63 12-14-63 12-14-63 12-14-63 1-13	10-02-62 1-30-63 10-02-62	1-28-63	8-07-62 9-19-62 10-13-62	11-18-62 12-14-62 1-20-63 2-20-63 3-17-63 4-27-63 5-22-63 6-18-63 10-04-62 1-29-63	1-30-63 10-02-62 1-31-63
GROUND SURFACE ELEVATION IN FEET	DPA AREA	372.0	515.0 628.0	421.0		791.5	0 • 00 •
STATE WELL NUMBER	EDISON-MARICOPA AREA	305/28E-10N04 M	30S/29E-05F01 M			305/30E-20R01 M	315/29E-29A01 M

TABLE C-I

AGENCY SUPPLY NG DATA		2000	0000	6001	0000
WATER SURFACE ELEVATION IN FEET		102.0 90.2 77.7	2600 2600 2662 2664 2665 2665 2665 2665 2665 2665	717.3	22232222222222222222222222222222222222
GRD SUR TO WATER SUR IN FEET	5-22.41	314.0 325.8 338.3	21233 2133.0 22133.0 2209.0 208.0 208.0 210.0 210.0 210.0 210.0 210.0	п 132.7 97.7	2
DATE		4-27-63 5-21-63 6-18-63	7-18-62 8-07-62 10-13-62 11-18-62 11-18-62 12-14-62 12-14-62 12-14-63 12-14-63 12-14-63 13-17-63 13-17-63 14-27-63 14-27-63 14-27-63 14-27-63 14-27-63 14-27-63	10-03-62 1-29-63 10-04-62 1-29-63	10-03-62 1-30-63 1-30-64 10-18-61 11-10-18-61 11-10-18-61 11-10-18-62 11-10-62 11-10-62 10-62 10-62
GROUND SURFACE ELEVATION IN FEET	PA AREA	416.0	473.0	657.0	5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
STATE WELL NUMBER	EDISON-MARICOPA AREA	32S/29E-19H03 M CONT.	325/29E-21₽01 M		11N/19W-04H01 S
AGENCY SUPPLYING DATA		2000			0000
WATER SURFACE ELEVATION IN FEET		263.0 263.0 264.8	00000000000000000000000000000000000000	238.00 234.00 234.00 233.7 226.6 231.8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GRD SUR TO WATER SUR IN FEET	5-22.41	166.5	1100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	177-1 177-1 181-4 182-3 189-4 184-2	90000000000000000000000000000000000000
DATE		8-22-61 9-20-61 10-18-61	12-20-62 3-14-62 3-17-62 4-11-62 5-17-62 6-11-62 7-18-62 9-19-62 10-13-62	1+25-63 1+25-63 2-17-63 3-17-63 4+27-63 5-21-63	7-20-61 8-22-61 10-18-61 11-19-61 11-19-61 12-20-61 12-20-62 2-11-62 3-12-62 4-11-62 5-17-62 6-20-62 9-19-62 11-18-62 11-18-62 11-18-62 11-18-62 11-18-63 11
GROUND SURFACE ELEVATION IN FEET	PA AREA	416.0			416.0
STATE WELL NUMBER	ED I SON-MARICOPA	325/29E-19H02 M CONT.			325/29E-19H03 M

AGENCY SUPPLYING DATA		8700		8700			5120	6001	6001	5120	5120		2000
WATER SURFACE ELEVATION IN FEET		47.8		70.7	79.7 80.7 55.7	76.7		124.2	315.0	107.8	228.1		153.1 147.5 141.5 156.1
GRD SUR TO WATER SUR IN FEET	5-22.41	468•1		4 10 10 10 10 10 10 10 10 10 10 10 10 10	4 4 4 4 4 4 4 4 4 4 4 4 4 4 9 9 3 4 4 4 4	452+3	= 0	238.8	194.0	315.5	271.9	5-22.42	84.9 90.5 96.5 81.9
DATE		10-25-62	2-25-63 3-11-63 4-24-63 5-15-63 6-28-63	7-10-62 7-23-62 8-09-62 9-05-62	9-12-62 10-25-62 1-10-63 1-22-63 2-04-63 2-5-63	5-11-63 6-24-63 5-15-63 6-28-63	10-04-62	10-01-62	10-02-62	10-03-62	10-01-62	DIST	7-17-62 8-07-62 9-18-62 10-20-62
GROUND SURFACE ELEVATION IN FEET	DPA AREA	515.9		529.0			747.0	363.0	209•0	423.3	498.0	WATER STORAGE DIST	238.0
STATE WELL NUMBER	EDISON-MARICOPA AREA	11N/21W-05M01 S CONT.		11N/22W-04H01 S			11N/23W-12P01 S	12N/20W-31R01 S	12N/20W-36002 S	12N/21W-29N01 S	12N/23W-26P01 S	BUENA VISTA	275/22E-16801 M
AGENCY SUPPLYING DATA		2000	8700			6001	8700						8700
WATER SURFACE ELEVATION IN FEET		218.1	- 180.6 - 180.6 - 180.6 - 177.6	- 168.6 - 113.6 - 76.4 - 115.6	- 138.6 - 97.6 - 100.6	135.2	231.6	224.6	231.6 232.6 233.6	233.6 232.6 231.6	225.6 227.6 224.6		37.8
GRD SUR TO WATER SUR IN FEET	5-22.41	456.9	632 ° 9 * 632 ° 9 * 632 ° 9 *	5620 5620 5675 5675 5675 5675 5675 5675 5675 567	59 59 59 59 59 59 59 59	349.5	п п о о о о о о о о о о о о о о о о о о	505.6*					0 0 0 478.1
DATE		5-21-63	7-10-62 7-23-62 7-26-62 8-09-62	9-12-62 10-24-62 1-10-63 1-22-63	2-12-63 2-25-63 3-11-63 4-03-63 4-24-63 5-15-63	10-02-62	7-10-62	7-24-62	9-12-62	1-22-63 2-12-63 2-25-63	3-11-63 4-24-63 5-15-63	6-28-63	7-10-62 7-23-62 8-09-62 9-05-62 9-12-62
GROUND SURFACE ELEVATION IN FEET	PA AREA	675.0	452.3			484.7	730.2						515.9
STATE WELL NUMBER	MANON LAND A AREA	11N/19W-07R03 S CONT.	11N/20W-07001 S			11N/20W-18F01 S	11N/20W-24A01 S						11N/21W-05MG1 S

TABLE C-I

AGENCY SUPPLYING DATA		2000	5120	0494		0 4 9 9 4	4 6 6
WATER SURFACE ELEVATION IN FEET		195.2 201.3 207.1 191.6		207.2	2006 22300 219.7 206.0 215.5 220.2	213.1 200.6 1295.4 2256.2 2256.6 2255.6 2255.6 2257.2 207.2	203.8 198.5 204.9 222.7 2224.7 224.7 196.8 206.3
GRD SUR TO WATER SUR IN FEET	5-22.42	449.8 37.9 53.4	8 8	46.0 45.2	00 4 N D D C C C C C C C C C C C C C C C C C	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000
DATE	1810	3-18-63 4-20-63 5-21-63 6-18-63	10-10-62	7-04-62 8-03-62 9-05-62	11-02-62 11-02-62 1-02-63 3-02-63 3-02-63 5-01-63	7-02-62 9-03-62 10-03-62 111-02-62 12-07-62 12-07-62 12-07-63 1-02-63 1-03-63 1-03-63 1-03-63 1-03-63 1-03-63 1-03-63	7-0-3-6-2 8-0-3-6-2 11-0-3-6-2 11-0-3-6-2 11-0-3-6-2 12-0-3-6-3 12-0-3-6-3 12-0-3-6-3 12-0-3-6-3 12-0-3-6-3 12-0-3-6-3 12-0-3-6-3 12-0-3-6-3 12-0-3-6-3 12-0-3-6-3 12-0-3-6-3 12-0-3-6-3 13-0-3-6
GROUND SURFACE ELEVATION IN FEET	ATER STORAGE	245.0	245.0	253.2		257.8	2600
STATE WELL NUMBER	BUENA VISTA WATER STORAGE DIST	285/22E-09D01 M CONT.	285/22E-10D02 M	285/22E-36P01 M		285/23E-31R01 M	295/23E-08A01 M
AGENCY SUPPLYING DATA		2000		5120	0000	0000	
WATER SURFACE ELEVATION IN FEET		165.2 168.9 159.8	160.7	200.2	1557.6 137.6 141.8 148.0 1448.0 155.0	1401.5 1448.0 148.0 1500.3 2003.1 2003.1 2008.8 2008.8 1999.7	196.8 193.0 209.8 208.9 204.2 199.7 199.0 196.9 197.6 197.7
GRO SUR TO WATER SUR IN FEET	5-22.42	72.8 69.1 78.2	77.3 78.8 73.0	39.8	83.44 103.44 999.2 93.0 996.0 886.0	\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
DATE	DIST	11-23-62 12-20-62 1-22-63 2-19-63	5-18-63 4-20-63 5-21-63 6-18-63	10-10-62	7-17-62 8-07-62 9-18-62 10-20-62 11-23-62 12-20-62 1-22-63	7-10-63 5-21-63 5-21-63 7-19-61 10-17-61 11-14-61 12-19-61 12-19-61 12-19-61 12-19-61 12-19-61 12-19-61 12-19-61	3-13-62 5-16-62 5-16-62 6-19-62 7-17-62 8-07-62 10-23-62 11-23-62 11-22-63 2-19-63
GROUND SURFACE ELEVATION IN FEET	ATER STORAGE	238.0		240.0	241.0	245.0	
STATE WELL NUMBER	BUENA VISTA WATER STORAGE DIST	275/22E-16801 M CONT.		275/22E-21F02 M	275/22E-32H01 M	285/22E-09D01 M	

AGENCY SUPPLYING DATA		6	0000			7640										0494										4640										2000
WATER SURFACE ELEVATION			,	225.2	225.8	221.5	206.3	225.0	225.7	225.1	211.1	193.7	221.1	222.6	0 • 0 7 7	227.1	228.5	223.6	222.5	225.6	244.0	243.8	250.3	247.8	1	221.1	220.0	222.2	222.7		218.6	215.3	219.8	7 - 0.77		152.9
GRD SUR TO WATER SUR IN FEET		5-22.42		4 1 ° 00 ° 4 ° 10 ° 10 ° 10 ° 10 ° 10 °	44.2	59.2	74.4	55.7	55.0	55.6	2000	87.0	59.6	58.1	6.66	1.64	4 8 ° 3	53.7	40	51.2	32.8	33.0	26.5	29.0	0.67	6 - 59	67.0	64.8	64.3	u t	6.8		67.2	8 • 99	I	129.1*
DATE		DIST	2-19-63	4-20-63	6-18-63	7-04-62	8-04-62	10-04-62	11-03-62	12-08-62	2-05-63	3-02-63	4-05-63	5-01-63	6-04-63	7-02-62	8-03-62	10-03-62	11-02-62	12-07-62	1-02-63	3-01-63	4-02-63	5-01-63	0-04-0	7-03-62	8-03-62	10-03-62	11-02-62	12-07-62	2-04-63	3-01-63	4-02-63	5-01-63	1	7-19-61
GROUND SURFACE ELE VATION	IN FEET	BUENA VISTA WATER STORAGE DIST	270.0			280.7										276.8										287.0										282.0
STATE WELL NUMBER		BUENA VISTA	295/23E-27M01 M CONT.			206,24F-32001 M	10010 717/6/7									M LOJECTOR	202/225-01-01 1									305/24F-02C01 M										305/24E-04C01 M
AGENCY	PATA		0494	0494								-										2000														
WATER SURFACE	EET		216.5		171.8	217.5	221.0	225.0	225.8	221.1	226.9	228.2	2.010	196.8	224.7	230.1	211.4		194.6	221.3	20102			223.8	224.4	224.1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		224.6	225.6	226.2		225.0	226.0	226.8	225.7
WATER SURFAC	IN FEET		21		21		•	114		9 19				•		2																				
	SUR IN FEET IN F	5-22.42	43.8 21		91.7 17		47°2			42.4				53.3	38.8			- 11	68.89	42.2	55.7	D				45.9			4.0.4						43.2	
	_		4-63 43.8		91.7	0.94		9 F	37.7		36.6	35.3	n (1			33.4					6-04-63 55.7	7-19-61 "			11-14-61 45-6	45.9				5-10-62 45.0				11-18-62 44.0		1-23-63 44.1
GRD SUR DATE TO WATER	_	BUENA VISTA WATER STORAGE DIST 5-22.42	4-63 43.8	В	8-02-61 91.7	0.94	47.7	9 F	37.7	42.4	36.6	35.3	n (1	53.3		33.4	52.1						8-21-61			45.9										

TABLE C-I

AGENCY SUPPLY NG DATA		9009		2000							0	0000										5120		5120			0000								
WATER SURFACE ELE VATION IN FEET		246.4		112.9	104.0	103.7	107.5	103.5	0.86			170.4	171.9	166.9	170.7	160.2	168.0	166.5	165.1	160.9	•	44.3	0 • 4			122 2	128.6	128.1	131.0	132.1	136.9	139.7	, , , ,	140.4	1
JAD SUR TO WATER JH IN FEET	5-22.42	36.6	5-22.43	99.1	108.0	108.3	104.5	108.5	114.0	•		404	40.1	45.1	41.0	47.9	0.44	45.5	6.94	51.1	•	170.7	140 0			0 70	0 8 4 8 6 9 7 9	88.9	86.0	6.48	80.1	77.3		72.0	
DATE	DIST	5-21-63 6-18-63	DIST	7-20-62	9-18-62	10-20-62	12-15-62	1-23-63	3-18-63	4-20-63	7-30:-63	8-08-62	9-18-62	10-20-62	12-15-62	1-23-63	2-21-63	3-18-63	4-28-63	5-22-63		10-10-62	60-00-7	10-11-62	2-07-63	7-21-41	8-23-61	9-20-61	10-16-61	11-16-61	12-21-61	1-18-62	79-77-7	29-61-6	100
GROUND SURFACE ELEVATION IN FEET	BUENA VISTA WATER STORAGE DIST	283.0	SEMITROPIC WATER STORAGE	212.0							0 010	0.212										215.0		209.0		217.0	0 • 1 1 7								
STATE WELL NUMBER	BUENA VISTA	315/25E-27F01 M CONT.	SEMITROPIC W	258/22E-02E01 M							25C / 22E - 02NO 2 M	233766E-U2NU2 FI										255/22E-14G01 M		25S/23E-03R01 M		255/23F=28001 M	E 10001 10001								
AGENCY SUPPLYING DATA		2000																2000																	
WATER SURFACE ELEVATION IN FEET		198.5	223.6	225.3	219.6	223.1	220.1	220.5	221.8	224.2	226.5	228.5	228.4	227.0	215.2	216.2		243.9		233.0	224.9	26.0.2		262.3	257.0	243.8	254.3	257.3	252.8	241.4	239.6	239.0	24.7 . 6	* * * * * * * * * * * * * * * * * * * *	
GRD SUR TO WATER SUR IN FEET	5-22.42	83 603 7	0.00 u	63.3	62.4	57.6	61.9	61.5	60.2	57.8	10 m 10 m 10 m	0 0 0 0 0 0 0 0	53.6	55.0	000	65.0	,	39.1	0	50.0	58.1	22 B		20.7	26.0	20.0	28.7	25.7	30.2	41.6	43.4	0.44	24.0	• •	
DATE	0157	8-21-61	11-14-61	1-16-62	3-14-62	4-10-62 5-16-62	6-19-62	7-17-62	9-18-62	10-13-62	11-23-62	1-23-63	2-19-63	3-17-63	5-21-63	6-18-63		7-19-61	8-22-61	9-19-61	11-14-61	12-19-61	2-20-62	3-14-62	4-11-62	6-10-62	7-18-62	8-07-62	9-18-62	10-13-62	12-14-62	1-23-63	3-17-63	4-78-63	
GROUND SURFACE ELEVATION IN FEET	BUENA VISTA WATER STORAGE OIST	282 • 0																283.0																	
STATE WELL NUMBER	BUENA VISTA	30S/24E-04C01 M CONT.																31S/25E-27F01 M																	

IADLE V-I

AGENCY SUPPLYING DATA		2000																		1009			2000											5120	3	0003			
WATER SURFACE ELEVATION 'N FEET		161.1	159.1	159.1	159.5	159.9	150.3	159.8	158.1	157.9	157.5	157.5	159.2	159.6	160.3	160.4	159.4	159.3	159.1		87.9		203.2	205.0	2000	206.7	204.8	204.9	205.2	204.5	203.5	204 • 8	204 • 5	210.8	201.5		149.5		
GRD SUR TO WATER SUR IN PEET	5-22.43	86.9	88.9	88.9	88.5	000	000	~ ~ ~ 0 00	6.68	90.1	90.5	90.5	00 co	988	87.7	87.6	88.6	88.7	88.9	E	149.5		40.8	0 1 1	27.5	37.3	39.2	39.1	38.8	39.5	40.5	39.2	39.5	26.2	35.5	t	75.5	13 1	=
DATE	DIST	10-19-61	12-21-61	1-18-62	2-22-62	3-15-62	5-18-62	6-21-62	7-19-62	8-08-62	9-50-65	10-14-62	11-25-62	1-25-63	2-22-63	3-18-63	4-28-63	5-23-63	6-19-63	10-08-62	1-31-63	,	7-17-62	29-77-0	10-20-62	11-23-62	12-20-62	1-22-63	2-19-63	3-18-63	4-20-63	5-21-63	6-18-63	10-10-62	2-06-63	7-20-62	8-08-62	9-18-62	10-50-02
GROUND SURFACE ELEVATION IN FEET	ATER STORAGE	248.0																		237.4			244.0											237.0	-	225.0	1		
STATE WELL NUMBER	SEMITROPIC WATER STORAGE DIST	255/24E-15H01 M CONT.																		255/24F-30H01 M			265/21E-14E01 M											265/21F-14.101 M		265727E-10G01 M			
AGENCY SUPPLYING DATA		2000												5000																					6001		2000		
WATER SURFACE ELEVATION IN FEET		142.8	135.6	131.1	159.1	126.9	134.2	138.0	139.4	140.5		138.9	13/•8	14.9	6.5	5 • 0	21.4	45.3	67.6	K • K /	0.76	82.3	74.1	22.0	10.3	10.6	14.5	48.5	58.8	6-1-9	70.8	70.7	010	0	131.2	13%	159.0	158.5	7 • 0 € 1
GRD SUR TO WATER SUR IN FEET	5-22.43	74.2	81.4	85.9	87.3	90.1	82.8	79.0	77.6	76.5		78.1	7.61	202.1	210.5	212.0	195.6	171.7	149.4	10/01	120.0	134.7	142.9	161.4	206.7	206.4	202.5	168.5	158.2	149.1	146.2	146.3	155.3	155.4	96.8	0 • 6 8	0.68	89.5	γ • γ
DATE	F	5-18-62	7-19-62	8-08-62	79-07-6	10-19-62	12-15-62	1-26-63	2-21-63	3-18-63	4-28-63	5-22-63	6-19-63	7-21-61	8-23-61	9-20-61	10-19-61	11-16-61	12-21-61	2-22-62	3-15-62	4-13-62	5-18-62	6-21-62	20-61-0	9-20-62	10-14-62	11-25-62	12-15-62	1-26-63	2-21-63	3-18-63	5-22-63	09-14-0	10-09-62	1-31-63	7-21-61	8-23-61	7-61-01
	015																																						
GROUND SURFACE ELEVATION N FEET	SEMITROPIC WATER STORAGE DIST	217.0												217.0																					228.0		248.0		

TABLE C-I

AGENCY SUPPLYING DATA	ο Ο	0000		5120
WATER SURFACE ELEVATION IN FEET	11	411474747474747474747474747474747474747	92.0 92.5 92.0 92.0 81.0 81.0 78.1	192.0 197.0 215.5 220.4 224.7
GRD SUR TO WATER SUR IN FEET	5 0 0 0 0 0 0 0 0 0	22525 22452 22452 22040 22040 2040 2040	176.44 175.0 175.0 1178.0 1186.0 186.0	66.0 61.0 39.5 30.3
DATE	015.T 6-21-6.2 7-19-6.2 9-08-6.2 10-14-6.2 11-15-6.2 12-6.6.3 12-6.6.3 1-26-6.3 1-26	7-21-61 9-23-61 9-23-61 10-19-61 11-16-61 11-16-62 11-16-63 11-16-64 11-16-	11.2-15-62 12-15-62 12-15-63 2-21-63 3-18-63 4-28-63 6-19-63	10-09-62 2-05-63 7-03-62 8-03-62 9-05-62
GROUND SURFACE ELEVATION IN FEET	SEMITROPIC WATER STORAGE DIST 9000	267.0		258.0
STATE WELL NUMBER	SEMITROPIC W. 275/23E-01R01 M CONT.	275/23E-01R04 M		275/23E-06L01 M 285/23E-11E01 M
AGENCY SUPPLYING DATA	5000	8700	5120	
WATER SURFACE ELEVATION IN FEET	41196 6 8 8 8 8 9 7 7 8 8 8 8 8 8 9 7 9 9 9 9 9	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	203.8 200.5 200.5 156.3 157.2 158.0	1599.0 1699.0 1599.0 1599.0
GRD SUR TO WATER SUR IN FEET	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	2 6 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3	661 661 672 673 673 673 673 673 673 673 673 673 673	107.08.1 106.03.1 107.05
DATE	D1S1 11-25-6-2 12-15-6-3 1-26-6-3 3-18-6-3 3-18-6-3 4-28-6-3 6-19-6-3 10-11-6-2 2-0-6-3 2-0-6-3 2-0-6-3	10-11-62 2-0-11-63 7-05-62 7-17-62 8-13-62 8-13-62 10-15-62 10-15-62 10-15-62 10-15-63 1-10-63 1-63 1-63 1-63	10-09-62 2-05-63 7-21-61 8-23-61 9-20-61 11-16-61	17-21-61 1-18-62 2-25-62 3-15-62 4-12-62 5-18-62
GROUND SURFACE ELEVATION IN FEET	225.0 225.0 253.0 253.0	295.5	265.0	
STATE WELL NUMBER	265/22E-10G01 M CONT. 265/22E-35E01 M 265/23E-02R01 M	265/23E-36F01 M	275/22E-02001 M 275/23E-01R01 M	

AGENCY SUPPLYING DATA		2000									5050		2020	5050		5050	5050		5050	0	0006										5050	5050	5050		5050	2050
WATER SURFACE ELEVATION IN FEET		426.5	426.3	426.2	426.0	426.5	426.1	426.8	426.6	426.3	193.5			425.8		505.2	1.25.7	• • • • • • • • • • • • • • • • • • • •	316.9		351.5	35266	25101	350.4	352.1	351.3	350.6	350.9	25.0	351.4	202.7	748.1	519.4		706.8	526.0
GRD SUR TO WATER SUR IN FEET	5-22.44	133.5	133.7	133.8	134.0	133.5	133.3	133 2	133.4	133.7	41.5		D	44.2		193.8	6 001	10%	105.1		128.5	127.8	120 0	129.6	127.9	128.7	129.4	129.1	129.0	128.6	65.3	161.9	165.6		168.2	204.0
DATE		8-07-62	10-20-62	11-23-62	12-20-62	1-22-63	2-19-63	2-19-62	5-21-63	6-18-63	1-08-63		1-08-63	1-08-63		1-09-63	1-00-1	T-04-02	1-09-63		7-17-62	8-07-62	70-81-6	11-23-62	12-20-62	1-22-63	2-19-63	3-18-63	4-20-63	6-18-63	1-08-63	1-08-63	1-08-63		1-09-63	1-09-63
GROUND SURFACE ELEVATION IN FEET	TRICK AREA	260.0									235.0		267.0	470.0		0.669	0 30	0.629	422.0	;	480.0										268.0	910.0	6.85.0		875.0	730.0
STATE WELL NUMBER	AVENAL-MCKITTRICK AREA	235/18E-29E02 M									235/19E-14R01 M		235/19E-26M01 M	245/18E-11D01 M		245/18E-30D01 M		245/18E-33NOI M	255/19E-15G01 M		255/19E-20002 M										255/20E-04C01 M	265/17E-13L02 M	245/18F-14H01 M		265/18E-19802 M	265/18E-27F01 M
AGENCY SUPPLYING DATA		0494								0797																				2120		5050	4			0009
WATER SURFACE ELEVATION IN FEET		224.1	225.2	224.7	227.0	227.3	225.7	6.977	0 • 0 1 7		118.4		128.9	147.6	153.7	159.6	147.1	0.661				135.4	128.4	141.0	146.1	140.4		137.6		194.0		102.2				426.6
GRD SUR TO WATER SUR IN FEET	5-22.43	30.9	29.8	30.3	28.0	27.7	29.3	28 • I	7.96	0	182.7		172.2	153.5	147.4	141.5	154.0	148.1		п	п	165.7	172.7	159.5	155.0	160.7	п	163.5		0.86	5-22.44	152.8	t] *2:		133.4
DATE	0151	10-04-62	12-08-62	1-03-63	2-05-63	3-02-63	4-02-63	29-10-6	0-10-10-0	7-06-61	8-02-61	10-03-61	11-02-61	12-02-61	2-02-62	3-02-62	4-03-62	5-02-02	7-03-62	8-03-62	9-05-62	10-04-62	11-02-62	1-03-62	2-05-63	3-02-63	4-02-63	6-04-63		10-08-62		1-08-63	1-00-63	1-09-63	1	7-17-62
GROUND SURFACE ELEVATION IN FEET	ATER STORAGE DIST	255.0								301.1																				290.0	TRICK AREA	255.0	0 776	0000		0.095
STATE WELL NUMBER	SEMITROPIC WAT	285/23E-11E01 M	• 200							S/24E-28A01 M																				295/24E-14R01 M	AVENAL-MCKITIRICK AREA	225/19E-18P02 M	Z 10400 201, 200			235/18E-29E02 M

TABLE C-I

AGENCY SUPPLYING DATA		5050							5050												5050		2050									5050					
WATER SURFACE ELEVATION IN FEET		140.7	139.3	134.0	133.6	138.5	137.2		180.7	179.8	180.6	181.1	180.5	180.6	180.3	179.8	179.9	180.6	180.3	1 4 6 1 T			154.0	151.1	150.8	151.1	150.9		151.8	152.3	10001	164.9	172.3	173.6	174.7	172.7	172.3
GRD SUR TO WATER SUR IN FEET	5-22.46	66 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7.00	70.0	70.4	65.5	66.8		15.8	16.3	15.9	15.4	16.0	15.9	15.0	16.7	16.6	15.9	16.2	0 • 0 1	п		42.0	0 - 7 7	45.2	6.44	45.1	ם	44.2	43.7	0.04	36.1	28.7	27.4	26.3	28.3	28.7
DATE	ICT	2-27-62	12-04-62	1-25-63	3-28-63	4-29-63	6-28-63		7-02-62	8-03-62	9-27-62	11-05-62	12-04-62	12-28-62	2-14-63	3-04-63	3-28-63	4-29-63	5-31-63	69-07-0	2-14-63		2-28-62	12-04-62	12-28-62	1-25-63	3-04-63	3-28-63	4-29-63	5-31-63	69-67-9	2-28-62	11-05-62	12-04-62	12-28-62	1-25-63	3-04-63
GROUND SURFACE ELEVATION IN FEET	CORCORAN IRRIGATION DISTRICT	204.0							196.5												209.0		196.0									0.100	• • • •				
STATE WELL NUMBER	CORCORAN IRRI	215/22E-10J03 M							215/22E-16001 M												215/22E-24K01 M		215/22E-27A01 M									225/22F=01B02 M					
AGENCY SUPPLYING DATA		5050	5050		2000					_				1	2000									0	0000					_							
WATER SURFACE ELEVATION IN FEET		322.8	1183.8			- 36.3		- 13.9	- 34.1			- 15.3					- 37.5			0		- 33.8		2 711	117.3	115.2	113.8	112.6	112.8	112.3	113.6	113.6	112.0	113.0	•		
GRD SUR TO WATER SUR IN FEET	5-22.44	207.2	36.2*	5-22.45		217.3	204.6	194.9	215.1	221.2	213.7	196.3	189.2	ı	0 1	223.7	215.5	ם		2200	231.4	211.8	198.3	000	7.66	101.8	103.2	104.4	104.2	104.7	103.4	103.0	10201	104.0	•		
DATE		1-09-63	1-09-63	EA	7-17-62	8-06-62	10-20-62	12-20-62	1-22-63	2-19-63	4-20-63	5-21-63	6-17-63		1-11-62 8-04-62	9-17-62	10-20-62	12-20-62	1-22-63	2-19-63	4-20-63	5-21-63	6-17-63	7-17-62	8-07-62	9-18-62	10-20-62	11-23-62	12-20-62	1-22-63	2-19-63	4-20-63	5-21-63	6-18-63			
GROUND SURFACE ELEVATION IN FEET	RICK AREA	530.0	1220.0	OST HILLS AR	181.0									1	1/8•0									217.0													
STATE WELL NUMBER	AVENAL-MCKITTRICK AREA	265/19E-12L01 M	275/18E-15R01 M	TULARE LAKE-LOST HILLS AREA	21S/20E-12M01 M									21 C / 20E - 27 / 01 H	3/20E=2/AU1 M									255/21F-22H01 M													

AGENCY SUPPLYING DATA		5050	6001	6001	6001	6001	0009	5000		200
WATER SURFACE ELEVATION 'N FEET		37. 38. 41.3 44.7 49.3	53.9	10	- 4.6 177.4 178.0	- 38°4 - 23°4	109.7	,	128-5 1318-6 135-6 135-0 135-1 135-1	185.2
GRD SUR TO WATER SUR IN FEET	5-22.46	154.0 152.7 149.7 146.3	137.1 5-22.47 256.7 301.0	171.6 192.8 222.3	215.6 5.6 5.0	260.4 245.3 @	DRY DRY 115.3	п п	20000000000000000000000000000000000000	62.8
DATE	IICT	1-25-63 3-04-63 3-28-63 4-29-63 5-31-63	6-28-63	10-30-62 3-25-63 10-24-62	3-12-63 10-24-62 3-13-63	10-25-62 3-12-63 10-23-62	10-24-62 3-13-63 10-25-62 3-13-63	12-22-62	8-14-62 10-09-62 11-09-62 2-18-63 3-28-63 4-23-63 5-21-63 6-18-63	7-16-62
GROUND SURFACE ELEVATION IN FEET	GATION DISTR	191.0	AREA 247.0	280.0	183.0	222.0	164.0	321.0		248.0
STATE WELL NUMBER	CORCORAN IRRIGATION DISTRICT	22S/22E-15C01 M CONT.	MENDOTA-HURON 135/12E-05001 M	135/12E-22N01 M		135/13E-15R01 M 135/13E-33N01 M	135/14E-09J01 M	14S/13E-15M01 M		145/14E-28E02 M
AGENCY SUPPLYING DATA		5050	5050		5050		5050			
WATER SURFACE ELEVATION IN FEET		174.0 173.7 175.5 175.6	10.5 21.8 26.9	25.6 25.0 29.9	6.8 - 35.9 - 25.6	20.3 21.9 24.7 31.2		- 2.1 10.8 13.2	00000000000000000000000000000000000000	37.9
GRD SUR TO WATER SUR IN FEET	5-22.46	27.0 27.3 25.5 25.5	177.5 166.2 161.1	162.4 n 163.0 158.1	181.2 223.9 213.6		152.0 200.8* 209.3 210.1			
DATE	1167	3-28-63 4-29-63 5-31-63 6-28-63	3-19-62 11-05-62 12-04-62 12-28-62 1-25-63	3-04-63 3-28-63 4-29-63 5-31-63 6-28-63	3-19-62 11-05-62 12-04-62	1-25-63 1-25-63 3-04-63 3-28-63 4-29-63 5-31-63	6-28-63 7-24-61 8-30-61 9-27-61	11-29-61 11-29-61 12-28-61 1-26-62	2-20-62 4-27-62 4-27-62 5-31-62 7-02-62 8-03-62 8-30-62 9-27-62	12-28-62
GROUND SURFACE ELEVATION	GATION DISTR	201.0	188.0		188.0		191.0			
STATE WELL NUMBER	TOPODAN TREATION DISTRICT	225/22E-01802 M CONT.	22S/22E-05L01 M		225/22E-08L01 M		225/22E-15C01 M			

TABLE C-I

AGENCY SUPPLYING DATA		2000	2000		6 0 0 1 5 0 0 0 1 5 0 0 0 1 5 0 0 0 1 5 0 0 0 1 5 0 0 1 5 0 0 0 1 5 0
WATER SURFACE ELEVATION IN FEET		173.4 173.4 172.8 172.2 175.5 175.0		70.3	55.0 - 54.6 - 64.6 - 64.6 - 64.6 - 102.7 - 112.7 - 112.7 - 112.7 - 112.7 - 110.2 - 100.2 -
GRD SUR TD WATER SUR IN FEET	5-22.47	622.4 63.2 661.0 661.0 661.0		306.3	
DATE		11-24-62 1-23-63 2-18-63 3-18-63 4-21-63 5-20-63	7-18-61 8-21-61 9-18-61 10-16-61	1-15-62	2-17-6-2 10-18-6-2 1
GROUND SURFACE ELEVATION IN FEET	N AREA	236 • 0	236.0		175.0
STATE WELL NUMBER	MENDOTA-HURON AREA	155/14E-15E01 M CONT.	155/14E-15E04 M		15 \$/15 E - 22001 M
AGENCY SUPPLYING DATA		2000	6001	2000	000000000000000000000000000000000000000
WATER SURFACE ELEVATION IN FEET		183.1 182.3 183.6 184.4 186.8 187.3	187.0 187.8 89.5 109.6		4 8 4 4 6 4 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
GRD SUR TO WATER SUR. IN FEET	5-22.47	665.7 667.7 667.6 60.7 60.7	61.0 60.2 71.5 51.4	п	0.000000000000000000000000000000000000
DATE		8-06-62 9-17-62 10-21-62 11-24-62 1-23-63 2-18-63	4-21-63 5-20-63 6-17-63 10-19-62 2-26-63	12-21-62	7-16-62 9-17-6-62 10-21-62 12-13-63 12-13-63 12-13-63 12-13-63 12-13-63 13-
GROUND SURFACE ELEVATION IN FEET	AREA	248。0	161.0	473.0	236.0
STATE WELL NUMBER	MENDOTA-HURON AREA	145/14E-28E02 M CONT.	145/15E-35N01 M	155/13E-26N01 M	155/14E-07802 M

AGENCY SUPPLYING DATA		1009	6001	2000	5050	2000										2000																			
WATER SURFACE ELEVATION :N FEET		146.0			6.6	39.2	40.4	46 • B	62.8	61.9	63.7	9.99	74.0 73.4	59.4		222 • 8	223.0	222.2	225.6	222.4	6.777	6 0 6 7 7		22301	223.1	223.1	0.222	223 • B	0.222	223 2	223.6	223.6	223.7	223.9	224.3
GRD SUR TO WATER	5-22.47	87.0	DRY •	п	211.4 195.8	193.3	193.4	185.7	169.7	170.6	168.8	165.9	177.7	173.1	1	67.2	0.19	67.8	4.49	67.6	67.1	1.099	12	6.99	6 • 99	6.99	0.89	66.2	4.10	1 0 4 0	000 1	4 - 99	66.3	66.1	65.7
DATE		10-15-62 2-20-63	10-18-62 2-20-63	12-19-62	10-18-62 2-07-63	7-16-62	9-17-62	10-21-62	12-21-62	1-23-63	2-18-63	3-18-63	4-21-63	6-17-63		7-18-61	8-21-61	9-18-61	10-16-61	11-13-61	12-18-61	1-15-62	2-19-62	3-12-62	4-09-62	5-15-62	6-18-62	7-16-62	8-06-62	9-11-62	11-23-62	12-20-62	1-23-63	2-18-63	3-18-63
GROUND SURFACE ELEVATION IN FEET	AREA	233.0	235.0	457.0	218.0	232.5										290.0																			
STATE WELL NUMBER	MENDOTA-HURON AREA	165/16E-18N01 M	165/16E-28M01 M	175/14E-13R01 M	175/16E-02E01 M	175/16E-24R01 M										175/16F-30A02 M																			
AGENCY SUPPLYING DATA		2000	2000									_							2000													6001			1000
WATER SURFACE ELEVATION IN FEET		104.9	7.1	. സ.ഗ . സ.സ	7.9 10.9 12.3	11.4	4.6	403		1.3			6.1	8 • 2	6.0	7.99 -	10°1	0	7 - 71 -		7 21.3					10.6		- 14.3				124.5	130.5		7.69
GRD SUR TO WATER SUR IN FEET	5-22.47	66.1	162.9	166.5	162.1 159.1 157.7	158.6	160.6	165.9	168.1	171.3	170.5	166.8	163.9	161.8	164.1	176.7	180.7	100.2	7 001	10%	196.3	103.5	102.6	7001	19001	185.6		189.3	189.3	188.1		94.5	88.5*		125.8
DATE		6-18-63	7-18-61 8-21-61 9-18-61	10-16-61	12-18-61 1-15-62 2-19-62	3-12-62	5-14-62	7-16-62	8-06-62	9-17-62	10-21-62	12 21-62	1-23-63	2-18-63	3-18-63	4-21-63	5-20-63	6-17-63	1 10 7	79-61-1	0-10-62	10-00-62	11-06-62	12 03-62	12-03-02	2-26-63	67 00 0	4-23-63	5-21-63	6-18-63		10-18-62	2-20-63		10-15-62 2-07-63
GROUND SURFACE ELEVATION N FEET	4		170.0																	1/2.0												219.0			191.0
STATE WELL NUMBER		155/16E-20R01 M	CONT. 155/16E-28A04 M																	155/16E-34E01 M												165/15F-02N02 M			165/16E-10N01 M

TABLE C-I

AGENCY SUPPLY NG DATA		2000	2000																				6	0000	2000												5000		2000	
WATER SURFACE ELEVATION IN FEET		- 78.0	7 307 - 7		- 274.3	- 272.6	- 262.5			- 296.9	- 390.6		- 421.8	- 429.5		362.1		- 3219.5		- 314.9				1 .69 -	- 143.0		123.4		0.40			- 129.8	- 128.3	- 128.3	- 126.0				- 73.2	
GRD SUR TD WATER SUR IN FEET	5-22.47	304.0	736.7	723.5	703.3	701.6	691.5	690.5	F03 2	725.9	819.6	834.0	850.8	858 5	818 3	791.1	6.761	1,00.4	738.3	743.9	725.3	734.3	(322.1	510.0	516.4	4.064	2.404	400.0	478.0	509.1	496.8	495.3	495.3	403.0*		п		354.2	359.3
DATE		6-30-63	7-18-61	9-18-61	10-16-61	11-13-61	12-18-61	1-15-62	2-13-62	4-09-62	5-15-62	6-18-62	7-16-62	8-06-62	9-17-62	10-21-62	11-62-02	79-07-71	3-18-63	4-21-63	5-20-63	6-17-63		79-61-71	7-19-62	8-15-62	9-12-62	10-09-62	12-04-62	1-04-63	2-27-63	3-28-63	4-23-63	5-21-63	6-18-63		12-20-62		7-16-62	8-06-62
GROUND SURFACE ELEVATION IN FEET	AREA	226.0	429.0																					253.0	367.0												274.0		281.0	
STATE WELL NUMBER	MENDOTA-HURON AREA	175/205 = 21NO2 M	185/15E-02N01 M																					185/17E-12N01 M	19S/17E-35N01 M												195/18E-15M01 M		195/18E-27M01 M	
				_	_				_																					_	_				_					
AGENCY SUPPLYING DATA		2000	0																						2000															
WATER AGENCY SURFACE SUPPLYING ELEVATION DATA		223.9 5000.	0	163.9		- 151.3		- 82.5					- 113.1			143.5			12303	_		- 85.5	73.4		80.6							- 25.2					- 62.1		- 59.3	- 54.1
	5-22.47		0	163.9	1	1	1	*		ı		ı	1	ŧ	ì			1	-	1	1	1		1	- 80•6	ţ	ı	1		1 1	ı	ı	ł	1	1	1	1	1	1	
WATER SURFACE ELEVATION IN FEET	5-22.47	223.9		- 163.9	463.1 -	441.3 -	440.5	372.5* -	1	367.2	363.7 -	385.2 -	403.1 -	413,3 -	431.6	433.5		1 2 2 2 1	413.3	4.06.4	404.1	375.5	ı	7.006	306.6 - 80.6	308.5	303 • 8	1	20000	279.5	263.0	251.2 -	292.0 -	269.0 -	274.6	276.9	288.1 -	269.4 -	285.3 -	1
GRD SUR SURACE TO WATER ELEVATION SUR IN FEET IN FEET	MENDOTA-HURON AREA 5-22.47	66.1 223.9 72.9 217.1		8+21-61 453.9 - 163.9	463.1 -	441.3 -	- 6.044	372.5* -	364.4	367.2	363.7 -	385.2 -	403.1 -	413,3 -	431.6	433.5	1 20064	1 2 2 2 1	413.3	4.06.4	404.1	375.5	363.4 -	7.006	306.6 - 80.6	308.5	303 • 8	304.4	20000	279.5	263.0	251.2 -	292.0 -	269.0 -	274.6	276.9	288.1 -	269.4 -	285 • 3 -	280.1 -

AGENCY SUPPLYING DATA		2000	5050	5050	5050		5050	5050	2000										5050			5529														
WATER SURFACE ELEVATION IN FEET		- 31.1	434.8	408.0				400.1	37.4	35.00	37.0		51.1	42.4	39.3	36.08	35.8	36.4	483.2			100.8		104.1	102.7	101.8	101.0	100.8	102.5	1040	104	• 004	102.7	91.8	103.4	102.6
GRD SUR TO WATER SUR IN FEET	5-22.47	291.1	188.2	162.0		ı	п	125.9	322.6	324.0	323.0		308.9	317.6	320.7	321.6	324.2	323.6	303.8		04.477-6	9.2	-	5.9	7.3	8 • 2	0 * 6	7 • 6	7.5	D 4	0 4	0	7 . 3	2 0 0	9.99	7.4
DATE		6-17-63	1-08-63	1-08-63	1-08-63		1-08-63	1-08-63	7-17-62	29-01-07	10-20-62	11-24-62	12-20-62	1-22-63	2-19-63	4-20-63	5-21-63	6-17-63	1-08-63		אוני.	7-21-61	8-18-61	9-12-61	10-16-61	11-14-61	12-13-61	1-12-62	2-15-62	20-11-6	5-10-62	6-10-62	7-10-62	8-15-62	9-14-62	10-23-62
GROUND SURFACE ELEVATION IN FEET	AREA	260.0	623.0	570.0	634.0		682.0	526.0	360.0										787.0			110.0														
STATE WELL NUMBER	MENDOTA-HURON AREA	205/18E-36D01 M	215/15E-01E01 M	215/16E-02N01 M	215/16F-07N01 M		215/16E-35D01 M	215/17E-06N01 M	21S/18E-28M02 M										22S/16E-12F01 M		POSO SOIL CONSERVALION	10S/13E-06R01 M														
AGENCY SUPPLYING DATA		2000						5050		0000							5000	0	0006								2000									
WATER SURFACE ELEVATION IN FEET					1 83 8 2 8 2 8 2 8 3 8 3 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9		- 70.4	429.7		400.1	461.4	460.2		459.2	458.8	408.4	- 152.0		- 160.5	- 154.7	152.1		_	- 136.0	_		- 27.6		29.4				21.0			
GRD SUR TO WATER SUR IN FEET	5-22.47	354.9	349.0	358.8 361.7	364.2	369.2	351.4 345.2	189.3		212 3	213.6	214.8	п	215.8	216.2	216.6	429.0		449.0	424.7	422.5	435.0	421.3	406.0	418.0		287.6	279.0	289.4	200.0	7 076	278.7	281.0	281.6	288.6	281.3
DATE		9-17-62	11-24-62	12-21-62	2-19-63	4-21-63	5-21-63	1-08-63		10-10-62	11-06-62	2-27-63	3-28-63	4-24-63	5-22-63	6-18-63	12-21-62		9-12-62	10-10-62	2-27-62	3-28-63	4-24-63	5-22-63	6-18-63		7-17-62	8-06-62	9-18-62	11 24 42	12-20-62	1-22-62	2-10-63	3-18-63	4-20-63	5-21-63
1																																				
GROUND SURFACE ELEVATION IN FEET	MENDOTA-HURON AREA	281.0						619.0		0 0 0 0							277.0	i i	7.0.0								260.0									

TABLE C-I

AGENCY SUPPLYING DATA		5529		5529													i i	5256						
WATER SURFACE ELEVATION IN FEET		111.9 110.2 1117.4 1117.5 1117.5 1118.5 119.1	120.3	115.8 114.6 113.8 116.5	116.5	117.0	117.5	115.8	1	116.6	116.3	116.5	116.5	116.8	118.0	117.3			125.3	127.0	129.6	129.7	129.7	
GRD SUR TO WATER SUR IN FEET	5-22.48	11111111111111111111111111111111111111	7.7 8.3 11.4	10.2	2.00	9.0	9.5	10.2		9,4	9.7	ა. თ. თ	9.0	9.2	0 w	8.7		0 5	14.7	13.0	10.4	10.3	10.3	
DATE	STRICT	8-15-62 9-14-62 10-23-62 11-25-62 12-26-62 1-22-63 2-27-63	4-19-63 5-20-63 6-20-63	7-20-61 8-18-61 9-12-61 10-16-61	11-14-61 12-13-61 1-12-62	2-15-62	4-21-62	6-19-62	8-15-62	9-14-62	11-25-62	12-26-62	2-27-63	3-19-63	5-20-63	6-21-63	,	8-18-61	9-12-61	10-16-61	11-14-61	12-13-61	1-12-62	
GROUND SURFACE ELEVATION IN FEET	POSO SOIL CONSERVATION DISTRICT	128.0		126.0														140.0						
STATE WELL NUMBER	POSO SOIL COM	115/13E-26A01 M CONT.		115/13E-33L01 M														125/13E-13J01 M						
[°		6	6											62										
AGENCY SUPPLYING DATA		5529	5529											5529										
WATER AGENCY SURFACE SUPPLYIN ELEVATION DATA		101.1 100.6 100.3 103.6 104.5 104.5 104.5	552	109.8 110.1 110.1 109.9	110.2		109.7	110.2	109.7	109.6	110.6	111.4			110.6	113.1	117.4	117.5	118.3	118.7	111.5	113.8	110.5	
WATER SURFACE ELEVATION IN FEET	5-22.48		552	01001					7-3 109-7					t o									17.6 110.4	
WATER SURFACE ET ELEVATION IN FEET		1001.000.000.000.0000.0000.0000.0000.0		7001 1000	6 • 8 6 • 1 E				7 - 3		4.9					14.9		10.50	7.6	9.3	16.5		17.6	
GRD SUR SURACE TO WATER ELEVATION SUR IN FEET IN FEET	POSO SOIL CONSERVATION DISTRICT 5-22.48	98.9 9.4 9.4 9.4 6.4 100.6 9.6 103.6 104.6 104.7 103.6 104.2 103.6 104.2	וםם	70001 10001	6 • 8 6 • 1 E		7.3	9 9	1.3	+ + + - -	4.9	0 P			17.4	14.9	10.6	10.50	7.6	9.3	16.5	14.2	17.6	

AGENCY SUPPLYING DATA		00005	6001	5050		5050
WATER SURFACE ELEVATION IN FEET		214.4 232.4 2545.0 2554.0 2554.0 2550.0 2566.7 2566.3 256.3	268.0 288.0	61.7 62.9 70.9 71.0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GRD SUR TO WATER SUR IN FEET	5-22.50	298.6 280.6 259.6 259.0 250.0 260.4 260.7	250.0 230.0 5-22.54	18.3	117.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	100.1 100.1 40.2 40.2 40.0 40.0 40.0 40.0 40.0 40.0
DATE	DISTRICT	10-15-62 11-20-62 12-18-62 1-23-63 2-26-63 3-21-63 4-25-63 5-20-63	10-10-62	1-02-62 2-02-62 3-05-62 4-05-62	5-02-62 7-02-62 7-02-62 8-02-62 8-02-62 11-03-62 11-01-63 1	1-02-62 3-02-62 3-02-62 4-05-62 4-05-62 5-02-62 7-02-62 8-02-62 8-02-62 10-03-62
GROUND SURFACE ELEVATION IN FEET	IRRIGATION DI	513.0	518.0	0 0 0		o. • o. • o. • o.
STATE WELL NUMBER	TERRA BELLA IRRIGATION	225/27E-36N01 M	235/27E-10H01 M MERCED BOTTOMS	75/10E-23K01 M		75/10E-23K02 M
AGENCY SUPPLYING DATA		5 5 6			0000	0000
WATER SURFACE ELEVATION IN FEET		1286.5 1286.5 1286.5 1288.5 1288.5 1288.0	128.3 128.7 129.0 130.1	131•1	4 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	7000 0000 0000 0000 0000 0000 0000 000
GRD SUR TO WATER SUR, IN FEET	5-22.48	112 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	111.0	8 • 9 8 • 9 5 – 2 2 • 5 0	1118.3 1118.3 1118.3 110.0 110.0 10.0 10.0 10.0 10.0 10.0	1114.0 1111.5 1123.7 1123.7 1123.7 1106.8 115.6 141.3 141.3 12.8
DATE	DISTRICT	3-17-62 4-21-62 5-19-62 7-10-62 8-15-62 9-14-62 9-14-62 9-14-62	12-26-63 1-21-63 2-27-63 3-19-63 4-19-63	6-21-63 6-21-63 DISTRICT	9-15-61 10-28-61 11-28-61 11-28-62 11-2	12-18-62 11-23-63 1-23-63 3-21-63 3-21-63 4-25-63 5-20-63 6-27-63 8-22-62 9-18-62
GROUND SURFACE ELEVATION IN FEET	SERVATION	140.0		z	0 * 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	513.0
STATE WELL NUMBER	POSO SOIL CON	125/13E-13JO1 M		TERRA BELLA	225/27E-25J03 M	225/27E-36N01 M

TABLE C-I

AGENCY SUPPLYING CATA		5050		
WATER SURFACE ELEVATION N FEET		148.7 151.0 150.9 150.3 149.3	116404 9 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
GRD SUR TO WATER SUR IN PEET	5-22.54	31. 283 293 291 307	0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
DATE		1-02-62 2-02-62 3-05-62 4-06-62 5-02-62 6-07-62	8-06-62 10-03-62 11-07-63 1-07-63 1-07-63 1-07-63 1-07-63 1-07-63 1-07-63 1-07-63	
GROUND SURFACE ELEVATION IN FEET	4S	180.0		
STATE WELL NUMBER	MERCED BOTTOMS	95/14E-01B03 M		
AGENCY SUPPLYING DATA		5050	0906	0900
WATER SURFACE ELEVATION IN FEET		72.9 78.1 77.9 77.9 77.0 76.6	1333 1333 1333 1333 1333 1333 1333 133	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GRD SUR TO WATER SUR IN FEET	5~22.54	9977001 9977001	444440000800444440 	4 4 4 4 4 4 0 0 4 4 0 0 0 0 4 4 4 4 4 4
DATE		12-05-62 1-07-63 2-15-63 3-06-63 4-02-63 5-03-63	1-02-62 2-02-65 3-02-65 4-06-62 5-02-62 1-02-62 11-03-62 11-03-62 11-01-62 12-03-63 12-03-63 12-03-63 12-03-63 13-03-63	1-02-62 3-05-62 3-05-62 5-06-62 6-07-62 6-07-62 10-03-62 11-03-62 11-03-62 11-03-62 11-03-63
GROUND SURFACE ELEVATION	v	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 80 • 0	O • O O O O
STATE WELL NUMBER	MERCED BOTTOM	75/10E-23K02 M CONT.	95/14E-01801 M	95/14E-01802 M

APPENDIX D SURFACE WATER QUALITY

TABLE OF CONTENTS

	PAGE
INTRODUCTION	
EXPLANATION OF TA	ABLES
EXPLANATION OF P	LATES
EXPLANATION OF T	ERMS AND ABBREVIATIONS
	LIST OF TABLES
TABLE	
D-1	Sampling Station Data and Index for Surface Water
D-2 to D-31	Analyses of Surface Water
D-32	Spectrographic Analyses of Surface Water
D-33	Radioassays of Surface Water
	LIST OF PLATES
	(Bound at end of volume)
PLATE	
D-1	Surface Water Sampling and Recorder Stations
D=2	Weekly Mean Specific Conductance at Selected Stations

INTRODUCTION

This appendix contains data pertaining to the quality of surface waters collected during the 1963 water year (October 1, 1962 to September 30, 1963). The data are presented as tables and graphs and represent the observed physical, chemical, and bacteriological characteristics of the waters collected at the surface water quality monitoring stations.

The stations are sampled periodically (monthly, quarterly, or semiannually), depending on past records, need, and the type of data required for each station. Samples collected and the field data obtained at the stations are as follows:

- 1. Partial mineral analysis ½ gallon
- 2. Bacteriological analyses (coliform) 2 samples in 4 oz., sterilized bottles
- 3. Dissolved oxygen D.O.
- 4. pH
- 5. Temperature
- 6. Gage Height
- 7. Time
- 8. Visual observation of water conditions

In May and September, the partial mineral analysis is replaced by a complete mineral analysis and the following are added to the list above:

- 1. Radiological analysis
- 2. Phosphate, arsenic and detergents (ABS)
- 3. Spectrographic analysis of heavy metals (for ten selected stations)

Continuous conductivity recorders are installed at six of the surface water quality monitoring stations, as indicated on Plate D-1. The recorders measure specific electrical conductance, a characteristic of water which provides an approximation of the quantity of minerals in solution.

EXPLANATION OF TABLES

An alphabetical listing of all stations in the surface water monitoring program is found in Table D-1 along with information concerning station number and location, period of record, frequency of sampling, and agency responsible for collection of samples.

Results of mineral analyses can be found in Tables D-2 to D-31, where mineral concentrations, dissolved oxygen, and ABS are expressed in parts per million (ppm). Discharges are expressed as cubic feet per second (cfs) and bacteriological determinations are expressed as the most probable number (MPN) of coliform bacteria per milliliter of sample.

Results of spectrographic analyses for heavy metals, found in Table D-32, are expressed as micrograms per liter or parts per billion.

Table D-33 contains results of radiological analyses, expressed as picocuries per liter (pc/l).

EXPLANATION OF PLATES

Locations of surface water quality stations and recorder sites are found on Plate D-1.

Plate D-2 presents, in graphical form, data obtained from electrical conductivity recorders in terms of mean weekly values of electrical conductivity (EC \times 10^6 micromhos) plotted against time (week).

EXPLANATION OF TERMS AND ABBREVIATIONS

Cubic foot per second (cfs) - the rate of discharge of water where a cubic foot of water passes a given point in one second.

Dissolved oxygen (DO) - the amount of free oxygen contained in water. It is one of the most important indicators of the condition of a water supply.

EXPLANATION OF TERMS AND ABBREVIATIONS (Continued)

- Total dissolved solids (TDS) represents the dissolved mineral constituents in water.
- Specific conductance a measure of the capacity of water to conduct a current of electricity.
- Coliform a group of organisms, whose presence is a satisfactory bacteriological indicator of contamination or pollution in water.
- Most probable number (MPN) an index of the number of coliform bacteria which more probably than any other number would give the results shown by laboratory tests.
- Hardness a characteristic of water that determines its usefulness and economic value. It is mainly caused by compounds of magnesium and calcium and is usually recognized by the increased quantity of soap required to produce lather.

TABLE D-I SAMPLING STATION DATA AND INDEX FOR

SURFACE WATER

Station	Station Number	Lacation	Periad af Record	Frequency c af Sampling	Sampled d by	Analysis an page
	1					
Big Creek above Pine Flat Dam	33d	12S/25E-4	July 1960	М	USCE	D-8, D-39
Chowchilla River near Raymond	114	8s/18E-1	January 1962	S	DWR	D -9, D-3 9
Delte-Mendota Canal near Mendota	92	13S/15E-19	July 1952	М	DWR	D-10, D-39
Delta-Mendota Canal near Tracy	93	1S/4E-30	July 1952	М	DWR	D-11, D-39
Freeno River near Daulton	113	9S/19E-34	January 1958	S	DWR	D-12, D-39
Kaweah River below Terminus Dam	35	17S/28E-33	April 1951	М	USCE	D-13, D-39
Kern River near Bakersfield	36	29S/28E-9	April 1951	М	DWR	D-14, D-39
Kern River below Isabella Dam	36a	26S/33E-30	September 1955	Q	USCE	D-15, D-39
Kern River below Kernville	36b	25S/33E-15	September 1955	Q	USCE	D-16, D-39
Kings River below North Pork	33c	12S/26E-21	September 1955	Q	USCE	D-17, D-39
Kings River below Peoples Weir	34	17S/22E-1	April 1951	м	DWR	D-18, D-39
Kings River below Pine Flat Dam	33ъ	13S/24E-2	September 1955	Q	USCE	D-19, D-39
Merced River below Exchequer Dam	32a	4S/15E-13	April 1959	Q	DWR	D-20, D-39
Merced River near Stevinson	32	6s/9E-36	April 1951	М	DWR	D-21, D-39
Salt Slough at San Luis Ranch	24c	9S/11E-7	November 1958	М	DWR	D-22, D-40
San Joaquin River at Crows Land Bridge	26ъ	6s/9E-7	January 1962	М	DWR	D-23, D-40
San Joaquin River at Fremont Ford Bridge	25c	7S/9E-24	July 1955	М	DWR	D-24, D-40
San Joaquin River et Friant Dam	24	11S/21E-7	April 1951	Q	DWR	D-25, D-40
San Joaquin River near Grayson	26	4s/7E-24	April 1959	М	SF	D-26, D-40
San Joaquin River at Hills Ferry Bridge	25ъ	7S/9E-3	October 1958e	М	DWR	D-27, D-40
San Joaquin River at Maze Road Bridge	26a	3S/7E-33	April 1951	М	SF	D-28, D-40
San Joaquin River near Mendota	25	13S/15E-7	April 1951	М	DWR	D-29, D-40
San Joaquin River at Petterson Bridge	27a	5S/8E-15	January 1962	М	DWR	D-30, D-40
San Joaquin River near Vernalis	27	3S/6E-13	April 1951	М	DWR	D-31, D-40
Stanislaus River near Mouth	29	3S/7E-17	April 1951	М	DWR	D-32, D-40
Stanialaus River below Tulloch Dam	29a	1S/12E-1	July 1956	Q	DWR	D-33, D-40
Tule River below Success Dam	91	17S/27E-26	July 1952	М	USCE	D-34, D-41
Tuolumne River below Don Pedro Dam	31a	3S/14E-20	April 1951	Q	SF	D-35, D-41
Tuolumne River at Hickman-Waterford Bridge	30	3S/11E-34	April 1951	м	SF	D-36, D-41
	31	4S/8E-12		м	SF	
Tuolumne River at Tuolumne City	31	4s/8e-12	April 1951	М	SF	D-37, D-41

a. Locations are in reference to Mt. L.ablo Base and Meridian b. Beginning of record c. M. - Monthly, B. - Bimonthly, Q. - Quarterly, S. - Semiannually DWR - Department of Water Resources USCE - United States Corps of Engineers SF - City & County of San Francisco e. Discontinued as of July 1, 1963

ANALYSES OF SURFACE WATER TABLE D-2

BIG CREEK ABOVE PINE FLAT DAM (STA. NO. 33d)

	Anolyzed by 1		Ungs														
	Hardness bid - Coliformh os CoCO ₃ ify MPN/mi		Median	Max Imum 7000.	5.3												
_	- pid - y			9	-			8	Cu	5	m	C)	O.	CI	C4		
	00	o E		-	0	0		0	c	0	0	0	0	0	0		
	Hord os C	Tatal		740	39	33		777	25	92	53	22	Ö	27	36		
	Cent Bod			07	0.7	33		31	34	35	31	34	21	71.1	34		
Toto	e olide Bolved	E 00 E		135 ^e	1186	115e		9 99	80	67	₹ij.	72°	22	916	100		
	Other canstituents d										FO ₁ , 0,00			6	ABS 0.00		
	Silico	2010				-					5]				क्ष		
8	1 5	6		0:0	1,0	0.0		0.1	0:	0.0	0	0.0	0.0	0	11		
r million	Fluo-B								-		000			-	0.03		
parts per million	Ni-										0,0				2000	 	
a d	Chlo-	\rightarrow		0.56	15	0.37	n - dry	2.7	0.13	0.05	0.07	0.12	0.03	0.0	0.25	 	
<u> </u>	Sul -						No sample taken - dry				3.0				3.0		
constituents	Bicor-	- 1		0.00	5.3 0.57	52	No sang	34	1,4	37	36	36	0,70	00.00	52		
	Corbon –	(600)		0000	0 8	000		0.00	000	0.00	0.00	0 0	0.00	0 0	00.0		
Mineral	Potos-	(K)									1.5		_		2.1		
	Sodium	(0 N)		17,0	12	111 0.48		5.0	6.7	2.5	5.0	75.0	0.05	0.37	0.0		
	Mogne-										0.0				0.10		
	Calcium	(00)		0.92	0.78	0.76		67.0	0.57	0.51	0.3	0.53	61.0	0.54	11 c		
	Q Ha			7.2	5.7	7.3		6.7	7.2	7.2	7.7	2.2	6.7	7.3	7.3		
	Specific conductance (micrambos or 250 C)			158	138	1.35		77	44	22	70	75	98	201	وال		
	D =	%Sot		116	23	33	_	5	78	89	107	108	101	122	123		
	Dissolved	bom %		10.14	10.2	10.7		10.0	10.0	10.2	10.4	10.6	10.1	10.0	10.1		
				20	23	148		55	94	3	29	19	\$	78	92		
	Dischorge Temp in cfs in 0F			ı	-	1		113	28	83	501	ı	30	1	4		
	ond time	P.S.T.	1.62	10/1	11/5	12/3	1963	2/1)	3/4	1,11	5/6	1120	7/8	8/12	5/12		

a Field pH

b Labaratory pH.

d Arsenic (As), alkyl benzena sulfanate (ABS), and phosphata (PO. c Sum of calcium and magnesium in epm.

e Derived from canductivity vs TDS curves

h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Labornianies, at United States Public Health Service.

i Mineal analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior Survey and Power (USBR); United States Department of the Interior (RAPED): Metabolities Water Branch California (WND); Las Angeles Department of Water and Power (LADMP); City of Lang Beach, Department of Carlon States and Public Health (LADPH); City of Lang Beach, Department of Management of Management of Carlon States and Public Health (LADPH); City of Lang Beach, Department of Management of Management of Carlon States and Management of Mana f Determined by addition of analyzed constituents. g Gravimetric determination.

ANALYSES OF SURFACE WATER TABLE D-3

CHOWCHILLA RIVER NEAR RAYMOND (STA. NO. 114)

_	_	9	_		_													 	
		Anolyze by 1		USGS															
	4	ds CoCO ₃ ity MPN/mi by i		Median	Maximum	Minimum 0.23													
	T or	- 5- c	:			Н	ri		CU CU	9	m	cu	150	cu .					
Г	Ť		O E			72	17		745	0	0	0	0	0					
		# P C C C C C C C C C C C C C C C C C C	Total N.C.			170	163		140	58	61	84	39	617					
L	Per	e od				4	£,		75	39	82	33	32	37				 	
L	Total	solids con -	E 00 L			395e	387 ^e		331e	126e	127°	916	10.	976					
		Other ronatitions											PO ₄ 0.20						
		Silico	igoic.	-									53						
	lo l	Boron	j (g			0.0	0:0		0.0	0.2	0,0	0:0	0.0	0:0					
million	ar mill	F100-											0,1						
ports per million	ents p	- i N											2.2						
a	aquivolents per million	Chlo-	_		n - dry	136 3.84	137 3.86		3.05	25 0.71	25 0.62	8.8	5.0	0.34	- ÇPa	- pa	- pa		
	Ì	Sul -	-		le taker								3.0		scheduled	scheduled	scheduled		
1	Mineral constituents in	Bicar-			No sample taken - dr	1.95	1.84		116	71	1.41	69	0.98	1.26	- Not	- Not	- Not		
	au cons	- 1	(co ₃)			0.00	0.00		0.00	0.0	0.00	0.00	0.0	0.00					
2		Potos- C											1.7						
	İ	Sodium	(ON)			54 2.35	2544		5.00	17 0 74	17 0.74	11 0.48	8.8	0.57					
		Magne-	(6Mg)										2.8 0.23						
		alcium	(00)			3.40	3.27		2.80	1.16	1.22	0.97°	0.55	0.99				 	
		o H				8.0	8.0		8.1	7.8	8,2	0.8	7.5	0.0					
	Specific	(micromhos PH D C				640	929		538	201	902	147	118	158					
		D	%Sof			107	%		8	82	1	86	91	16					
		Dissolvs d	wdd			10.1	10.8		13.1	9.7	10.9	9.5	0.6	7.9					
		in OF				69	20		39	147		63	61	73					
		Dischorge Temp in ofs in OF				No	co		21.6	107	34	349	359	51					
		ond time	P.S.T.	1962	;	11/8	12/6	1963	1/9	2/7	3/6	1,4/3	5/9	6/3	1	;	;		

b Laborotary pH. o Field pH.

c Sum of colcium and magnessum in apm.

d Arsenic (As), alkyl benzene sulfonate (ABS), and plosphate (PO.) e Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

g Grovimetric determination.

h Annual medion and range, respectively. Calculated from analyses of duplicate monthly samples made by Californio Department of Public Health, Division of Laboratories, or United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Internal States Department of Reclamation (USBR); United States Department of Water Branch (USBR); United States Department of Public Health States Department of Public Health States Department of Public Health (LEDPH); City of Long Beach, Department of Public Health (LEDPH); City of Long Beach, Department of States Department

DELTA-MENDOTA CAMAL HEAR MINIOTA (STA. NO. 92) ANALYSES OF SURFACE WATER TABLE D-4

	D.			_													7
	Analyzed by i		USGS														
-	bid - Coliform ⁿ		S3.	Marchana 2400.	Minimum .05												
1	- Neg		_	8	25	10		8	15	25	<u>9</u>	٩	8	8	65	KC	
	Hardness as CaCO ₃	Tatol N.C. ppm ppm		55	1 L	T.		88	89	32	98	82	6	1/2	83	₽	
	Hara Program			907	4	189		178	808	103	170	92	45	83	93	11,5	
Par	sod -			53	42	5		53	22	22	51	32	3	Lą	<u>\$</u>	54	
Tatol	solved solids	mdd ri		560	500e	1480		95¶	557	280	10te	1856	316	184	368	2736	
	D. September of											Poh = 0.30			3	ANS 0.01	
	Silica	(S:0g)															
lion	Baran	<u>@</u>		0.1	1	0.5		0.3	9.0	4.0	0.1	0.0	0.0	0.1	0.1	0.1	
million	Flua-	(F)										0.2				0.1	
squivolents per million	ž	(NO ₃)										0.02				0.07	
equive	Chla-	(CI)		2.03	146	36		3.81	164	38.1	2.91	36	0.51	24.68	32	62	
5	Sul -	(SO ₄)										34.0				41 0.85	
constituents	-Joole	(HCO ₃)		102	146 2.39	2.36		13th	145 2.38	87	1.67	8F	1.4 0.72	72	87 1.43	1.75	
Mineral con		(CO3)		0.00	0.0	0.00		0.0	0.0	0.0	0.0	0.00	0.0	0.0	0.00	0.0	
Mine	Patas- C	(X)										2.0				0.00	
		(0 N)		2.35	106	102		48.	5.00	2.35	3.5	33	16 0.70	34	28	1.91	
	Mogns-	(Mg)										8.0				$\frac{14}{1.15}$	
	Calcium	(Co)		2.12	3.88	3.78		3.56	4.16	2.07	3.40	0.90	°8.	1.66	1.86	23	
	Q H C			7-7	8.2	8.1		8,2	8.0	7.6	8.0	7.3	7.9	7.7	80	8.0	
9	canductance (micramhas	at 25°C)		794	885	850		808	88	964	716	303	173	340	297	194	
	p p s v	%Sat		46	86	92		122	077	92	104	76	88	87	78	42	
	Dissgived	E dd		8.5	9.6	10.0		14.5	1.11	9.1	10.6	9.1	8.0	7.5	7.0	6.9	
				88	62	53 1		94	57	58	85	99	98	7.4	78	73	
	Discharge Tamp			1	:	1		:	;	:	1	:	:	1	1	:	
		P.S.T.	1962	10/5	11/9	12/7	1963	1/10	2/8 1030	3/8 1330	1,72	5/10 0830	6/3	1/9	8/8 1345	9/10 0410	

o Field pH

b Lobarotary pH.

c Sum of colcium and magnessum in epm.

Derived from conductivity vs TDS curves

g Gravimetric determination.

h Amuol medion and range, respectively, Calculated from molyyses of duplicate monthly sampless made by California Department of Public Health, Division of Laboratories, or United States Public Health Service. (USCHS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Capacity of Water Branch (USCS); United States Department of the Interior of Water Branch (USCS); United States Department of Water and Power (LADMP); City of Lang Beach, Department of Public Health (LADPH); City of Lang Beach, Department of Canifornia (WADP); City of Lang Beach, Department of Mater and Power (LADMP); City of Lang Beach, Department of Mater and Mater and Power (LADMP); City of Lang Beach, Department of Mater and Mater and Mater and Material Research Department of Public Health (LADPH); City of Lang Beach, Department of Mater and Material Research Department of Public Health (LADPH); City of Lang Beach, Department of Material Research Department of Public Health (LADPH); City of Lang Beach, Department of Material Research Department of Public Health (LADPH); City of Lang Beach, Department of Material Research Department of Public Health (LADPH); City of Lang Beach, Department of Material Research Department of Public Health (LADPH); City of Lang Beach, Department of Material Research Department of Public Health (LADPH); City of Lang Beach, Department of Material Research Department of Material Researc

Arsenic (As), alkyl benzene sulfanate (ABS), and phasphate (PO,1) Determined by addition of analyzed constituents.

ANALYSES OF SURFACE WATER TABLE D-5

DELIA-MENDOTA CANAL NEAR TRACY (STA. NO. 93)

Γ		2	1				_										
		Analyzed by i	USGS														
	4	bid - Coiform	Median	Maximum 7000.	2.3												
r	Tur	- pid - pid - pid - pid		9	200	15		5	92	8	52	52		54	09	8	
		000 000 000 000 000 000		35	67	777		₹.	7,	₫	8	18		13	15	17	
		Hordness es CoCO _S Total N.C.		150	188	148		154	55	149	107	25		69	81	503	
	4	- 00		53	54	55		55	53	52	64	917		24	ħ.	20	
	Totol	solids In ppm		374°	474 e	412e		4 10°	136 ^e	388	549€	1746		135e	131	5276	
		Other consistuents									Š.	ABS 0.00			· · · · · · · · · · · · · · · · · · ·	ABS 0.01	
		Silico (SiO ₂)										排				티	
	LO	€		1:0	2.0	5.5		0.5	0.2	5.0	2.0	0.0		0.1	1.0	2.0	
million	aquivolents per million	-0ul- abr (F)	-									0.0				0.2	
parts per million	ants p	Ni- trote (NO ₃)		-								0.8				4.3	
00	squivo	Chio-		3.13	3.95	3.39		3.39	31	2.79	1.66	38	taken	15	23	153	
	Ē	Sul - fate (SO ₄)										09.00	sample taken			68	
	lituants	Brear- bonate (HCO ₃)		2.29	148	2.08		2.00	50.82	104	92	1.13	- No	63 1,03	1.31	168	
	Minarol constituents	Corbon- Ote (CO ₃)		000	0.0	0000		0.0	0.0	0.0	0.00	0.00		0.0	0.0	0.00	
Ì	Mine	Potos- (X)										1.9				8.4	
		Sodium (No)		3.39	5.0	83		3.74	1.22	3.38	1.96	30		250	19	99	
		Mogns- sum (Mg)										7.9				1.93	
		Calcium (Ca)		3.01	1.08	2.96		3.08	1.10	2.98	2.08	0.85		1.30	1.61	2,25	
		Q.		7.7	7.7	7.8		7.8	7.1	7.6	7.5	7.2		7.8	8,1	7.9	
	Spacific	conductance (micromhos of 25°C)		662	840	729		729	241	689	142	297		240	232	910	
1		gen (r		100	93	19		02	76	82	35	103		16	E	777	
		Disso		9.1	9.2	7.5		8.1	8,1	8.5	9.5	9.6		7.9	6.5	9.6	
-		Ten or		89	19	51		87	55	57	62	L 9		7.7	75	92	
-		Discharge Temp in cts in of		1700	980	,		,	870	1660	865	1720		3308	41.85	1720	
		ond time sompled P.S.T.	1962	10/4	11/11	12/11	1963	1/7	2/7	3/12	1315	5/7	:	1/10	8/7	9/10	

o Field pH.

b Laborotory pH.

Arsenic (As), olkyl benzene sulfanote (ABS), and phosphate (PO.) c Sym of calcium and magnesium in epm.

Determined by addition of analyzed constituents. a Darived from conductivity vs TDS curves

Grovimetric determination.

Minned analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States County Fload
Control District (SECFCD); Mercopalition Water District of Southern California (MWD); Los Angeles Department of Water and Power (LADMP); City of Los Angeles, Department of Public Headth (LADPH); City of Long Beach, Department of Public Headth (LBDPH); Terminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DWR); as indicated. Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Lobaratores, or United States Public Health Service.

ANALYSES OF SURFACE WATER TABLE D-6

FRESNO RIVER NEAR DAULION (STA. NO. 113)

Γ		oyzed by i		USGS				_												
-	£	e CoCO ₃ ity MPN/mi by i	+		mum.	.62 .62			_											
L		N E	_	Med1	Mex 1	Minimum 0.62								4						
L	, L	P C	(E			2	2		0	0 15	0 15	0 35	9 0	0					_	
		Caco	ppm ppm	_		25	51	_	94	34	35	77	35	77.	_					
-	1		o 8		_		52 5		25	143	17	36	36	36					_	
\vdash	10.	Bolved God -				180° 56	156		147e 5	**************************************	77 998	926	388	26	_			_		
H	ا ا		- 1		_	7	-	_	-				_		-					
		Other constituents ^d	- 1										PO4 0.10							
		Sitica	2										23							
	le ou	Boron	9			0.0	0,1		0.1	0.8	0.0	0	0,1	0						
million	er mi	Fluo-											0.01							
ports per million	equivalents per million	1 N -											0,02							
ă	equivo	Chlo-	(C)		No sample taken - dry	1.38	1,10		37	14 0.39	0.34	0.21	6.0	7.4	led -	scheduled -	led ³ -			
	u.	Sul -			ple tak								0.0		Not scheduled -	schedu	Not scheduled			
	efituent	Bicar-	(HCO3)		No sam	58	56 0.92		0.92	0.72	0.78	59 0.97	58	37	- Not	- Not	No.			
	Mineral constituents	Carbon-	(00)			0.0	0.0		0.0	0.00	000	0.0	0.00	0.0						
	Min.	Potos-	Œ										1.5							
		Sodium	(0 N)			30	1.09		23	12	11 0.48	11	9.5	6.4						
		Mogne-	(Mg)										2.4							
		Calcium Mogna-	(2)			1.04	1.02		0.92	99.0	0 <u>.70</u>	0.87	0.50	0.49						
		Q. H				7.8	7.7		7.8	7.5	7.8	7.8	7.6	7.8						
	Soon in	Conductonce (micromhos				362	22T		215	128	125	133	114	81						
1		9 4	%Sat			100	85		66	8	,	66	16	75						
	Temo	Dissolved	ppm %Sat			9.1	0,11		12,0	7.6	11.0	7.6	9.1	8.6						
-		Temp In OF				- 89	51		54	777	'	62	09	89						
		Discharge Temp in cfs in 0F				9	п		टा	100	89	079	413	100						
		ond time	P.S.T.	1962	1	11/8	12/6	1963	1/9	2/7	3/6	1615	5/6	6/3	;	;	1			

a Field pH.

b Laboratory pH.

c Sum of calcium and magnesium in epm.

Arsenic (As), alkyl benzone sulfanate (ABS), and phasphate (PO.)

Derived from canductivity vs TDS curves.

Determined by addition of analyzed constituents.

h Amool median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, or United States Dublic Health Service.

Marcel analyses made by United States Geological Survey, Quality of Water States March (USS), Linited States Calculated States Geological Survey, Quality of Water States Geological Survey, Quality of Water (WMD), Los Anageles, Department of Water and Power (LDOWP), City of Los Angeles, Department of Water States (WMD), Los Angeles, Department of Water States (WMD), Los Angeles, Department of Water States (WMD), as indicated.

Public Health (LDOPH), Terminal Institution Laboratories, Inc. (TLL), or Caldianna Department of Water Resources (DWR), as indicated.

TABLE D-7

KAMEAR RIVER BELOW TERMINOUS DAM (STA. NO. 35) ANALYSES OF SURFACE WATER

	_	Anolyzed by i			0303	_		_										
	_	bid - Coliform A	+		Maddan U	Maximum 2400	Minimum 0.13											
H	- 10	- A E			15	m	-		-	10	۳	c _v	7	N N	N.	.2	m	
		000	zà		0	0	0		0	O.	0	0	0	0	0	0	0	
			Totol		4	94	52		55	15	29	%	30	16	16	8	36	
	Par	Sod -			55	53	55		₹	23	ส	53	ส	8	22	55	18	
	Total	solved solves	E 66		989	926	76°		93 ⁸	436	638	808	63 ⁸	338	328	1 ⁴ 6 ⁸	638	
		Other constituents d										PO _{1, =} 0.00				Po _{tt} = 0.15	ABS = 0.0	
		Silica	200										18				9.6	
	ion	Boron	(9)		0.1	0.0	0.0		0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	
million	lim nei	Fluo-											000				0.0	
ports per million	equivalents per million	- in											000				2.6 0.04	
bod	equival	Chlo-	(5)		7.6	55 516	6.0		8.2	1.4	0.08	0.03	0.07	0.03	0.03	1.5	8.8 80.08	
	č	Sul -	(\$0\$)										0.0				0.08	
	stituents	Bicor-	(нсоз)		26.0 0.92	86.	% I.08		75 1.23	0.28	39	38	9.6	0.34	8.3	0.43	₹.0 .7.	
	Mineral constituents	Corban-			0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
:	Mine	Potos-	(K)										1.4				0.05	
		Sodium	(0 N)		8.50 0.18	6.1	6.6		8.0	0.09	3.7	3.8	3.8	0.08	0.09	2.6	0.17	
		Mogne-	(Mg)										0.10				0.12	
		Colcium	(0)		0.89	0.92	1.04		°E:	.3 0.3	0.39	0.56	or 00.50	0.32	0.32	0.10	0.60	
L		a E			7.6	8.0	7.7		7.6	6.5	4.	6.9	7.2	6.8	6.8	6.7	8.9	
	Spacific	(micromhos pH	2		17.	122	139		150	45	85	F	18	141	17	57	35	
		D C	%Sat		81	121	8		F	16	92	48	98	\$	112	8	81	
		Dissolvs d	₩ dd		7.5	11.6	11.0		9.5	0.11	11.0	10.0	7.6	9.5	0.11	8.3	7.5	
-					67	76	8		143	45	94	3	8%	62	62	65	72	
		Discharge Temp			œ	9	16		1425	4472	350	625	1297	446	1540	898	8	
		ond time	P.S.T.	1962	10/2	11/1	12/5 1245	1963	1/7	2/5	3/5	14/2	5/6	6/3	7/1 1240	8/8	9/11 07%0	

Laboratory pH.

Arsenic (As), olkyl benzene sulfonate (ABS), and phosphote (PO.) Sum of calcium and magnessum in epm.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents. Gravimetric determination.

Annual median and range, respectively. Calculated from analyses of duplicate monthly samples most by California Department of Public Health, Duvason of Lobaratories, or United States. Public Health & Service
Maneal analyses, made by United States Geological Survey, Quality of Wares Bornel (USE). United States and Propertment of Maneal analyses, made by United States Public Health & Service (USPHS), 5an Bennadino County Flood
Count Dustrier (SEGCO), Mempalator Character Obstact of States (MAPHS). Cary of Los Angeles, Department of Mater Resources (DWR), as indicated
Public Health (LBDPH), Terminal Festing Laboratores, Inc. (TLL), and California Oppariment of Water Resources (DWR), as indicated

ANALYSES OF SURFACE WATER TABLE D-8

KERN RIVER HEAR BAKERSFIKED (SEA, NO. 36)

		Anolyzed by i		SDSD														
		Coliform MPN/ml		Median 6.2	Martmum 1300.	Minimum 0.23												
		- P.	1		91	0	2		2	2.7	9	Я	۵	C)	m	7	7	
		Hardness as CaCO ₃	D E G		0	0	0		0	0	0	0	0	0	0	0	0	
			Totol		917	84	54		96	54	24	94	7 4	36	98	33	34	
		sod -	5		38	517	775		717	143	04	36	82	37	3,4	33	33	
	Tatal	spilos	in ppm		91e	118e	125e		135e	129e	8	97e	958	19 _e	55e	62°	989	
		g g										PO _{lt} = 0.15	ABS = 0.0			ABS = 0.0	A6 = 0.2 PO ₁ = 0.01	
	1	Silic	(\$005)															
	million	Boron			0.1	0.2	0.2		0.1	0.2	0.1	0.2	0.5	0.1	0.0	0.0	0.0	
100	por	P. Loo	(F)										0.0				0.02	
and and alling	aquivolents	ž	(NO ₃)										0.7				3.6	
1	oviupe	Chio-	(CI)		0.24	8.8	0.25		0.28	11.0 0.31	0.30	6.0	6.2	5.2	3.6	3.0	3.5	
1	ē	Sul -	(SO ₄)										0.27				5.0	
	constituents	Bicor-	(HCO ₃)		86	1.21	1.34		1.54	98 1.45	1,00	1.05	1.02	950	₹9.0 14.0	0.70	51	
	Wineral cal		(CO ₃)		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.0	
	ž	Potos-	E(X)										0.00					
		Sodium	(NO)		0.57	18 0.78	18 0.18		% 0.87	0.83	0.57	0.92	0.57	9.6	6.3	7.2	0.36	
		Magne-	(Mg)										0.08				2.2 0.18	
		Eoiole	(Ca)		0.92	0.96°	1.08		1.13	1.08	0.84	0.92	0.80	0.72	0.53	0.62	0.50	
-		A H	-		7.7	8.0	7.8		8.1	8,2	7.7	7.9	7.5	1:1	7.6	4.7	7.6	
	Spacific	conductance (micromhos	0.62.10		241	183	195		210	300	150	151	151	118	85	%	109	
		Dissolvsdoxygen	%Sat		92	ま	B9		87	46	:	102	%	95	91	B3	101	
			Edd		7.4	9.6	9.1		11.3	11.1	10.5	7.01	9.3	0.6	8.2	7.2	8.1	
-		Temp in of			99	58	84		9	36 7	1	55 1	65	69	7	13	7	
		Dischorge Temp			383	64	TIZ		184	777	717	598	920	735	2033	1966	981	
		and time	P.S.T.	1962	10/4	11/1	12/5	1963	1/4	1/31	3/5	4/2	5/8	6/4 1005	7/8 1115	8/8 1115	9/16	

Field pH.

Sum at calcium and magnesium in epm. Laboratory pH

Arsenic (As), alkyl benzene sulfonate (ABS), and phosphate (PO.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves

Gravimetric determination.

Annual median and range, respectively. Calculated from analyses of duplicate manshly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

Mineral analyses made by United States Geological Survey, Chairly of Water Borneth (1955), United States Borneth (1955), United States Public Health Survice (USPHS); San Bernardina County Flood
Control District (195ECD), Survey Chairly of States of

ANALYSES OF SURFACE WATER TABLE D-9

KERN RIVER BELOW ISABELLA DAM (STA. NO. 36A)

_																		
		Analyzed by i	USGS															
	-	ec CoCO ₃ Ity MPN/mi Total N.C.	Median	Meximum 7000.	60.													
Γ	Tur	- E 6		15	cu	CV .		m	Я	35	30	-7	cv	т				
		SOU NO		0	0	0		0	0	0	0	0	0	0				
		Total N.C.		32	36	39		71	39	1,1	45	01	32	₹				
	Per-	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		143	33	35		₹.	36	24	33	34	₹	33				
	Toto	solved cont		19L	77.	10		83	8	15 e	83	898	95 _e	*6*				
		Other constituents										PO _{1, 0,10}						
	Ì	Silico (SiO ₂)										왜						
	i o	Boron (B)		0.3	1:0	0.2		1	0:0	0.1	0.1	0.1	0:	0:				
million	Br mil	Fluo- ride (F)										0.1						
ports per	equivolents per million	1 rote (NO ₃)										0.0					 	
å	equivo	Chlo- ride (CI)		8.5	0.11	3.2		5.2	6.0	5.5	2.9	5.2	0.11	3.5	led ^j -	led ^j -		
	٤	Sul - fore (SO ₄)										7.0			scheduled	scheduled		
	constituente	Bicor- bonote (HCO ₃)		0.82	54 0.89	62		1.08	57 0.93	61	64	62	148	34	- Not	- Not		
	Minerol con	Corbon- ote (CO ₃)		000	000	000		0.0	000	0.00	0.00	0.00	0.0	0.00				
1	Min	Sium (X)			1.08							2.0						
		Sodium (No)		0.48	8.3	9.6		0.44	0.14	0.31	010	10	7.6	5.5				
		Mogne- stum (Mg)										1.9						
		alcium (Co)		0.64	0.72	0.78		0.87	0.78	0.82	° 68.0	13	19.0	248				
1		Q.H.		6.9	7.1	6.7		7.7	6.9	7.3	7.4	7.3	7.2	7.2				
	Specific	(micromhos pH b c at 25°C)		120	113	125		132	127	119	132	125	103	77				
1		yed (m	-	83	98	16		8	8.	8	98	87	89	93				
		Dissolved oxygen ppm %Sat		7.6	8.4	10.0		0,11	10.0	7.6	10.2	10.0	0.01	9.5				
-		Temp In of		89	62	52		42	51	53	917	84	20	57				
		Dischorge Temp in cfs in PF		911	1	14		77	O.	CV .	CV.	09	250	1563				
-		ond time sompled	1962	10/1	11/1	12/3	1963	1/2	2/4	3/1	17/5	5/1	6/6	1/2	;	1		

b Labarotory pH.

1 Arsenic (As), olkyl benzene sulfonate (ABS), and phosphata (PO.) c Sum of colcium and magnesium in epm.

Derived from canductivity vs TDS curves

Determined by addition of analyzed constituents.

i Minerol analyses made by United Strates Geniagical Survey, Quality of Waiter Branch (USGS), United States Department of the Interior, Survey of Reclamation (USBR), United States Destruct of Survey, Quality of Waiter Bristian (SACECD); Metropolition Water District (SACECD); Metropolition Water District of Survey, California (MSP), Los Apparement of Waiter and Power (LADWR); City of Los Angeles, Department of Public Meachin (LADPH); City of Long Basch, Department of Public Meachin (LADPH); City of Long Basch, Department of Public Meachin (LADPH); City of Long Basch, Department of Public Meachin (LADPH); City of Long Basch, Department of Public Meachin (LADPH); City of Long Basch, Department of Public Meachin (LADPH); City of Long Basch, Department of Public Meachin (LADPH); City of Long Basch, Department of Public Meachin (LADPH); City of Long Basch, Department of Public Meachin (LADPH); City of Long Basch, Department of Public Meachin (LADPH); City of Long Basch, Department of Public Meaching (LADPH); City of Long Meaching (LADPH); City of Long Basch, Department of Public Meaching (LADPH); City of Long Meaching (LADPH); City of LadPH); City of Long Meaching (LADPH); City of LadPH); Cit h Annual median and range, respectively. Calculated from analyses of duplicate manthly samples made by Californio Department of Public Health, Division of Laboratories, or United States Public Health Service Gravimetric determination

ANALYSES OF SURFACE WATER TABLE D-10

		Analyzed by 1	nses				_								_			
	4	€ E		5 1	M e													
		Hordness bid - Coliform" os CoCO ₃ ily MPN/mi Tatal N.C. ppm ppm	Media	Meximum 1300.	Arning 2.													
	, 5	- pid Light		ю	т			· ·	7	~	~	m	CU .	-				
		Hordness os CoCO _S Tatal N.C. ppm ppm		0	0	0		0	0	0	0	0	0	0				
				04	39	747		62	38 27	35	35	8	35 13	38 12				
-	-	- pon		926 42	102 45	1200		123 37	63	784 40	79 37	74.8	362	36				
-	ا ا	solide in ppm			—	, 		н				<u>. </u>				_		
		Other constituents d										PO _{1, 0.00}						
		Silica (SiO ₂)										ଥା						
	lion	Boron (B)		2.0	0.1	0.0		0.1	0:0	0.1	0.1	0.0	0.0	0.0				
	per million	Fluo- ride (F)										0.1						
TA. 36	ports per million volents per mill							-				0.00						
VILLE (S	equivolents	Chia- ride (Ci)		8.0	6.2	0.50		8.4	0.11	5.2	3.2	3.8	2.0	2.5	Led ¹ -	red -		
R KERW	ē	Sul - fors (SO ₄)	-7									5.0			scheduled	scheduled -		
ncern river near kernville (sta. 36b		Bicor- bonote (HCO ₃)		58	66 1.08	1.26		34	99.0	0.90	57	47 0.777	80.33	16	- Not	- Not		
KERN R	Mineral constituents	Carbon- cos (COs)		0.0	0000	0.0		0.0	0.0	0.0	0.00	0.00	0.0	0.00				
	Mine	Potas- sum (K)					_					1.4						_
		Sodium (No)		13	15	27		17	0.33	9.6	9.5	0.33	3.2	3.2				
		Magns- s:um (Mg)										0.14						
		(Ca)		08.0	0.78	0.74		1.24	0.54	0.64	0.70	9.0	0.26	0.23				
Ì		o Ha		7.2	7.5	7.4		7.6	6.8	7.h	7.4	7:	6.6	6.7				_
	Specific	conductance pH b at 250 C)		-32	147	172		11.1	50	112	113	93	1,2	38				
Ì		gan %Sat		4.	88	87		87	87	16	87	9	8	3				
		Oxygan ppm %Sat		5.5	9.6	17.1		5.3	11.0	5.11	12.2	10.2	10.4	8.0				
				55	٤ر	17		35	742	17	%	C77	7.8	75				
		Dischorge Temp		,		1		166	1787	946	761	1137	5912	2019h				
		ond time sompled P S.T.	1 102	10/1	11/1	12/3	.963	/2	2/4	3/1	1030	5/1	9/9 9/9	7/2	1	1		

o Field pH

Gravimetric determination.

Annul median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Geological Survey, Quality of Water Branch (USCS), United States Department of the Interior, Surreau of Reclamation (USCR), United States Geological Survey, Quality of Water Branch (USCR), United States Department of Reclamation (USCR), United States Geological Survey, Quality of Water Branch States Department of Public Health (LEDPH). Time Control of Survey, Quality of Lana Beach, Department of Public Health (LEDPH). City of Lana Beach, Department of Public Health (LEDPH). City of Lana Beach, Department of Public Health (LEDPH). City of Lana Beach, Department of Survey and Control of Survey Surv

b Labaratory pH.

c Sum of colcium and magnesium in epm.

d. Arsenic (As), alkyl banzone sulfonate (ABS), and phosphate (PO_4) e. Derived from conductivity vs TDS curves.

Determined by addition of onalyzed constituents.

ANALYSES OF SURFACE WATER

KINGS RIVER BELOW NORTH FORK (STA. NO. 33c)

	_	Analyzed by i	USGS															
-	-	Hordness bid - Coliform as CoCO ₃ ity MPN/mi Total N C. ppm	Median	Maximum 500.	Minimum 0.62										_			
	1	- Pidd		15	н	7		0.0	0\	CV.	5	m		٦				
		N O N E dd		0	0	0		0	0	0	0	0	0	0				
		Hordness es CoCO ₃ Totol N.C. ppm ppm		97	18	8		8	114	15	16	17	00	9				
r		e od -		33	31	30		62	33	53	53	77	75	53				
	Total	solved cont solids cont in ppm		3₹	39e	1 ⁴ 3e		11Be	33	32e	33	18	16	12e				
		Other constituents d										PO, 0.00						
		Silica (SiO ₂)										엙						
	lion	Boron (B)		0.0	0,0			0.2	0.1	0.0	0.0	0.0	0.0	0.0				
mellion.	E B	Fluo- ride (F)	_									000						
ports per million	equivolents per million	rote (NO ₃)										0.00						
od .	equivo	Chio- ride (CI)		2.4	0.07	2.8		3.8	2.7	0.04	0.0	0.03	0.03	1.6	led 5 -	led ^j -		
	<u>-</u>	Sul - fots (SO ₄)										0.0			scheduled ^j	. scheduled		
	stituents	Bicor- bonote (HCO ₃)		20	24	0.41		97.0	0.31	0.33	21 0.34	0.36	0.18	0.13	- Not	- Not		
	Mineral constituents	Corbon- ote (CO ₃)		0.00	0 0	0.00		0.0	00	0.00	0.0	0.00	0.00	000				
:	Min	Potos- sium (K)										0.02						
		Sodium (No)		3.3	3.6	3.8		0.18	3.2	2.7	3.0	0.11	0.05	0.05				
		Mogne- sium (Mg)										0.0						
		Calcium (Co)		0.31	0.36	01.0		77.0	0.29	0.30	0.32	0.29	0,16	0.12				
Γ		E.		6.9	7.7	6.9		7.6	6.9	7.0	7.1	7.6	7.0	6.8				
	Specific	conductance p.H. (m.cromhos p.H. at 25°C)		64	95	29		89	74	917	74	777	53	17				
		gen (n		111	8	98		82	107	78	75	83	700	103				_
		Dissolved osygen ppm %Sot		10.5	10.0	10.2		10.6	12.5	10.2	10.7	10.4	10.5	10.3				
				99	28	94		140	84	77	L+7	75	55	59				
		Dischorge Temp in cfs in of		272	18	,		1.35	1852	976	1450	4238		5200				
		ond time compled P.S.T.	1962	10/1	11/5	12/3	1963	1/2	2/11	3/4	1030	5/6	0221	1,300	1	1		

o Field pH.

b Laboratory pH.

Arsenic (As), olkyl benzene sulfanate (ABS), and phosphate (PO.) c Sum of colcium and magnesium in epm.

Derived from canductivity vs TDS curves.

Determined by addition of analyzed constituents. Grovimetric determination.

Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Survey of Reclamation (USBR); United States Ceological Survey, Quality of Water Branch (USDR). Lass Angeles Department of Water and Power (LADWP); City of Las Angeles, Department of Public Health (LBDPH); Emminal Testing Lebaratories, Inc. (TTL); or California Department of Water Resources (DWR); as indicated. Annual median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

) Effective July 1963, this station sampled only in January, May, July and October.

KINGS RIVER BELOW PROPLES WEIR (STA. NO. 34) ANALYSES OF SURFACE WATER

														_			
	Analyzed	by I		USGB													
	Tur- bid-Coliformh	MYN/E		Median 23	Maxteus 620.	Minimum 0.62											
	- pid	mgg u		ន	m	60		cu .	Q.	-4	٧.	п		N	m	m	
	Hordness	N E G		0	0	0		0	0	0	0	0	0	•	0	۰	
				8	57	39		38	8	57	75	%	18	ន	#	12	
	Cent	E		92	25	23		%	%	- 33	24	23	8	33	33	19	
-	drs-	solids in ppm		1 3 a	106	71 ^e		72°	μr	105	80	51.	35e	19 ^e	30	32 6	
		Other constituents									Po _{1,} = 0.40	Also = 0.0			PO _{1, = 0.20}	ABS = 0.0	
		(SiO ₂)										9				6.8	
		Boron (B)		0.0	0.0	0.0		0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	-
million		- ds (F)										0.2 0.01				0.00	
ports per million	ents G	trote (NO ₃)									-	0.02				1.4 0.02	
od	0400	- ag: (C)		2.6 0.07	0.13	0.00		3.6	0.23	5.5 6.16	3.4	3.0	0.00	0.04	0.03	0.03	
Ē		fote (\$0 ₄)										0.09				0.02	
constituents		bonote (HCO ₃)		8 P	38	52 0.85		52 0.85	74	76	0.90	0.57	0.38	0.21	80.33	0.25	
Mineral con		(CO.5)		0.0	0.0	000		000	000	000	0.0	0.0	0.00	000	0.0	0.0	
M		Stum (K)										0.03				0.08	
		Sodium (Na)		3.3	0.39	5.4		0.25	9.5	7.9	6.2	4.2 0.18	0.12	0.10	2.6	0.06	
		Sium Sium (Mg)										0.16				0.08	
		(Ca) Sium (Ca) (Mg)		0.40	1.14	0.78		0.76	1.19	1.14	0.84	8.1	0.36	°.8	0.22	3.0	-
	o H o			7.3	8.0	7.5		8.0	7.8	7.8	7.7	7.5	7.6	7.1	7.3	7.2	
	Spacific conductonce of b	at 25°C)		62	154	104		105	171	153	911	47	51	%	143	32	
	9	%Sat		79	46	82		93	74	;	4¢	96	93	89	8	84	
	Dissolved	ppm ppm		8.9	9.1	8.9		10.6	8.6	10.4	4.6	8.5	8.7	8.3	8.9	8.6	
				67	63	4		64	84	1	-8	69	99	65	61	65	
	Dischorge Tamp	S C C		435	39	OI.		Ħ	8.	011	163	0£ 17	1310	2225	2375	1648	
	Data Sund time		1962	10/4	11/7	12/5	1963	1/4	2/6	3/5	4/2 1520	5/8	6/4	7/8 1410	8/8 0815	9/16	

b Laboratory pH

Sum of calcium and magnesium in epm. Arsonic (As), alkyl banzone sulfanote (ABS), and phosphote (PO_k)

Determined by addition of onalyzed constituents. Derived from canductivity vs TDS curves.

Gravimetric determination.

Amenol onlyses made by United States Geological Survey, Quality of Water Bronch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Public Health Service (USPHS); San Bennadino County Flood Cannol District (SBCECD), Materiophical Water District of Suchem Coliforna (MMD); Las Angeles Department of Water and Power (LADMP); City of Las Angeles, Department of Water Resources (DWR); as indicated.

Public Health (LBDPH); Terminal Testing Loboratories, Inc. (TLL); or California Department of Water Resources (DWR); as indicated. Amusal median and range, respectively. Calculated from analyses of duplicate manify samples made by California Department of Public Health, Division of Loboratories, or United States Public Health Service.

KINGS RIVER BELOW PINE FIAT DAM (STA. NO. 33b)

_	_																	 	
		Anciyzed by §		USGS															
	4	de CaCO ₃ 11y MPN/mi		Median	.3. Max Imum 2400.	Minimum 0.0€													
	Tur-	- bid - yt- r			9	Cı	-		Cu	0.7	т	10	m	1	-1				
Γ		000	S E		0	0	0		0	CV .	0	-	0	0	0				
		Hord 9e Co	Total N.C. ppm ppm		10	10	9		12	57	18	15	57	97	00				
Γ	Per	1 P S			%	%	25		23	242	22	23	5	%	75				
	Total	solved	Edd c		23°	22°	23		25°	51e	140°	32°	418	336	17 ^e		_		
		Other constituents d											PO _{1,} 0.00						
		Silico	13010										7.7					 	
	60	Boron	6		0.0	0,0	0:0		0.1	0.1	7:	0.0	0.0	0.0	0.0		_	 	
million	i mil	Fluo-											000					 	
ports per m	equivolents per million	Ni -	\rightarrow										0.0						
pod	equival	Chio-			0.03	0.03	0.0		0.3	1, 1,	2.0	0.0	0.03	0.04	0.0	- (p=	- qu	 	
	<u> </u>	Sul -	(80%)										2.4			scheduled	scheduled	 	
	#11fusnts	Bicor-	(HCO ₃)		14 0.23	14	13		18	277	24	17 0.28	18	25	00 00 00 00 00 00 00 00 00 00 00 00 00	- Not	- Not		
	Mineral constituents	Carban	(co)		000	0.00	0.00		0.0	0.00	0.00	0.00	0.00	0.00	0.00				
	Wine	Potos-	(¥)										0.03						
		Sodium	(0 N)		0.07	1.4	1.6 0.07		1.6 0.07	3.4	2.4	0.00	0.00	2.6	0.05				
		Mogne-	(Mg)										0.7	0.05					
		Eniolo:	(20)		8	0.21	0.21		0.23	0.48	0.37	0.30	10.24	0.33	0.16				
		DH.			6.9	6.7	7.4		7.0	7.1	7.0	9*9	6.9	6.7	6.7				
	Specific	(micromhos pH b			33	30	31		75.	69	77	143	70	4.5	23				
		p u	%Sat		110	118	102		97	93	96	66	98	109	102				
		Dis	, шаа		10.0	11.0	11.2		10.4	9.5	10.8	10.9	10.5	10.6	10.2				
		Temp in OF			89	99	09		14.5	58	55	84	77	62	9				
		Discharge Temp in cfs in oF			1038	90	,		502	21	1771	7776	1270	,	6880				
		ond time	P.S.T	1962	10/1	11/5	12/3	1963	1/4	2/11	3/4	1350	5/6	6/4	7/8	1	;		

Leborotory pH.

Field pH

Sum of colcium and magnessium in epm. Arsenic (As), alkyl benzene sulfanote (ABS), and phasphate (PO_4)

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

g Growinseric determination.

Annual median and rougs, respectively, Calculared from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

Annual median and rougs, respectively, Calculared States Department of the Interior, Bureau of Reclamation (USBR); United States Public Health Service (USPHS), Son Bennardine Caunty Flood

Cannol District States Seculated States California (MMD). Las Angeles Department of Mene and Power (LADMP); City of Las Angeles, Department of Public Health (LADPH); City of Las Angeles Department of Mene Resources (DMR), as indicated.

Public Health (LBDPH); Terminal Testing Laboratories, Inc. (TLL), or California Department of Mene Resources (DMR), as indicated.

Exerctive July 1:963, this station sampled only in January, May, July and October.

MERCED RIVER BELOW EXCHEQUER DAM (STA. NO. 32a)

	pe z		92												_		
	Analyzed		USGS														
	bid - Coliform		Median	Meximum 2400.	0.23												
,	pid - bid			8		7		10	\$45	35	30	5	C)	Q			
	Hardness to as CoCO ₃	P.C.		т	0	c ₂		٦	0	٦	C/	٦	ı	0			
	Horo os C	Total N.C. ppm ppm		28	30	30		33	15	18	25	56	18	11			
-	00 m			15	18	17		15	19	19	19	18	55	24			
Total	solved solids	E dd u		1,3e	164	506		516	25e	326	38	548	8	19e			
	Dather constituents d											Po _{1, 0.05}					
	Silico	(SOIS)		_								왜					_
Lon	5	Ē.		0.0	0.0	0		0.2	0.1	0:0	0.0	0.0	0.0	0.0			
million per million	Fluo-											0.0					
	N) -											0.5					
equivolents	Chlo-			2.8	3.0	2.5		3.4	1.8	0.04	0.0	2.8	2.5	0.04	ed1 -	led ³ -	
<u>=</u>	Sul -	-										0.10			scheduled	scheduled	
Mineral constituents	Bicar-	(HCO3)		30	36	34		33	19	21 0.34	25	30	0.34	0.23	- Not	Not	
rol con	Corbon	(co)		0.00	0.0	0.00		0.00	000	0.00	0.0	000	0.00	0.00			
Mine	Potos- C	3			_ 10			- 10				0.02					
	Sodium	0 2		2.4	2.9	2.7		2.8	1.7 0.07	1.7 0.07	0.10	2.8	0.12	1.6			
	Magne-	(Mg)										0.12					
	Colcium	(0)		26.0	965.0	09.00		29.0	0.30	0.36	0.45	8.0	0.35	0.22			
	a d			7.3	7.4	9.7	_	7.4	7.0	7.3	7.3	7.7	,	7.1	-		
	Conductonce PHb (micromhos phb)			39	75	77		78	38	64	58	65	777	62			
	D s v	%Sot		ŝ	97	76		103	ę	78	74	8:	5	103			
	Dissolvs d oxygen	mod		7.7	5.2	10.0		11.3	10,8	8.8	3.6	10.4	10.1	10.7			
				70	69	52 1		52	50 1	50	20	55 1	26 1	56 1			
	Dischorge Temp in cfs in of			36	20	7,5			1537	730	1551	0019	4032	1960			
		P S.T.	204	0/5	1/9	2/7	1963	1/8	2/8	3/8	4/3	5/	6/3	7/8	;	:	

o Freid pH.

Sum of calcium and magnesium in eom. b Laboratory pH.

Arsenic (As), alkyl benzene sulfanate (ABS), and phasphate (PQ.) Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

h Amuol median and range, respectively. Calculated from analyses of duplicate monthly samples made by Calculation Department of Public Health, Division of Laboratories, or United States Public Health Service.

Marcel notices made by United States Geological Survey, Quinty of Water Bronch (USSS), United States Calculated States Public Health Service (USPHS), San Bernardina Canany Flood Council District, (SEPC), United States Department of Southern (WID), Las Angeles, Department of Matter and Power (LADWP), City of Las Angeles, Department of Matter Calculated States and Canany States (SEPC), City of Las Angeles, Department of Matter Calculated States and Canany States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), Cit

32
NO.
(STA.
STEVINSON
MEAR
RIVER
ERCED

_																	
		Anolyzed by 1		USGS													
	,	bid - Coliform		Median	23. Max1mum 620.	Minimum 2.3											
	Tur	- A - C			15	-#	cu		Θ.	15	10	25	20	10	9	-3	N
		Hardnass as CaCOs	Totol N.C. ppm ppm		0	0	0		0	0	0	4	0	0	0	0	0
		Hord Os C	Tatol		89	ま	92		85	72	52	31	30	25	65	63	67
	P	sod -			39	77	143		143	75	35	20	21	50	177	517	24
	Total	solved solids	E dd c		135e	306°	200		194°	164°	109 ^e	50e	598	37 ^e	129 ^e	152 ^e	1568
		Other constituents											POL 0.10				PO ₁₁ 0.35 AS 0.00 ABS 0.00
	Ì	Silica	2010										12				52
	uon	Boron	0		0:0	0.0	0.0		0:0	0.0	0:0	0.0	0.0	0.0	0.0	0.1	0,0
noillin	ile si	Fivo-											0.0				0.0
ports per million	equivalents par million	- IN	\neg										0.0				4.4 0.07
8	equiva	Chlo-	(C)		0.39	1.9	19 0.54		18	16	0.20	0.0	1.6	0.04	0.31	0.45	0.45
- 1	٤	Sul -	(80%)										0.08				0.19
	constituents	Bicor-	(HCO ₃)		1.59	2.46	2.34		2.33	11.82	1.31	33	36	0.44	1.56	1.70	106
	Minaral con		(co³)		0.0	0.0	0.0		0.0	0.0	0 0	0 8	0.0	0.0	0.0	000	0.0
	Min	Potos-	(X				- "						0.0				2.1 0.05
		Sodium	(0.01)		20 0.87	2 <u>1.1</u>	32		30	1.04	13	3.5	3.7	2.6	0.83	1.04	1.00
		Mogne-	(Mg)										0.16				0.0
		Calcium	(0)		1.36	1.88	1.84		1.70	1.45	1.04	0.61	8.8	0.44	1.18	1.26	0.85
		P.			7.9	7.9	8.0		8.2	7.1	7.7	7.1	7.4	7.9	7.8	8.1	6.
	Spacific	(micromhos p			509	320	324		305	254	169	111	78	57	500	236	C 770
		D	%Sot		102	112	95		76	83	88	100	110	96	96	88	&
		Disso	mdd		4.6	0.11	10.2		10.8	8.6	8.8	10.2	10.8	9.5	0.6	7.5	7.8
		Tem in OF			19	62	75		94	54	8	58	79	3	69	22	72
		Dischorgs Temp in cfs in 9F			173	120	112		130	158	314	566	1619	3290	360	240	219
			P.S.T.	1962	10/5	11/8	12/6	1963	1/10	2/7	3/7	14/1	5/8	6/3	1/8	8/8 1050	9/10

a Field pH

b Labaratary pH

Arsenic (As), olkyl benzene sulfonote (ABS), and phosphate (PO. c Sum of colcium and magnesium in apm.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

g Gravimatric determination.

h Annual madian and range, respectively. Calculated from analyses of duplicate manhly samples made by Califamia Department of Public Health, Division of Laboratories, or United States Caelograd Survey, Quality of Water Branch (USCS), United States Caelograd Survey, Quality of Water Branch (USCS), United States Caelograd Survey, Quality of Water Branch (USCS), United States Caelograd Survey, Quality of Water Branch (USCS), Water Branch Survey (USCS), Mattrad Institut (SECPOR), Mempaulton Water Branch Californ Californ of Department of Water Laboratory, Cryp of Los Angeles, Department of Water Branch Caelograd, Department of Water Bra

SALT SLOUGH AT SAN LUIS RANCH (STA. NO. 24c)

		Analyzed by i	uscs				_			-						
	4	bid - Caliform" ity MPN/mi		230.	70.00 70.00	Manimum 13.							-			
	T or -	- bid - 13 mpgm		15	25	15		52	25	50	30	170	20	100	0,	0.4
		N COS		172	177	224		234	383	340	256	180	109	96	97	116
				350	369	425		455	579	532	420	228	220	216	228	267
	Per	sod -		61	65	09		99	19	3	58	95	26	75	55	53
L	Total	solids solids in ppm		1052 ^e	1058°	1310e		1376 ^e	1719 ^e	1593 ^e	1274°	878	643 ^e	607 ^e	649 _e	8069
		Other constituents d									PO _{1, 0.70}				PO ₁₄ 0.55 As 0.01 Abs 0.0	
	1	(201S)										19		-		27
	ion	Boron (8)		9.0	1.1	9.6		0.0	3.4	3.7	2.1	1.5				0.5
million	per million	Fluo- ride (F)										0.0				0.0 0.0 0.0
ports per million	ants p	trota (NO ₃)										6.5				0.15
od	squivolents	Chlo- rids (Ci)		353	303	12.98		367	13.77	11.51	304	5.70	174	157	205 5.78	5.92
		Sul - fote (SO ₄)		203	5.33	229		\$03 8.52	624 12.99	12.26	392	580	158	132		2.44
9.00	8111001118	Bicar- bonate (HCO ₃)		3.56	3.84	3.88		270	3.92	234 3.84	3.28	132	135	2.52	160	3.02
Money		Carbon- ats (CO ₃)		0.0	0.0	0.13		0.0	0.0	0.0	0.0	0.0	0 0	0.0	0.00	0.00
N N		Potos- (x)														
	Ì	Sodium (No)		250	248	294 12.79		320 13.92	18.49	372 16.18	270	172	131	5.13	130	140 6.09
		Mogne- stum (Mg)										32				2.60
		Calcium (Ca)		6.99	7.38	8.90		9.10	11.58	10.64	8.40	3.8	07.1	4.32	1.56	2.74
		QHd		80	7.9	8.3		7.9	8.0	8.1	8.0	7.8	8.0	8.1	4.8	8.5
	Specific	conductonce (micromhos of 25°C)		1750	1760	2180		2290	2860	2650	2120	1390	1070	1010	1080	1180
		gen (r		101	15	110		3	69	82	87	85	99	78	62	79
		Disso		9.6	7.1	11.8		5.4	6.8	8.0	9.6	7.9	6.2	6.5	5.3	0.0
		E o ri		69	65	75		84	61	8	19	8	99	=	4/-	70
		Dischorge Tsmp		25	15	18		114	101	142	220	165	159	108	3	8
		and time sompled P S.T.	1962	10/5	11/9	12/7	1963	1/10	2/8	3/8 1500	4/1 1500	5/8	6/3	7/8 1330	8/8 1210	9/10

o Field pH

b Laboratory pH

c Sum of calcium and magnesium in epm.

d Arsanic (As), olkyl benzene sulfonate (ABS), and phosphate (PO.)

Derived from canductivity vs TDS curves

Annual median and arrays, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division and Laboratories, or United States Public Health Service Minied States Geological Survey, Quality of Water Branch (1955); United States Department of the Interior, Surceau of Reclamation (1958); United States Cooling (19745), 5 on Bernardine County Flood Cantel District States (19746); Managerian Engineer of States California Angeles (19746), State California Department of Water District States (19746); City of Long Boach, Department of Public Health (LADPH); City of Long Boach, Department of Public Interior Indianatures, Inc. (TLL) or California Department of West, case indicated. Determined by addition of analyzed constituents. Gravimetric determination.

SAM JOAQUIN RIVER AT CROWS LANDING BRIDGE (STA. NO. 26b)

Γ		Analyzed by 1		nags														
\mid		ity MPN/mi				Maximum 2400.	Minimum 2.4											
-	į	- brad	-		15	x 2	<u> </u>		52	170	55	8	55	52	15	35	04	
r	F	.00	O E G	_	3	88	137		82	35	125	24	9	#	54	54	87	
		Hordness os CaCO ₃	Tatal N.C.		174	250	306		252	144	912	123	130	14	154	188	178	
	-	tug - En			57	59	59		59	59	3	55	55	54	96	77	52	
	Totol	solos spilos	Edd		4918	916	932		1968	458E	9208	3296	3778	1106	1,29 ⁸	556 ⁸	180 E	
		Other constituents d										ol o	} !			PO4 = 0.60	0.00	
		Silico	200							-			17				55	,
	lion	Boron	j		0.2	4.0	0.7		0.7	9.0	1.4	7.0	0.5	0,1	0.3	0.3	0.2	
million	er mi	Fluo-	(£)										0.2				0.2	
parts per million	equivalents per million	Nin trote											2.9				4.3	
bod	equival	Chlo-	-		136 3.84	196	255 7.19		5.50	2.65	22th	1.97	2.54	00.50	3.10	152	3.16	
	r.	Sul -	(80%)										89 1.85				1.64	
	constituents	Brcar-	(HCO3)		2.67	3.64	3.58		3.88	133	3.02	1.62	100	0.72	133 2.18	164	2.21	
	Mineral con	Carbon-	(00)		0.0	000	0.00		0.0	0.00	0.0	0.0	0.00	0.0	0.0	0.00	0.37	
	Min	Potas-	(K)										0.06				30	
		Sodium	(ON)		108	166	202 8.79		170	93	188 8.18	62 2.70	3.31	18	3.96	114	3.92	
		Magns-	(Mg)										1:30				1.71	
		Mula lo	(00)		3.48				5.04	2.87	5. 3 2	2.#3.	1.40	0.94	3.08	3.76	37	
		QHd			7.9	8,2	8.2		8.1	7.9	8.1	7.6	8.0	7.6	8.0	8,2	8.5	
	Specific	(micromhas pH b			836	1210	1540		1280	718	1460	551	638	186	138	956	77.3	
		p c c	%Sot		001	91	91		75	70	986	103	101	93	8	89	107	
		Dissolved	mdd		9.5	9.1	9.8		о.ц	7.3	8.9	10.3	7.6	8.9	9.8	7.5	9.5	
-					8	8	55		74	96	57	8	†9	† ₉	75		7.14	
		Discharge Temp			1	1	:		1	1	1	;	;	;	í	:	1	
		ond firms	P.S.T.	1962	10/4	11/8	12/6	1963	1/10	2/7	3/7	4/1 1200	5/8	6/3	7/8	8/8	9/10	

a Field pH

b Labarotary pH.

c Sum of colcium and magnesium in epm.

Arsenic (As), olkyl benzene sulfanate (ABS), and phosphate (PO.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves

Gravimetric determination.

Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service

ANALYSES OF SURFACE WATER TABLE D-18

SAN JOAQUIN AT FREMONT FORD BRIDGE (STA. NO. 25c)

		as CaCO _S ity MPN/mi by i		USGS													
	4	MPN/mi		Median	Maximum 24:00.	Minimum 0.62											
	Tur	bid- ity n ppm	I		15	10	15		88	8	10	017	35	70	20	04	52
		200°	P C		181	257	656		97	19	347	76	155	8	75	157	122
		Hard Os C	Ppm		350	436	192		305	184	542	185	762	185	200	308	284
	Par	sod -			58	59	8		59	58	3	57	95	55	₹	56	56
	Total	pevios	E DO		985	1265°	2239°		90f	543	1551	p 664	8448	1,95	543	840	799
		Other constituents d											PO ₄ 0.60 AS 0.01 ABS 0.0				PO ₄ 0.40 AS 0.00 ABS 0.00
		Silico	130IC)										ಸ				52
	Hon	Baron	9		0.3	0.5	0.9		1.1	0.8	2.8	0.6	1.1	0.5	0.4	0.2	4.0
million.	per million	Fluo-											0.02				0.0
porte per million	equivalents	N	(NO3)										6.4				3.9
2	Bquiva	Chia-	(0)		354 9.99	452	885		224 6.32	3.44	455 12.84	3.22	223 6.29	3.67	148	280	240 6.77
	· ·	Sul -	(\$05)		3.41	224 4.66	430 8.95		238	3.08	508	8.8	1.62	2.23			2.83
	ituents	Bicar-	- 1		3.38	3.57	250		240 3.93	143 2.34	238 3.90	133 2.18	170 2.79	145 2.38	152	3.02	3.23
	Mineral constituents	Corbon – B	(\$00		0.0	0.0	0.0		0.23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 0 0
	Miner	Potos- Co	Ŷ.										0.10				0.11
		Sodium	(0 N)		228 9.92	292	52.62		8.96	5.13	368	111	17.74	104	110	178	7.35
		Magne-	(Mg)										2.50				2.78
		Calcium	(00)		6.99	8.72	15.28		6.10	3.68	10.84	3.70	3.39	3.70	1.00	6.16	58 2.89
Ī		ФН			8.1	7.9	7.8		4.8	7.8	8.0	7.9	7.9	8.0	7.9	7.8	8.0
	Chinack	conductance (micramhas			1690	2170	3840		1550	931	2660	856	1390	648	932	1440	1340
-			%Sat		86	16	đ		85	1/2	105	104	132	103	130	86	8
		Dissolved	ppm 6		8.9	9.0	9.0		10.9	7.1	10.1	10.4	11.7	9.3	11.0	8.1	7.1
1		Temp n oF			88	19	53		04	8	62	99	17	69	76	11	02
		Discharge Temp			63	38	23		273	156	251	865	353	507	245	119	267
		Date ond time	P.S.T	1962	10/4	11/8	12/7	1963	1/11	2/8	3/8	1,41	5/8	6/3	1/8	8/8	9/10

Labaratory pH

Sum of calcium and magnessum in epm. Arsenic (As), alkyl benzene sulfanate (ABS), and pliasphate (PO_4)

Determined by addition of analyzed constituents. Derived from canductivity vs TDS curves

Gravimetric determination

Annual median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

Mineral analyses made by United States Geological Survey, Dagity of Water Bronder, USSSP, Harder States Public Health Service (USPHS); Son Bernadino County Flood
Control District (SEPCP), Leuropoliton West Passeria of Southern California (AMD); Las Angeles, Department of West and Power (LADMP), City of Las Angeles, Department of Public Health (LADPH); City of Lang Beach, Department of Public Health (LADPH); City of Lang Beach, Department of Public Health (LADPH); City of Lang Beach, Department of Public Health (LADPH); City of Lang Beach, Department of West Resources (DWR); as indicated.

SAN JOAQUIN RIVER AT FRIANT (STA. NO. 24)

_																		 	
		Analyzed by i		nsgs															
		Hordness bid - Coliform os CoCO ₃ ity MPN/mi		Median	Maximum 2400.	Minimum 1.3													
	Į.	- piq			8	т	m		4	8	ω	7	10	30	-7				
		000 g	Total N.C. ppm ppm		0	0	0		0	0	0	0	0	0	0				
					15	15	77		13	17	12	77	16	12	I				
		500			87	4.1	773		38	37	39	39	37	017	39				
L	Total	solios solios			7 [†] 8e	111 e	41e		39e	50°	38	1,2e	1,58	358	336				
		Other cooststuants d	- 1										Po ₄ 0.25						
		Silico	(2 0(5)										91						
	lion	Boron	<u>(a)</u>		0:1	0,0	0.0		0.1	0.0	0.0	0.0	0.1	0.0	0.0				
million	Jer mil	Fluo-											0.1						
parts per million	equivolents per million	Ni-	(NO.)										2.5						
0	equivo	Chlo-	(5)		6.0	0,11	3.4		3.9	5.8	3.8	77.0	3.8	3.5	3.0				
	ë	Sul -	(804)		-								0.02			luled ^j -	uled ^j -		
	stituents	Bicor-	(HCO ₃)		0.33	25	0.33		0.31	23	18	0.33	0.36	0.36	0.25	ot scheduled	Not scheduled		
	Mineral constituents		(00)		0.00	0.0	0.0		0.00	0.0	0.00	0.0	0.00	0.00	000	ř	1		
	Mine	Potos-	(¥															 _	
		Sodium	(0 N)		6.4	0.21	0.30		3.7	2.0	3.5	0.18	2.0	3.6	3.3				
		Magna-											0.11						
		muio)o	9		0.30	0.30	0.27		0.8	0.34	0.23	0.28	0.21	0.24	0.22				
		QHd			7.1	7.1	7.5		7.2	7.1	7.3	7.3	6.7	7.6	7.1				
	Soucific	(micromhos pH b			09	55	51		84	62	L+1	52	59	773	41				
		p u	%Sot		711	83	102		108	98	,	132	89	95	68				
		Disso	mød		12.3	9.5	12,3		12,1	11.0	11.0	13.7	7.7	10.4	9.1				
		Te and			96	67	45		51	177	'	57	50	52	67				
		Discharge Temp in cfs in PF			91	62	69		63	20	4L	61	63	138	153				
		ond time	P.S.T.	1962	10/5	11/8	12/6	1963	1/9	2/7	3/6	4/4	5/9	6/3	2/9	;	;		

Minaral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Survey of Reclamation (USBR), United States Public Health Sevice (USFHS), San Bennardino County Flood Control District (SBCFCD); Metropoliton Water District of Southern California (MMD), Los Angeles, Department of Water and Power (LADWP), City of Los Angeles, Department of Public Health (LBDPH); Terminal Tasting Laboratories, Inc. (TTL); or California Department of Mater Resources (DWR); as indicated. Amusl medion and range, respectively. Colculated from analyses of duplicate monthly samples made by Colifornia Dapariment of Public Health, Division of Laboratories, or United Steese Public Mealth Service

Effected July 1963, this station sampled only in January, May, July and October.

Arsenic (As), alkyl benzene sulfonate (ABS), and phosphate (PO.)

Laborotory pH.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves Sum of colcium and magnesium in epm.

Gravimetric determination.

TABLE D-20 ANALYSES OF SURFACE WATER

SAN JOAQUIN RIVER NEAR GRAYSON (STA. NO. 26)

	-																
	Analyzed by i		USGS														
	os CoCO ₃ ity MPN/mi		Median 70.	Maximum 7000.	6.2												
Tur	- bid - ty mpgm			15		9		-7	140	15	30	300	35	10	25	50	
	0000	P C		74		159		180		123	07	33	17	61	81	53	
	Hord os Co	Tatol		549		371		324	79	284	124	117	7/2	169	34.	300	
9	cent cod			65		55		57	55	3	54	52	1.4	-2	25	96	
Total	solved solids	mdd u		707		1022		927	222	843	337	3126	175	951	969	5528	
	Other constituents ^d											PO1, 0.50			Ş	ABS 0.0	
	Silico	(a)					_					17				8	
le		ê)		 		9.0		D.7	0.1	1,1	0.3	0.3	0.1	0.3	0.3	0.2	
per million s per mill	Fluo-											0.2				70.0	
ports per valents p	- i do	\rightarrow										3.3				5.2	
ports per million equivalents per million	Chio-	\rightarrow		208 5.87	ken	282 7.%	-	309 8.72	1.18	5.92	2.09	70	37	3.22	168	148	
Ē	Sul -				No sample taken							1.42				2.04	
	Bicar - S	- 1		3.51	No sa	258		236 3.87	1,44	3.21	103	1.69	1.15	132	3.34	3.05	
Mineral constituents	1	(CO3)		0000		0.00		0000	0.00	0.00	0.00	0.0	0.00	000	000	0.00	
Minero		-		010		010		010	010	010	010	0.00	010	010	010	3.5	
	Potos-			Id.		ICI		lo.	l-i	Lt	No.		IO	10	片		
	Sodium	2		7.31		9.22		8.70	1.91	194 8.44	89 2.%	2.61	1.30	3.96	215	5.26	
	Mogns-	(Mg)										1.29				1.47	
	Colcium	(00)		1.99		7.42		64.9	1.58	5.68	2,48	1.05	1.48	3.38	96.4	2.15	
	,a I			8.0		7.9		8.2	7.5	7.8	7.5	7.5	7.9	8.0	7.9	7.5	
Charles	conductance (micramhos			811		1720		1560	373	1420	568	531	295	767	1070	242	
	p us	%Sot		62		7.t		85	T3	75	87	2	29	98	\$:	93	
	Discolvs d	mdd		0.9		6.7		8.6	7.7	7.4	9.1	4.9	0.9	7.3	8.3	8.9	
				62		55		8	95	61	95	69	2	75	76	92	
	Orschorge Temp			425		225		375	1,885	75	2140	50502	3050	1150	720	580	
	ond time	P.S.T.	1962	10/18	;	12/10	1963	1/7	2/15 0955	3/8	4/3 1345	5/6	6/7	7/1	8/1 0950	9/6	

o Field pH.

b Laboratory pH.

c. Sum of colcium and magnesium in epm. d. Assenic (As), olkyl benzene sulfanote (ABS), and phasphate (PD_a)

e Derived from conductivity vs TDS curves f Determined by addition of analyzed constituents.

Determined by addition of analyzed
 Gravimatric determination.

h Annol median and range, respectively. Calculated from analyses of duplicate monthly samples made by Calculana of Department of Hobits Health, Division of Laborianses, or United Stores Public Health Service
i Mineral analyses made by United Stores Canalyses and the Stores Public Health Service (USPHS), San Bernardina Calculant of Stores Public Responses (USPHS), San Bernardina Calculant of Stores Public Responses (USPHS), San Bernardina Calculant Calculant Calculant Calculant Calculant Calculant Calculant Department of Water (LADMP); City of Los Angeles, Department of Public Health (LADPH); City of Los Beach, Department of Public Health (LADPH); City of Los Beach, Department of Public Health (LADPH); City of Los Beach, Department of Market Resources (DMR), as indicated.

SAN JOAQUIN RIVER AT HILLS FERRY BRIDGE (STA. NO. 25b)

		P					_								 	_	_
		Anolyzed by 1	USGS														
		Hordnasa bid - Coliform" as CaCO _S ity MPN/ml Totol N C. n ppm	Median	Max 1 mum 7000.	6.2 6.2												
	Tur	bid- ity nppm		3	25	15		50	100	25	30	8	55				
		S CO CO	S	?	93	15		81	8	263	85	135	37				
			G F	3	276	314		297	183	924	205	251	ま				
	Per	B a Cant	a u		65	9,	_	19 e	95	8	8	58	77.		 		
	Tota	pevios solids in ppm	9.0	<u> </u>	780°	937		885°	#65e	1461	563	786	255e				
		Other constituents d									PO ₄ 0.55						
	1	Sifico (SiO ₂)										118					
	lion	Boron (B)	0	y]	0.5	9.0		1.0	6:0	2.7	9.0	1.0	0.3				
FILLOR	E JE	Fiuo- ride (F)										0.0					
ports par million	squivolents par million	Ni- trate (NO ₃)										3.6					
Õ	Squivo	Chio- ride (CI)	11.3	4.03	226 6.38	274 7.73		240 6.77	3.39	422 11.90	3.75	202 5.70	62 1.75	-Discontinued 7-1-63-			
5		Sul - fats (SO ₄)	ng.	1.7	3.08	196		218	128 2.66	465 9.68	3.54	219	1.29	tinued			
11.1.00.11		Bicar- bonate (HCO ₃)	11/2	2.43	3.65	3.34		252	147	260	2.39	141 2.31	113	Disco			
Mineral constituents		Corbon- ote (CO ₃)	0	8	0.0	0.0		6.0	0.0	0.0	0.0	0.0	0.0				
W		Potas- sum (K)										0.10					
	Ì	Sodium (No)	1	96:1	3.00	206 8.96		212	108	360	141 6.13	164	50 2.18				
		Magne- sium (Mg)										31					
		Colcium (Ca)	c	3.59	5.52	6.28		5.9g	3.65	9.52	1.10 c	2.45	1.88		·		
		° _E		8.1	8.0	7.9		8.1	8.0	8.2	7.9	8.0	7.4				
	Specific	(micrambos at 25°C)		678	1340	1610		1520	84.5	2510	196	1260	438				
		Dissolvad oxygen ppm %Sat		108	98	103		\$	70	88	96	108	100				
		Disso oxy oxy		9.6	8.5	4.6		11.0	7.3	9.0	9.7	10.1	8.9				
		Ts or		\$	19	57		ħŢ	26	58	61	99	%				
		Otschorge Tamp in cfs in oF		315	260	220		650	1750	738	2045	1720	3700				
		sompled P.S.T	1962	10/4	11/8	12/6	1963	1/10	2/7 1240	3/7	1315	5/6	6/3				

b Laboratory pH.

Sum of calcium and magnessum in epm.

Arsenic (As), olkyl benzene sulfonata (ABS), and phosphata (PO.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Annual median and range respectively. Calculated from analyses of duplicate monthly samples made by Caldurana Department of Public Health, Division of Laboratories, or United States Public Health Service.

Mineral analyses made by United States Geological Survey, Capity of Water Booker, (USSS), United States Department of Water and Power (LADMP), City of Los Angeles, Department of Water and Power (LADMP), City of Los Angeles, Department of Management of Water and Power (LADMP), City of Los Angeles, Department of Public Health (LADPM), City of Long Beach, Department of Public Health (LADPM), City of Long Beach, Department of Public Health (LADPM), City of Long Beach, Department of Public Health (LADPM), City of Long Beach, Department of Nation Resources (DWR), as indicated. Gravimetric determination

ANALYSES OF SURFACE WATER TABLE D-22

SAN JOAQUIN RIVER AT MAZE ROAD BRIDGE (STA. NO. 264)

		Anolyzed by i	USGS											
		Hordness bid - Coinform's os CoCO _S ity MPN/mil Total N C ppm ppm	Redien 830. Meximum 7000.	2.3										
	Tur	n ppm	91	C)		-	360	15	8	22	38	Я	8	n
		S C C C C C C C C C C C C C C C C C C C	20	77	Ų	<u></u>	œ	4	2	83	17	82	\$	6
			147	Ħ		8	61	182	26	89	\$	102	234	216
	Per	e od - Fui	26	22		3	64	8%	2	7	177	23	23	₹.
	Total	peylos peylos upd uj	390¢	3762		\$ 32	146	#3 <i>h</i> e	Š	2216	154	259e	586	570 8
		Other constituented							PO _k 0.35					No. 65 AB 0.00 ABS 0.00
	1	Silico (SiO ₂)								17				&
	lion	Boron (B)	0,2	0.1		2.0	0.1	9.0	0.2	0.2	0.0	0.1	0.2	0.1
million	lie re	Fluo- ride (F)								0.1				0.02
parts per million	equivolents per million	rote (NO ₃)								2.3				0.00
SQ.	equivo	Chio- ride (CI)	3.41	86		3.70	31	3.84	1.50	50	38	2.12	30th 5.75	5.05
9		Sul - fote (SO ₄)								39 0.81				1.48
opost theore	BOLLE	Bicor- bonote (HCO ₃)	11.93	1.28		1.93	1.07	132	1.3	82 1.34	1.05	1.38	2.80	2.92
Mineral con	100	Corbon- ote (CO ₃)	0.00	0.0		000	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.00
N C		Potos- Sum (X)								1.8				0.12
		Sodium (No)	87 3.78	56 2.44		3.92	27 1.17	111	1.83	38	8 2	52 28	5.22	5.13
		Mogne- sium (Mg)								9.5			·	23 1.92
		(Co)	2.94	2.22		3.2	1.22	3.64	1.61	% 1.00	1.38	2.03	£.68	2.40 2.40
L		4	7.8	7.5		-	6.9	7.6	7.2	7.5	7.6	7.2	7.6	7.5
	Spacific	conductonce (micromhos of 25°C)	669	527		# J. J.	261	891	η0η	379	576	1465	1050	976
		lved (57	7		91	4	92	な	92		62	901	68
		Diesolved oxygen ppm %Sot	5.5	8.0		1.6	7.8	7.7	4.6	8.7	6.2	5.5	0.6	7.5
-			62	75		9	55	59	8	99	8	7	75	92
		Dischorge Temp												
		sompled P.S.T.	1962 10/18 1045	12/10 1610	1963	1/7	2/14 1540	3/8	1410	5/6 0715	6/7	7/1 1315	8/1 0900	9/6 1255

b Loborotory pH o Field pH

d Arsenic (As), olkyl benzene sulfonote (ABS), and phosphote (PO.) c Sum of colcium and magnesium in epm.

Determined by addition of analyzed constituents. e Derived from conductivity vs TDS curves

Grovimetric determination.

Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

Mineral analyses made by United States Geological Survey, Quality of Water Branch States Department of the Interior, Survey United States Control District (SBCFCD), White States Control States Survey Analyses and Public Health (LADPH), City of Lang Beach, Department of Control District (SBCFCD), White Public Health (LADPH), City of Lang Beach, Department of Control States Control States
SAM JOAQUIN RIVER WEAR MENDOTA (STA. NO. 25) ANALYSES OF SURFACE WATER IABLE D-23

Г	3	2	Π.													
L	A	by i		nsgs												
	dan to the	n pam		Median 23.0	Мах іши 7000	Minimum 0.62										
	157	, - u		8	15	15		25	15	25	15	100	22	55	55	8
Г	***	SON S		#	78	20		54	%	31	107	23	7	35	90	36
				162	203	183		166	88	104	232	78	64	111	8	129
	P .	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		54	55	52		52	54	55	55	54	77	20	14	4
3	0.0	eolids in ppm		422e	525e	473°		1430 e	532 ^e	290	613 ^e	1958	II.	a†LZ	162 ^e	285
		Other constituents ^d									Po _{lt} = 0.25					PO _{tt} = 0.50 ABS = 0.0 As = 0.01
		Silica (SiO ₂)										15				15
1	5	Boron (B)		0.2	4.0	0.5		0.2	9.0	7.0	6.0	0.2	0.0	0.1	0.1	٥. ٥
million		rids (F)										0.2				0.01
1 = 1	- 1	rote No ₃										2.5				0.03
ports pe	DAID B	Chio-		3.44	154	3.75		3.47	158	70	1.94	36	22	2.00	31	22.14
	-	Sul - fors (SO ₄)										FE C				41 0.85
fuents	1	Bicor- bonote (HCO ₃)		2.36	2.49	2.28		145 2.38	137 2.25		152 2.49	1.15	146 0.75	93	85 1.39	1.87
Mineral constituents	r	Carbon – B		0.00	0.00	0.00		0.07	0.00	0.0	0.0	0.00	0.0	0.00	0.00	0.00
Minero	ŀ	Potos- Co		010	010	010				010	010	1.7	010	010	910	00.00
	-	Sodium Po (Na)		B6 3.74	11.87	3.92		3.65	11. 1.38	58 2.52	5.57	1.30	18	50	% [.13	2.09
	ŀ	Mogne-So		le. 1					- H	je.	- NO.	1111		je.		1.23
	-	Colcium (Co)		3.23	7.06 7.06	3.66		3.32	4.15°	2.08	1.64 1.64	9.2	0.9g	2.22	 1.60	1.35
-	-	ī		8.2	8.2	9.	_	£. 80	8.1	9.	7.9	4.7	7.7	0.0	7.4	6.7 I
	ductonce	(micromhos ot 25°C)		730	8	819		1 ¹ / ₁ 1	8	502	1060	323	192	474	98	203
H	S S	gen (mit		103	130	109		8	123	113	139	96	93	87	η6	99
	Siesolva	osygen gpm %Sat		9.6	12.6	n.8		1.7	12.8 1	10.9	14.2	9.3	8.3	4.7	7.7	7.
-				29	79	53		1,5	57	75	28	63	0,	75	42	72
	Tacharas	in cfa		125	84	131		77.	8.	162	156	381	415	8भूग	Tha	156
		sompled P.S.T.	1962	10/5	11/9	12/7	1963	1/10	2/8 1045	3/8 1345	4/2 0915	5/14 0725	6/3	7/9	8/8 1400	9/10 0750

Laboratory pH.

Sum of calcium and magnesium in epm.

Arsanic (As), alkyl benzene sulfanote (ABS), and phosphote (PO.)

Determined by addition of analyzed constituents. Darived from conductivity vs TDS curves.

Grovimetric determination.

Mineral analyses made by United States Geological Survey, Quality at Water Branch (USGS): United States Department of the Interior, Survey of Reclamation (USBR), United States Could be an advanced (AWD), Los Angeles Department of Water and Power (LADMP); City at Los Angeles, Department of Water District of Survey, Quality of Reach, Department of Water Resources (UWR), or indicated.

Public Health (LBDPH); Terminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DWR), or indicated. Annual median and range, respectively. Calculated from analyses of dupticate manuhly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

SAN JOAQUIN RIVER AT PATTERSON BRIDGE (STA. NO. 278)

Γ		9					_					_						
		Angiyzed by 1	nscs															
		bid - Coliform'	Median	1300. Maximum 7000.	Minimum 7													
	Tur	- piq - lity mpgan		15	2	10		15	95	8	35	8	8	6	25	8		
		ds CoCO ₃ In Total N.C.	Edd	31	78	140		61	23	113	35	96	6	14	611	35		
			E	174	270	312		258	137	261	112	154	20	164	190	169		
	Par-	e od –		59	59	59		8	57	8	50	56	77	96	57	4₹		
	Totol	solved salids in ppm		9067	807e	945e		8198	4128	8516	308 ⁶	459 ⁸	117	1448 B	552 ⁸	4538		
		Other constituents ^d										PO _{1, 0.45}				FO ₄ 0.8 AS 0.01		
		Silica (SiO ₂)										18				52		
1	uo	Boron S (B) (9		0.5	7.0	0.7		8.0	9.0	1.2	7.0	0.5	0.1	0.5	0.3	0.5		
million	equivalents per million	Fluo-B	-									0.0				0.0		_
ports per million	ents	trote (NO.)	+	-								3.3			-	6.4		
å	equiva	Chlo- ride (CI)		3.67	6.23	7.67		5.50	2.43	208 5.87	1.83	3.13	0.62	3.22	150	3.22		
5		Sul - fats (SO.)										2.13				76 1.58		
et ituente		Brcar- bonate (HCOs)		174	3.84	3.4		3.72	2.11	181 2.97	1.54	119	50	2.34	2.82	164		
Mineral constituents		Corbon-		0.00	0.0	0.0		0.0	0.00	0.0	0.0	0.00	0.0	0.00	0.0	0.0		
M		Potos-										2.6				3.0		
	Ì	Sodium (No)		1.14	1.80	9.09		178	3.65	182	2.26	93	18	95	5.09	92		
		Magne- sium (Ma)							-			1.48				1.53		
		Colcium Magne-		3.44	5.40	6.24		5.16	6.38	5.22	2.24	32	1.00	3.28	3.80	37		
		, I		8.0	8.1	7.8		4.8	7.6	8.0	7.7	7.6	7.5	7.9	7.6	7.8		
	Specific	(micromhos pH c		820	1340	1570		1310	2899	1380	513	762	197	7774	937	7776		
		pen (0		83	58	19		98	8	76	96	96	16	87	8	86		
		Oresolved oxygen		7.7	5.8	7.1		10.6	7.2	8.0	9.6	4.6	9.6	80.	7.5	8.5		
-				19	8	55		143	55	96	8	3	69	₫	92	73		
		Oischorge Temp						099	2075	056	5200	1475	3700	760			Ī	
		and time sompled	1962	1000	11/8	12/6	1963	1/11	2/7	3/7	4/1	5/8	6/3	7/8 0910	8/8	9/10		

o Field pH

b Laboratory pH.

c Sum of calcium and magnesium in epm.

d Arsenic (As), olkyl benzene sulfanote (ABS), and phasphote (PO.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents. g Gravimetric determination.

h Amual median and range respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

I Maneal analyses smale by United States Geological Survey, Quality of Water Branch (USCS), United States Geological Survey, Quality of Water Branch (USCS), United States Geological Survey, Quality of Water Branch (USCS), United States Geological Survey, Quality of Water Branch (USCS), United States of Public Health Service (USPHS); San Bernedine Maneau of Control District (SECFOD), Memoratorial Maneau California (WIMS); Les Angeles, Department of Water States (MSCS), and Maneau of Public Health (LADPH); City of Lang Beach, Department of Public Maneau of Public Health (LADPH); City of Lang Beach, Department of Public Maneau of Public Health Maneau of Public Health (LADPH); City of Lang Beach, Department of Public Maneau of Public Health Maneau of Public Health Maneau of Maneau of Maneau Resources (DMR); as indicated.

SAN JOAQUIN RIVER NEAR VERNALIS (STA, NO. 27)

_																		
		Anolyzed by i		USGS														
		bid - Coliform		Median	Max1mum 7000.	Minimum 13.												
	Tur	- pid			15	91	15		10	120	20	25	50	52	15	35	50	
		Hordness os CoCO ₃	Tatol N.C. ppm ppm		58	52	28		30	_	57	œ	11	11	53	29	53	
					506	160	ౙ		139	141	159	74	る	54	160	208	188	
	9	- POS			96	75	52		55	84	75	77	41	39	50	52	51	
	Total	solids solids	E dd u		514 ^e	410e	225°		375 ^e	at.	430e	103	1416	91e	38te	517 ^e	4718	
		Other constituents d											PO, 0.25 ABS 0.0				PO ₄ 0.60 A.S 0.00 A.B.S 0.1	
		Silica	(2015)										15				₹.	
	uoi	Boron	<u>0</u>		0.2	0.5	0.2		0.2	0.1	4.0	0.0	0.1	0.0	0.5	0.2	2.0	
million	per million	Fluo-											0.0				0.0	
ports per million	equivalents p	-in	-										0.00				6.6	Ī
ı	equiva	Chio-	(C)		161	3.44	1.81		3.05	20	3.22	20 0.56	26	19	3.07	167	3.67	
	5	Sul -	(80%)										21 0.44				56	
	stituents	Bicor -	(нсоэ)		181 2.97	132	1:11		132	42	2.05	48	65	42	131 2.15	2.82	2.70	
	Minsral constituents	S	(00)		0.0	0.00	0.00		0.03	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
:	- W	Potos-	Œ										1.6				3.9	
		Sodium			5.22	3.83	42 1.83		3.44	17 0.74	3.74	17 0.74	21 0.91	13	3.22	102	91 3.96	
		Mogne-	(Mg)										5.8				1.31	
L		Colcium	(0)		4.12	3.20	1.68		2.78	0.81	3.18	0.94	0.80	0.90	3.2	1.16	2.45	
L		a.			8.0	7.8	7.6		8.3	7.1	7.5	7.6	7.7	7.7	7.7	8.1	7.8	
	Specific	(micromhos			915	727	399		999	167	763	183	237	162	681	916	816	
		D	%Sot		18	81	82		82	11	62	98	93	ಹೆ	98	116	83	
		Dissolved	E dd		7.2	8.1	8.7		9.1	8.2	4.8	10.6	9.5	8.0	9.8	9.6	7.9	
		Tamp In of			19	8	55		94	55	55	75	58	₫	73	92	75	
		Oischorge Temp in cfs in of			1000	1250	2200		2020	11,110	2543	8709	7180	11,700	2100	1235	1340	
		ond time	P.S.T.	1962	10/4	11/8	12/6	1963	1/11	2/7	3/7	1/1	5/8	6/3 0715	7/10	8/7	9/10	

Loborotory pH.

Sum of colcium and magnesium in epm.

Arsenic (As), olkył benzene sulfanate (ABS), and phasphate (PO₄) Derivod from conductivity vs TDS curves. Determined by addition of analyzed constituents.

Grovimetric determination.

Annual majon and range, respectively. Calculated from analyses of duplicate manthly samples made by Californa Department of Public Health, Division of Laboratories, or United Stores Public Health Service (USPHS), San Bernadina Caunty Flood Mined analyses made by United Stores Ceological Survey, Quality of Water Stores Meeting (USPHS), San Bernadina Caunty Flood Control Stores (USPHS), San Bernadina Chifanna (MMD), Las Angeles, Department of Water and Power (LADMP), City of Las Angeles, Department of Public Health (LADPH), City of Long Beach, Department of Public Meeting Laboratories, Inc. (TLL), or California Department of Water Resources (DMR), as indicated.

ANALYSES OF SURFACE WATER TABLE D-26

STANISLAUS RIVER NEAR MOUTH (STA. NO. 29)

	Analyzed by 1		USGS													
	bid - Coliform		Median	Maximum 7000.	Minimum 0.3											
1	- A	2		30	m	2		5	70	9	35	25	25	<i>=</i> #	9	(V
	Hardness as CoCO3	O E dd		0	0	0		0	0	0	N	N	0	0	0	0
	Hard OB C	Total		8	8	100		88	30	119	36	33	75	98	96	8
	Pos 1 pos	E .		27	23	23		23	18	25	13	15	56	23	25	55
Total	solved paylos	mad ni		1668	134°	173°		152e	53	2Πe	576	618	\$ 5 to	169	178°	1448
	-											PO ₁ 0.15 AS 0.01 ABS 0.0				PO ₄ 0.15 AS 0.01 ABS 0.0
	- Silico	(8:02)										15				27
00	1 5	(8)		0,1	0:0	0.0		0.0	0.0	0.0	0:0	0.0	0.0	0.0	0:0	0;0
nullion	Fluo-	(F)										0.0				0.0
ports per million	ı	trats (NO ₃)										4.0				3.1
gours per	- Phia-	(CI)		0.31	4.8	0.21		7.8	1.5	0.34	0.0	1.5	1.8	8.8	0.25	0.17
č	-	fote (SO ₄)										6.2				0.19
Minaral constituents		bonota (HCO ₃)		2.16	1.80	2.15		121	37.0	2.57	69.0	38	32	132	2.33	1.93
al cons	rbon -	(co ₃)		0 0	0 8	0.0		0.00	0.00	0 0	0.0	0.00	0.00	0.00	0.00	0.00
Minar	otos- Co	(X)										0.08				0.07
	9	(0 N)		16	11 0.48	0.61		0.52	0.15	18	0.11	0.12	0.17	0.52	0.65	0.52
	Dane-	(Mg)		410	-10	-10		710	MIO	710	1410	2.4	10	.,,0	., 0	0.68
	N N	(Co) sium		1.80	1.60	2.00		1.75	0.61	2.38	0.72	0.42	0.48	1.97	0 1.96	1.10
	, F			ω.	8.0	7.9		8.3	7.1	ω α	7.9	7.5	7.7	7.6	7.5	7.5
	conductance	of 25°C)		246	198	257		225	82	312	ಕೆ	11	*	250	264	230
	D 0	%Sot		8	68	88		\$	93	85	66	96	88	106	156	86
	Devioeso	6 mdd		7.5	9.1	9.3		10.9	9.6	8,	10.8	10.0	80	4.6	13.2	7.7
		- 1		99	28	55		<u>1</u>	55	57	53	55	9	72	16	7.2
	Oscharge Temp			131	185	95		181	3931	250	2897	1,830	4879	595	214	243
	Dote and time		1962	10/3	11/9	12/6	1963	1/11	2/7	3/7	4/1 0915	5/8 0830	6/3	7/10	8/7	9/10

b Laboratory pH. a Field pH.

Sum of colcium and magnesium in epm.

Arsanic (As), alkyl benzene sulfonate (ABS), and phosphote (PO.)

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves

Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service (USPHS); Son Bernadino County Flood
Mineral analyses, made by United States Geological Survey, Opality of Water Branch (USDS), United States Department of Mater and Power (LADMP); City of Los Angeles, Department of Supering and Power (LADMP); City of Los Angeles, Department of Supering and Power (LADMP); City of Los Angeles, Department of Supering California (MMD); Les Angeles Department of Mater Order (MMD); Los Angeles Department of Mater Order (MMD); City of Long Beach, Department of Supering (MMD); Los Angeles Department of Mater Order (MMD); City of Long Beach, Department of Supering (MMD); Los Angeles Department of Mater Order (MMD); City of Long Beach, Department of Mater Order (MMD); City of Long Beach, Department of Mater Order (MMD); City of Long Beach, Department of Mater Order (MMD); City of Long Beach, Department of Mater Order (MMD); City of Long Beach, Department of Mater Order (MMD); City of Long Beach, Department of Mater Order (MMD); City of Long Beach, Department of Mater Order (MMD); City of Long Beach, Department of Mater Order (MMD); City of Long Beach, Department of Mater Order (MMD); City of Long Beach, Department of Mater Order (MMD); City of Long Beach, Department of Mater Order (MMD); City of Long Beach, Department of Mater Order (MMD); City of Long Beach, Department of MMD); City of Long Beach, Department of MMD (MMD); City of Long Beach, Department of MMD); City of Long Beach, Department of MMD (MMD); City of Long Beach, Department of MMD); City of Long Beach, Department of MMD (MMD); City of Long Beach, Department of MMD); City of Long Beach, Department of MMD (MMD); City of Long Beach, Department of MM

D-32

STANISLAUS RIVER BELOW TULLOCH DAM (STA. NO. 29a)

	Anolyzad by i	USGS														
	Hordness bid Colliform os CoCO ₃ ity MPN/ml	Wedian	21.0 Maximum 620.	Minimum 0.23												
	o - pid i pp	1	8	~	CV .		cu	071	10	15	m	m	CI.			
	200 Z	600	0	0	m		0		0	٦	0	0	0			
	Hordness os CoCO ₃ Totol N.C.	E	22	22	32		%	67	97	2/4	25	17	16			
	2 P S	1	8	15	97		15	16	23	16	16	23	22			
Total	solids in ppm										718 g					
	Other constituents d										PO _{1, 0,00}					
	Silico (SiO ₂)	1				-					13					
6	5		0.0	0.0	0:0		0:0	0,1	0:0	0:0	0.0	0.0	0:0			
HION IN	Fluo- ride (F)	+									0.00					
equivalents per million	rate (NO.)										4.0					
ivalen	ZZZ	-	10	_ lm	_ lm		[0	_ lm		Je			, Lat	1	1	
90	Chio Giga		3.6	1.2	0.03		0.0	0.03	0.05	0.0	1.6	0.04	1.5	uledj		
<u>e</u>	Sui - fate (SO ₄)										3.4			scheduled	scheduled	
Mineral constituents	Bicor- banata (HCO ₄)		28	28	35		34 0.56	0.36	0.39	97.0	32	24	0.30	- Not	- Not	
eral con	Corbon- ota (CO ₃)		000	000	0.0		0.00	000	000	0.00	0.0	0.0	000			
¥	Potas- sium (K)	Ī									0.0					
	Sodium (No)		2.5	0.08	2.7	_	0.09	1.7 0.07	0.10	2.1	0.10	2.1	0.09			
	Mogns- Sum Sum (Mg)		(10)	. 10							0.14					
	Calcium (Ca)		0.14				0.52	0.38	0.37	0.49°	0.36	0.34	0.32			
	Q.H.	1	7.1	7.0	7.3		7.7	6.9	7.2	7.5	1.9	7.5	7.2			
- Constitution	Conductance pH b (micramhos of 25°C)		26	54	778		3	149	51	57	59	1,44	1,2			
	gen (n		8	82	83		91	95	105	95	115	107	76			
	Dissolved osygen opp %Sot	-	8.3	8,2	9.3		10.6	10.6	10.8	9.8	12.1	10.7	7.6			
		-	63		20		1 17	1 12	26 1	- 22		99	9			
	Dischorge Temp in ofs in of		,	145	•		'	878	1	1840	9006	7505	1800			
	Dote ond time sompled P.S.T.	1962	10/5	11/9	12/7	1963	1/8	2/15	3/11	4/3	5/13	6/3	7/8	;	;	

b Loboratory pH.

Assenic (As), olkyl benzene sulfonate (ABS), and phosphate (PO.) c Sum of calcium and magnesium in epm.

e Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

h Annual medion and range, respectively. Calculoted from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

Annual medion onlyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Internor, Bureau of Reclamation (USBR); United States Public Health Service (USPHS), San Bemardino County Flood
Carriol Division States (States and States County May); Lea Angueles Department of Water and Power (LADMP); City of Las Angueles, Department of Public Health, City of Long Beach, Department of Water Resources (DWR); as indicated.

Interactive July 1963, this station sampled only in January, May, July and October.

ANALYSES OF SURFACE WATER TABLE D-28

TULE RIVER BELOW SUCCESS DAM (STA. NO. 91)

_																
		Analyzed by i		UBGS												
	4	bid - Caliform's ity MPN/mi		Median 50.	Maxfmum 2400.	Minimum 0.23										
	- Ja	- bid -		CV	5	m		н	8	<u>-</u>	00	4	٦	г	2	00
		N N		0	0	0		0	0	0	0	0	0	0	0	0
		Hordr os Co Total ppm		100	108	971		130	62	100	87	63	19	61	72	98
	Par	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		22	22	23		22	23	ส	22	23	22	22	8	R
	Total	spilos spilos spilos		160e	173°	189e		199 ⁸	124 B	1528	1398	ш38	1108	360€	1108	135 8
		Other constituents										PO ₁₄ = 0.00 ABS = 0.0				ABS = 0.0 PO _b = 0.00 As = 0.01
		Silico (SiO ₂)										ส				15
	5	Boron Si (B) (S		0.0	0.0	0.1		0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.1
million	equivolents per million	Fluo-B										0.2				0.03
ports per million	lents p	rrote (NO ₃)										0.5				0.0
l a	ednivo	Chlo- ride (CI)		7.5	5.8	8.0		0.31	5.2	8.0	3.4	5.4	5.8	5.4	0.10	0.10
	<u>e</u>	Sul - fote (SO _e)										0.08				0.18
	Constituents	Bicar- bonate (HCO ₃)		147	2.59	2.80		91 % 11.	1.39	2.33	1.80	88 F.	13.49	1.45	1.49	2.07
	Mineral con	Corban- ote (CO ₃)		0.00	0.00	0.00		0.0	000	0.00	0.00	0.0	0.0	0.00	0.00	0.00
:	Œ.	Patas- sium (K)										0.00				2.5
		Sodium (Na)		0.57	14 0.61	0.70		17.0	0.38	0.52	1.1	9.0	0.37	8.0	8.3	0.44
		Magna- sium (Mg)										0.22				0.32
		Colerum (Co)		1.99	2,16	2.33		2.59	1.24	2.00	1.67	1.05	1.28	1.22	1.4	28
		d H		7.6	7.9	7.6		7.7	7.4	7.7	7.9	7.5	7.3	7.2	7.4	8.2
	Specific	(micramhos at 25°C)		244	83	288		320	162	646	196	163	162	159	163	218
		lved (n		89	104	85		83	86	162	104	11.7	104	95	8	
		Dissolved oxygen ppm %Sot		7.5	10.0	8.7		9.3	10.2	15.8	11.2	11.9	9.01	9.5	7.3	8. 2
		Ten in of		92	63	58		20	15	62	15	85	58	59	89	8
		Dischorge Temp		1.60	þ	15		2.14	6.54	1.49	160	3.85		126	5.67	162
		ond time sampled	1962	10/2 0950	11/11	12/4	1963	0060	2/7	3/4	1320	5/6	6/3 1230	7/1	8/5	9/9

b Laboratory pH

c Sum of calcium and magnesium in epm.

Arsenic (As), alkyl benzene sulfanate (ABS), and phosphote (PO,) Derived from canductivity vs TDS curves

Determined by addition of analyzed canstituents.

Gravimetric determination.

h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Department of Managed nates Department of Managed nates Department of the Interior, Surreau Of Reclamation (USBR); United States Public Health Service (USPHS); San Bernardina County Flood

D-34

TUOLUMME RIVER BELOW DON PEDRO DAM (STA. NO. 31a)

Γ		9								_		_			_			
		Anolyzed by i	USCS															
		Hordness bid - Coliform as CoCO ₃ 117 MPN/mil Total N C ppm	Median	Max mum 7000.	Minimum C.28													
	Tur	- piq - ki- lu bba				-3		m	04	~	8	m	,	-				
		Hordness es CoCO ₃ Totol N C ppm ppm		0		***		c		,	<i>A</i>	0	0					
		PPM PPM		00		00		10-	150	4	224	244	83	t				
L	9	- pog -		8		1.9		51	23	18	16,	27	đ	23				
	Total	solved and in ppm		22		16e		186	24°	286	10°	2 877	75 _e	35e				
		Other constituents d										PO _{1, 0, 10}						
	Ì	SiO ₂)										21					 	
	Ion	Baron Silica (B) (SiO ₂)		0:		0.0		0.0	ं।	0.0	0,0	0,0	ं	0:0				
million	er mill	Fluo- ride (F)										000					 	
ports per million	ents p	Ni- trote (NO ₃)										0.01						
por	equivolents per million	Chlo- ride (CI)		2.4 0.07	ken -	0.00		0.02	0.05	0.05	0.03	2.2	0.05	0.0	- ^{[, p}	- ⁶ p	 	
	=	Sul - fote (SO ₄)			sample taken							2.4			scheduled -	scheduled	 	
	MIDEROL CONSTITUENTS IN	Bicor- bonote (HCO ₃) (0,16	- No sa	9.15		0,16	0.21	16 0.26	0.39	30	26	800	- Not s	- Not		
	SHOO IO	ote (CO ₃)		0 8		0.00		0.00	0 8	000	000	0000	000	0 0				
:	MIDE	Potos- Corbon- E sum ote (K) (CO ₃)		010		Olo		010	010	010	010	000	010	010			 	
		Sodium P (No)		1.5		0.0		0.00	0.07	1.4	0.09	0.05	0.11	2.4				
		Sium (Mg)										2.0						
		Colcium Magns- (Co) sium (Mg)		0,16		0.17		0.17	0.24	0.28	0.47°C	6.3	0.42	0.34			 	
r	_	Q Ha		7.0	_	9*9		7.0	6.5	7.0	6.8	7.0	7.1	7.0				
	Spacific	conductance PHb (micromhos pHb) of 25°C)		27		21		72	32	37	23	8	55	947				
		%Sot		78		88		88	9.	85	778	78	75	017				
		Diesotved osygen ppm %Sot		7.7		4.6		6.6	10.3	- o	4.6	e	7.5	0.4				
		e o e		61		7.		9	169	67	20	51	9	65				
		Dischorge Temp in cfs in 0F				5900		2150	2800	780	1300	2500	4330	5220				
		ond time compled P.S.T	1962	10/18	;	12/10	1963	1/7	2/14	3/8	4/4 1145	5/6	6/7	7/1 0935	;	1		

Loborotory pH.

Sum of colcium and magnesium in epm.

Arsenic (As), alkyl benzene sulfonate (ABS), and phosphate (PO,)

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimetric determination.

Amy and rongs, respectively. Colculored from analyses of duplicate monthly samples made by Colifornio Department of Public Health, Division of Lobardores, or United States Public Health Service

TUOLLINNE RIVER AT HICKMAN-WATERFORD BRIDGE (STA. NO. 30)

		olyzed by i		nscs	_													 _	1
-	-	os CoCO ₃ ity MPN/mi by i	+		moun	?												 	1
L	_	- Coirt	-		Minimum		CI CI		-	0	01	2	m	77	н	m	2	 	1
-	٦	P + C	غز	15			m		C)	9 2	9	QJ .	9	0	0	8	53	 	-
		s CoCO	pom pom	30					%	19	33	e 30	66	21 (18	105 24	1114	 	1
H		Bod - P	2 8				39		24	31	39	<u>۾</u>	e	53	33	52 10	1,48	 	1
-	0,	Solved Solved Solved			_	_	36e	_	59e	34°e	9.7½	55 e	26L	52e	a th	291 ^e	306 8		
-	٦		_		-	_								-	_			 _	+
		Other constituents ^d											FO _{1, 0,00}			4	ABS 0.00		
		Silico											15				91		
	lion	Boron		0.0			0		0:0	이	%	ं।	0:0	0.0	0.0	0.1	01		
million	per million	Fivo-											000				0.0		
ports per million	ents p	- N trate	_			_						-	0.00				0.03		
ō	equivalents	Chio-	\dashv	21	66.0	taken -	0.28		15	5.0	0.59	8.1	1.5	6.0	7.6	102	2.82		
	ĉ	Sul -	(80%)	-									3.6				0.10		
	trituents	Bicar- bonats	(HCO ₃)	32	0.0	- No sample	18		29	0.34	33	34	99.0	42	22	1.70	108		
	Mineral constituents	Carbon-	(co ₃)	0	3		0.00		0.0	000	000	000	0.00	000	0.0	0.00	000		
	Min	Potos-	(K)										1,2				0.13		
		Sodium	(140)	11	0,40		0.23		8.8	3.8	9.9	0.26	8.0	1100.48	3.8	52	2.22		
		Mogne-	(Mg)										43				1.4 0.88		
		alcam	(00)		99.0		°36°		0.52	0.30	99.0	0.61	8.6	0.42	0.35	2.10	28		
		F.		7.0			7.0		7.5	8.3	7.1	7.	7.6	7.8	7.7	7.0	8.0		
	0.000	canductance pHb (micrambos		OFT			1.9		102	59	121	52	971	Q	29.	61.19	760		
-		p s v	%Sot	85			9%		ŭ	105	101	₹03	11	5,0	74	33	119		
		Dissolvad	mdd	0.0			5:		5.0	1.6	10.7	9.01	5-1-2	5-	7.1	7.	6*6		
-				65			4		51	55	44.	22	24	Ğ	63	ઢ	92		
		Dischorge Temp					7,68		1	6085	204	7120	7/80	152	269	507	20,21		
		ond time	P.S.T.	374	130C	;	515	1963	1/7	2/14	3/8	4/2	3/6	6/7	7/1	98/	1,430		

b Laboratory pH

Arsenic (As), alkyl benzene sulfonate (ABS), and phosphate (PO.) c Sum of colcium and magnesium in apm.

Derived from canductivity vs TDS curves

Determined by addition of analyzed constituents. Gravimetric determination.

i Mineral analyses made by United States Geological Survey, Quality of Water Branch (UJSCS); United States Department of the Interior, Bureau of Reclamation (UJSR); United States Department of Water and Power (LADWP); City of Las Angeles, Department of Public Health (LADPH); City of Lang Beach, Department of Control District (SRCFCD); Metropoliton Water District of Surface District Only Surface District Distr Annual median and range, respectively. Calculoted from analyses of duplicate manhly samples made by California Department of Public Haalth, Division of Laboratories, or United States Public Health Service.

TUOLUNAE RIVER AT TUOLUNAE CITY (STA. NO. 31)

_																		 	
		de Cocos ity MPN/mi by i		USGS															
	-	Coliform MPN/mi		Median 700.	Maximum 7000.	6.													
	Tur	- bid tty magar			15		-3		m	22	2/	9	52	-	Æ	7	m		
		000	Total N C ppm ppm		77		77		8	9	23	13	ω	15	크	7	49		
L					8		777		42	8	75	7.7	9,	22	717	891	182	 	
	å	000			23		87		© 7	3,5	2	® ₩	8	24	P 17	-7.	<u>6</u>		
	Totol	pevios eolide	ndd u		212		112°		181	145e	191 ^e	926	9L01	112	109	457	513		
		Other constituents d	- 1										As 0.01 ABS 0.0				As 0.02 ABS 0.1		
		Silico	(2) (S)										16				91		
	lion	Baron	ĵ)		0.1		0.0		0.0	0.0	0.0		0.0	0.0	0.0	0,2	0.0		
million	er a	Fluo-											0.1				0.2		
ports per million	equivolents per million	Z .											0.02				10.0 0.07		
ă	ednivo	Chia-	(Ē)		76	taken	39		61	0.31	99	24,0	24,0	₹ 0.8	37	168	181		
	Ē	Sul -				sample taken							0.10				9.0		
	stituents	Bicar	(HCO ₃)		1.11	- No	36		63	19	1.03	141	24.0	45.0	37	150	162		
	Mineral constituents in		(00)		000		0.00		0.00	0000	0000	0.00	000	0.0	0.0	000	0.00		
	Min	Potos-	(¥										1.7				0.19		
		Sodium	(0 N)		1.78		0.83		31	5.7	1.52	13	14	0.78	0.78	3.96	1.18		
		Magne-	(Mg)										0.35				1.14		
		Colcium	(00)		1.60		0.89		1.44	0,44°C	1.51	26.0	13	1.04	0.87	3.36	250		
		QHd			7.0		7.1		7.3	6.5	7.0	7.2	7.3	7.4	7.3	7.b	7.1		
	Specific	Oissolved conductance pHb osygen (micromhos			370		196		316	78	334	161	174	195	190	799	843		
		9	%Sot		64		75		78	87	7.1	79	7	759	53	100	22		
		Disso	ppm %Sat		8.4		8.1		8.7	9.5	7.3	8.3	7.3	5.9	8.4	8.4	5,8		
		Temp in OF			63		53		51	52	58	95	19	19	70	92	77		
		Discharge Temp in cfe in 0F			546		1500		925	7000	975	100	1180	1675	,	125	375		
		ond time	P.S.T	1962	10/19	1	12/11	1963	1/7	2/15 0915	3/8	1145	5/6	6/7	7/1	8/1	9/6		1

b Lobarotory pH.

Sum of calcium and magnesium in epm.

Arsenic (As), olkyl benzene sulfanate (ABS), and phasphote (PO.)

Derived from canductivity vs TDS curves.

Grovimetric determinotion.

Determined by addition of analyzed constituents.

Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by Colifornia Department of Public Health, Division of Laboratories, or United States Public Health Service
Control District (SERCE), Method States Calculated States Control District States Colifornia (Med.) Les Angeles, Department of Mate and Power (LADMP); City of Los Angeles, Department of Mate and Power (LADMP); City of Los Angeles, Department of Mate and Power (LADMP); City of Los Angeles, Department of Mate and Power (LADMP); City of Los Angeles, Department of Mate and Power (LADMP); City of Los Angeles, Department of Mate and Resources (DMR); as indicated.

iote: For all stations in the month of May, silver was reported as: Silver (Ag) = 5.0*

* Results are less than the figure listed.

* Results are equal to, but_allightly less than the figure indicated.

** Results are more than the figure listed.

	Sta			Picocuries	per liter	
1011010	No	חמום	Dissolved Alpha	Solid Alpha	Dissolved Beta	Solid Beta
Big Creek above Pine Flat Dam	33d	9/5	0.0 + 0.0	0.0 + 0.0	3.9 + 4.8	3.7 + 4.8
Chowchilla River near Raymond	17,1	5/9	0.0 11 0.0 0.3 11 0.1	0.8 + 0.3	21.6 + 4.9	102.4 + 5.9
Delta-Mendota Canal near Mendota	92	5/10	0.1 + 0.4	1.4 + 0.6	11.6 ± 6.4	32.6 ± 6.7
Fresno River near Daulton	113	5/9	0°0 +1+1 0°0	1.2 + 0.4	9.4 + 4.8	33.9 + 5.1
Kaweah River below Terminus Dam	35	2/6	0.2 + 0.2	0.1 = 0.2	12.3 + 5.0	5.1 + 4.9
Kern River near Bakersfield	36	9/17	0.0	0.0 + 0.3	0.00	0.0 + 6.2
Kern River below Isabella Dam	36a	5/1	0.2 ± 0.2	0.3 ± 0.3	14.4. 4.9	15.6 ± 4.9
Kern River below Kernville	36b	5/1	0.1 + 0.2	0.2 + 0.3	12.5 + 4.8	8.4 + 4.8
Kings River below North Fork	33c	9/5	0.0 ± 0.3	0.3 ± 0.4	3.9 + 6.4	8.1 ± 6.4
Kings River below Peoples Weir	34	5/5	0.0	0.1 +1 0.2	9.4 + 4.8	8.6 + 4.8
Kings River below Pine Flat Dam	332	2/6	9.0 + 0.0	9.0 + 0.0	0.0 + 6.2	5.9 ± 6.3
Merced River below Exchequer Dam	32a	6/5	0.1 + 0.2	0.0 + 0.2	14.5 + 4.9	9.2 + 4.9
Merced River near Stevinson	32	5/8 9/10	0.1 + 0.2	0°5 + 1+1 0°5 0 0°1 + 1+0°1 0°1 + 1	9.3 +1+ 6.0	13.2 + 4.9
Salt Slough at San Luis Ranch	24c	5/8	0.5 ± 0.4	0.7 + 0.5	8.3 + 6.7	0.0 # 6.7

TABLE D-33
RADIOASSAYS OF SURFACE WATER

	3+0			Picocuries	per liter	
CO-10-10-10-10-10-10-10-10-10-10-10-10-10-	No	Date	Dissolved Alpha	Solid Alpha	Dissolved Beta	Solid Beta
San Joaquin River at Crows Landing Bridge	26b	5/8	0.3 +1+0 0.0	4.00	14.5 + 4.8	3.2 +1+
San Joaquin River at Fremont Ford Bridge	25c	5/8	000	0.4 + 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18.6 + 1 + 6.2	12.4 + 4.7
San Joaquin River at Friant Dam	24	6/5	1,00 + 0.0	0.1 + 0.5	9.9 + 2.0	0.4 + 6.6
San Joaquin River near Grayson	%	5/6 9/6	0.6 +1 +0.3 0.4 + 0.4	0.7 +1+1	11.5 + 4.9	20.3 + 5.0
San Joaquin River at Hills Ferry Br.	250	5/8	0.3 + 0.2	0.6 + 0.2	13.2 + 4.8	16.4 + 4.8
San Joaquin River at Maze Road Bridge	26a	9/6	0.3 +1 0.2	0.4+0.3	8.5 5.8 5.8 5.8	15.0 + 4.9
San Joaquin River near Mendota	25	5/14 9/10	†*O *O *O	0.7 + 0.5	6.9 +1+6.2	20.5 + 1 + 6.5
San Joaquin River at Patterson Bridge	27a	5/8	0.1 + 0.5	0.7 + 0.6	11.4 ± 6.6	3.1 : 6.5
San Joaquin River near Vernalis	27	5/8	0.2 +1+0.3	4.0 + 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10.0 + 66	7.7 + 6.6
Stanislaus River near Mouth	53	5/8	0.0	0.5 +1+0.3	14.8 + 4.8	20.2 + 4.9
Stanislaus River below Tulloch Dam	29a	5/13	0.0 ± 0.0	0.0 + 0.3	5.7 ± 6.3	16.0 ± 6.5
Tule River below Success Dam	16	9/6	0.0 1+1+1	0.0	14.7 ± 4.9	2.2 + 4.7

Solid Beta	23.9 ± 5.0	10.5 = 6.4	11.3 + 5.0			
Dissolved Beta	18.3 ± 5.0	11.3 ± 6.4	6.3 + 6.3			
Solid Alpha Dissolved		t.o.t. t.o.t	0.7 +1 0.3 0.2 +1 0.4 t			
Dissolved Alpha	0.1 + 0.2	0.1 + 0.4	000 41+1 000			
Dote	5/6	2/6	2/6 9/6			
S†g No	31a	99	31			
Station	Tuolumne River below Don Pedro Dam	Tuolumne River at Hickman-Water Ford Bridge	Tuolumne River at Tuolumne City			

APPENDIX E
GROUND WATER QUALITY

TABLE OF CONTENTS

	PAGE
INTRO	DUCTION
EXPLA	NATION OF TABLES
EXPLA	NATION OF PLATES
	NATION OF HEADINGS AND SYMBOLS USED IN TABLE E-1 E-6 State Well Number E-6 Region, Basın, and Area Designation E-6 Agency Supplying Data E-6
	LIST OF TABLES
TABLE	
E-1	Mineral Analyses of Ground Water
E-2	Heavy Metal Analyses of Ground Water
E-3	Radioassay of Ground Water
E-4	Analyses of Miscellaneous Constituents
	LIST OF PLATES (Bound at end of volume)
PLATE	
E-1	Ground Water Quality Basins and Areas

E-2

E-3

Lines of Equal Electrical Conductivity

Mineral Types of Ground Water

INTRODUCTION

This appendix contains data pertaining to the ground water quality conditions in the San Joaquin alley area. The data consist of the chemical and radiological characteristics of those waters sampled. he analyses represent those constituents determined as most significant in the evaluation and/or surveillance f ground water quality. These data are listed on tables and portrayed on plates.

EXPLANATION OF TABLES

All data in the Appendix E Tables are listed by ground water basin or area which are shown on late E-1. The order is by the corresponding number found under the name. Following this breakdown the ells are tabulated numerically by state well numbers as explained on page C-6.

Table E-1 lists the mineral analyses of the selected wells for the area reported in this volume. he following tabulation indicates the tests made and the properties and constituents usually determined in the two types of mineral analyses.

		y s i s
Constituents and		: Partial
properties	: mineral	: mineral
Specific conductance	x	×
H	×	
Total dissolved solids	×	
Percent sodium	×	
Hardness	×	X
Pemperature	×	×
Calcium	×	
Magnesium	×	
Sodium	×	×
Potassium	×	
Carbonate	×	
Bicarbonate	×	
Sulfate	×	
Chloride	×	X
Nitrate	×	
Fluoride	×	
Boron	×	×
Silica	×	

The standard mineral analysis is made on the samples of wells either new to the program or whose previous analyses have been unstable from year to year requiring a more complete history before partial malysis would be suitable. A partial mineral analysis is suitable when a satisfactory history on the well has been established and a detailed analysis is not required to maintain surveilance.

Heavy metal analyses are shown on Table E-2 and list other important constituents not determined in a standard mineral analysis. These constituents, though small in quantity, can be of significance for various types of water usages.

Radioassay analyses are shown on Table E-3. The type of test conducted was for gross radioactivity since the purpose is mainly for reconnaissance by random sampling and a detailed analysis is not required.

Two constituents not normally determined, ABS (detergents) and lithium, were analysed for in selected samples, and are shown on Table E-4. ABS determinations are made because of their use as an indicator of pollution. Lithium was determined in response to a request from the Kern County Farm Advisor secause it has a detrimental effect similar to that of boron on citrus and other fruit trees.

Wells whose analyses differ significantly from other wells in the surrounding area are listed in Cable E-5. This deviation may be in a single constituent or it may be the complete analysis. Special effort is made to investigate these wells to determine the reason for the observed deviations.

EXPLANATION OF PLATES

The locations of the selected sampling wells and the selected wells for water measurements re shown on Plate C-3.

EXPLANATION OF PLATES (Continued)

The ground water basins and areas sampled during this reporting period are shown on Plate E-1 with their corresponding name and number. Plate E-2 shows the "Lines of Equal Electrical Conductivity of Ground Water" in the San Joaquin Valley. These contours are based on analyses listed on Table E-1 and represent the quality of water from the principal pumped zone in the valley. Contours were not drawn for Panoche. Tehachapi and Cummings Valleys because of the lack of data.

Plate E-3 shows the types of water in the San Joaquin area and is based on the analyses listed on Table E-1.

EXPLANATION OF HEADINGS AND SYMBOLS USED IN TABLE E-1

<u>State Well Number</u>—-The well numbering system used in this report for the location of wells is explained on page C-6.

Reqion, Basin, and Area Designation—The region used in this report and shown on Plate E-1,
"Ground Water Quality Basins and Areas, San Joaquin Valley," is a geographic area and is defined in
Section 13040 of the Water Code as Central Valley region. A decimal system of the form 0-00.00 has been
used for basin numbering. The number to the left of the dash refers to the geographic region. On the
right of the dash the first two digits refer to a hydrographic unit, generally designated as a basin, valley,
or area. These are followed by decimals which designate a subbasin, area, or subarea within the basin,
valley, or area. An example is given below:

5-22.20 The number 5 indicates the Central Valley region.

The number 22 indicates the San Joaquin Valley.

The number 20 indicates the Lower Kings River area.

Agency supplying data--The numbers in this column are the code numbers for the agency that sampled the well.

The last three digits of the agency code are numbers that designate, within specified serial limits, the type of agency from which the data were obtained, as follows:

	Code		Type of Agency
000	through	049	Federal
050	through	099	State
100	through	199	County
200	through	399	Municipal
400	through	699	DistrictWater, Irrigation, Conservation, etc.
700	through	999	Private

The cooperating agencies, and code numbers assigned to them, are listed in the following tabulation:

Agency Code	Agency
5000	U. S. Geological Survey
5050	Department of Water Resources
5122	Stanislaus County Farm Advisor
5123	Tulare County Farm Advisor
5124	Kern County Farm Advisor
5126	Kings County Farm Advisor
5524	Turlock Irrigation District
5525	Merced Irrigation District
5631	Fresno Irrigation District
5640	Buena Vista Water Storage District
5641	Central California Irrigation District

TABLE E-1
ANALYSES OF GROUND WATER
1963

	Toto! hardness	C0C0 3		27	<i>v</i>	153	77		167	118	142	179	192
tuents in	T D S Computed	Evap 180%		372			4 4 8 9		322				
onsti er m	Siii.	SiO2		10	-	1	0 1		27	1	1	1	1
Mineral constituents parts per million	<u>c</u>	20		0 0	0	0	0		0.10	0 - 20	0 m •	0 • 50	0.30
	Fluo-	_		0.1	1	1	0		• 0	1	ŀ	1	-
	rate	۳ 0 2		0	1	1	C		0.7.0	1	f I	1	!
million per million actance value	Chla-			0.08	0.06	14	7 90		0.76	0.51	26	0.31	0.0
0	Sulfate	200		0.06	ì	1	0.12		18	1	1	1	1
parts per equivalents percent re	Brear- bonate	200		27 0 • 44 76	1	ŀ	24 0 • 39		228 3•74 69	1	1	1	-
par equ per	Carban- ate	8000	-	0	1	t å	0		0.17	1	i	1	-
. <u>c</u>	Patas -	4		0.03	1	1	0.03		0.10	1	1	ł	-
instituents	Sodium	2		0.09	0 • 3 5 8	26	0.09		2.09	3.17	2.26	1.04	34
Mineral constituents	Magne- sium	5	52206	0.08	1	1	0.08	52207	2.14	1	3	1	1
Σ	Calcium	52200		0.45	i ?	;	0.35		24 1.20 22	1	1	1	1
Specific conduct-	(micra- mhos	01 2 3 C)	DIST	57	146	409	2, 4	DIST	530	534	536	457	521
	H		T 10N	7.3	;	1	7.0		ω 	1	!	1	1
Temp.	wnen sampled ° F	ΕΥ	RRIGA	73	72	7.1	7.1	RRIGATION	49	63	64	63	63
State well number	Date sampled Agy.		OAKDALE IRRIGATION	25/10E- 3D 1 M 8-19-63 5122	25/10E-10B 1 M 8-14-63 5122	25/10E-27H 1 M 8-14-63 5122	34/10E-13A 1 M 6-28-63 5122	MODESTO I	35/ 7c-13A 1 M 6-26-63 5050	35/ 7E-24J 1 M (-26-63 5050	357 8E- 6N 1 M 6-26-63 5050	35/ 8E- 9C 1 M 6-26-63 5050	34/ 8E-20J 1 M 6-26-63 5050
S	Date	SAN		25/1	25/1	25/1	35/1		34/	35/	35/	35/	35/

* TDS by Evop of 105°c

TABLE E - I ANALYSES OF GROUND WATER 1963

	Totol	Caco 3		172	155	48		201	223	158	137	158	20
uents in	TDS Total	Evap 180°c			427			990	404				
anstit er mi	-1/1S	- 1		1	0 †	1		1	31	i	1	1	+
Mineral canstituents parts per millian	Baron	89		0.10	0.50	0.30		0 • 0 5	0 + • 0	0.50	00.0	00 • 0	0.20
	Flua-	L		1	•	1		1	• 0	1	1	ł	1
	Ni-	NO3		1	12.0 0.17	!		24.0	9.7	ŀ	1	1	1
million per million actance value	Chlo-	10		14	3 10 a 4 t 3	1.66		3.21	¥ 30 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	1.13	20	1.10	32
t million ts per million reactance value	Sulfate	804		†	12 0 . 45	ŀ		14 0.29	1.71	1	1	1	1
parts per equivalents percent rea	Bicor-	нсоз		1	210 3.54 50	i		191 3•13 45	3.93	;	1	1	1
par	Carbon-	003		1	0	t		0	٠,	-	1	i i	
. <u>e</u>	Patas -	×	ED)	1	0 • 10 1	1		0.08	0.10	1	ł	1	1
Mineral canstituents	Sodium	o Z	CONTINUED)	1.39	4 0 0 3	1.74		3.09	250	1.96		3.26	4.8
ineral co	Magne-	M g	52207	1	1.40	1	52208	1.32	1.32	1	1	1	9 (
Σ	Calcium	Co	52200	1	34 1.70 23			2.69	3.14	1	1	i	1
Specific conduct-	(micro-	at 25°C)	DIST	472	100	392	DIST	753	1440	535	433	643	255
	Ĭ.			1 1	8 1	-	T I ON	∞ •	0.0	1	1	1	1
Temp.	when	L-	EY RRIGA	99	63	70	RRIGA	99	99	99	29	1	-
State well	Agv	Date sampled Coll.	SAN JOAQUIN VALLEY MODESTO IRRIGATION	34/ 8E-23E 1 M 9-12-63 5050	45/ 8E- 5P 1 M 6-27-63 5050	45/10E- 1D 1 M 7-30-63 5122	TURLCCK IRRIGATION	45/ 8E-24A 1 M 9-18-63 5524	45/ 8E-27L 1 M 9-18-63 5524	44/ 5E-20A 1 M 9-18-63 5524	45/ 9E-25A 1 M 9-26-63 5524	45/ 9E-30R 1 M 9-19-63 5524	45/11E- 5M 2 M 9- 5-63 5122
		ă	SA	(r	4	4		4	4	4	4	4	4

TABLE E-1
ANALYSES OF GROUND WATER

Computed hordness Evap 180°C CaCO 3 9 111 162 80 220 168 153 167 136 Total 2 236 374 T D S Mineral constituents ports per million Si02 F 1 47 39 1 000 00.0 00.0 0.10 0.20 00.0 0.10 0.10 0.10 00.0 Вогол В 1 1 i 0.1 i F)10ride 26.0 0.42 12 21.0 1 1 1 i 1 į 1 N 0 3 trote 0.11 20 8 0 • 23 134 24 1.55 20 equivolents per million percent reactance vaiue 26 1.18 Chloper million o de parts per million 0.17 27 0 • 56 1 ł 1 1 1 Bicor- Sulfote so, 156 3.56 HCO3 1 1 bonote Carbon-0.20 1 ate CO3 Potos -0.05 0.08 i 1 ë × .⊆ 52208 (CONTINUED) Mineral constituents 29 1.26 36 17 127 51 52.26 1.83 45 1.96 30 56 110 Sodium o Z Mogne-8 0.66 19 2.14 1 1 Sium Σ 2.25 311.55 1 1 Colcium 1 1 52200 microof 25°C) Specific canduct-196 320 890 550 570 556 536 565 743 once mhos JOAQUIN VALLEY TURLOCK IRRIGATION DIST 1 1 1 i 1 8.4 H Temp. when sampled 65 65 99 65 99 29 67 29 74 9 45/11E-21D 1 M 9-19-63 5524 45/11E-31E 1 M 9-18-63 5524 55/ 3E- 1R 1 M 9-20-63 5524 55/ 9E- 9A 1 M 9-20-63 5524 55/ 9E-13G 1 M 9-20-63 5122 55/10E- 4F 1 M 9-23-63 5524 55/10E-23E 1 M 6-27-63 5050 55/10E-28H 1 M 9-26-63 5524 55/10E-30F 1 M Agy. Coll. State well Date sampled number

TDS by Evop ct 105°c

TABLE E-I ANALYSES OF GROUND WATER 1963

	Total	hardness as CaCO 3		205	96	207	172	96	116	150	169	147	
tuents in	TDS	Computed hardness Evap 180°c CaCO 3											
constr er mi	S.II.	si02		1	1	1	ł	-	į į	1	1	1	
Mineral constituents ports per million	Borgn	æ		0.20	0.10	0.10	0 - 2 0	0.20	0.10	000	0	0 1 0	
	Fluo-	r de		1	1	-	1	1	1	!	1	1	
	I.i.Z	trate NO ₃		1	1	1	1	1	1	1	1	1	
million e volue	Chlo-	ride C I		14	10	0.65	1.30	0.62	1.69	62.0	19	21	
parts per million equivolents per million percent reactonce volue	Sulfate	504		1	1	1	1	1	1	1	1	1	
ts per ivalents cent	Bicar-	bonate HCO3		1	I	1	1	1	1	1	1	l 1	
par	Carban-	ate CO3		ļ	1	1	1	į	1	i	-	1	
ë	Potas -	Enis	ED)	1	1	1	1	1	ŀ	4	ŧ	į.	
Mineral constituents	Sadium	N O	52208 (CONTINUED)	1.30	21	1.78	3.09	51	106	2.61	1.78	36	
linerol co	Magne-	E I M	52208 (1	-	1		i I	i	i t	ŀ	1	
2	Calcium	CO	52200	l	1	;	1	1	ł	1	1	1	
Specific conduct-	(micro-	mhos at 25°C)		532	283	561	682	433	685	652	520	483	
	Hd		TION	1	1	1	-	1	1	1	1	1	
Temp.	when	P P	EY RRIGA	6.5	99	65	6.5	65	99	65	9	67	
State weil	-	Date sampled Agy.	SAN JOAQUIN VALLEY TURLOCK IRRIGATION DIST	55/11E- 7P 1 M 9-16-63 5524	55/11E-29F 1 M 9-16-63 5524	65/10E- 2H 1 M 9-16-63 5524	65/10E- 98 1 M 9-16-63 5524	64/10E-24L 1 M 9-16-63 5524	65/10E-28K 1 M 9-16-63 5524	65/11E- 38 1 M 9-29-63 5524	65/11E- 9C 1 M 3-13-63 5524	65/12E- 6L 1 M 9-17-63 5524	

ANALYSES OF GROUND WATER

	Tatal hardness as CaCO 3		62	91	99	105	119	116	110	171	91	
tuents in	TDS Tatal Computed hardness Evap 180°c CaCO ₃											
onst.	Sili- ca SiO ₂		1	1	}	1	1	1	-		1	
Mineral constituents parts per million	Boran		000	0000	0 0 0	0.10	0	0000	0 0	0000	0	
~	Flua- ride		1	;	1	1	1	1	1	1	1	
	Ni- trote NO ₃		1	1	1	1	t I	ŀ	!	1	1	_
millian e value	Chlor- ride Cl		5	0.20	0.11	21	14	0.14	0.25	2.03	0.25	
parts per million equivolents per millian percent reactance volue	Sulfate SO4		1	1	1	ł	1	l	1	1	1	
parts per equivalents percent rec	Bicar- banate HCO3		1	1	1	1	1	1	1	1	1	
por	Carbon- ate		1	1	1	1 1	1	1	1	1 8	1	
Ë	Potas -		-	1	1	1	1	1	1	-	1	
Mineral constituents	Sadium		21	26	20	2.91	26	22	24	210.01	210.091	
ineral co	Magne: sium Ma	52209	-	1	1	1	1	1	1	ł	ł	
Σ	Calcium	52200	1	1		1	1	1	1	1	1	
Specific canduct-	mhos	IST	228	308	228	518	361	326	330	416	267	
	Ĭ	I ON D	1	1	1	1	1	l	1	1	1	
Temp.	when sampled ° F	EY RIGAT	8 9	67	68	67	8 9	99	8	99	69	
State well	Agy.	SAN JOAGUIN VALUEY MERCED IRRIGATION DIST	65/11E-27K 1 M 7- 1-63 5525	65/11E-36P 1 M 7- 9-63 5525	65/12E-21N 1 M 7- 9-63 5525	75/11E- 4M 1 M 7- 2-63 5525	75/12E- 10 1 M 9-10-63 5525	75/12E-19A 1 M 6-20-63 5525	75/13E- 4P 1 M 7- 9-63 5525	75/13E-22C 1 M 7-23-63 5525	75/14E- 9R 1 M 9-10-63 5525	
State	Date sampled	SAN JOA	65/11E 7- 1-	65/11E 7-9-	65/12E	75/11E	75/12E 9-10-	75/12E 6-20-	75/13E	75/13E 7-23-	75/14E 9-10-	

* TDS by Evap ct 105°c

TABLE E-I ANALYSES OF GROUND WATER 1963

	Toto1	oco 3		264	101	223	96		170	412	478	532	441
ients in	TDS To	Computed hordness Evop 180°C CoCO 3										846 876	761
onstitu er mitt	- i115	SiO ₂ E		-		-	1		1	l l	-	21	2.7
Mineral constituents parts per million	Boron			000	0	000	000		0 - 2 0	2.00	2.30	0.09•0	0
	Fluo-	ri de F		1	1	1	1		1	1	1	0 • 2	0.2
	-i N	trate NO ₃		1	1	}	l		1	1	1	20.0	23.0 0.37
million e value	Chlo-	ride C.I		18	0 - 23	13	0.28		215	288 8•12	289	190	224 6 32 46
er million ts per million reactonce volue	Sulfate	804		1	ii T	i	-		1	ł	1	230	126 2•62 19
parts per equivalents percent rea	Bicor-	bonote HCO3		1	1	1	1		}	1	-	284 4•65 31	270
par	Corbon-	ate CO3		1	1	1	š 1		1	į	1	0.10	0
. <u>e</u>	Potos -	siu a	ED)	1	1	;	ł		1	1	1	0.05	0.05
Mineral constituents	Sodium	o Z	(CONTINUED)	2.00	18	2.48	1.35		142	154	178	4 99	110
lineral co	Mogne- Sodium	si u m M g	52209	8	İ	1	1	52211	1	ì	1	111 9•13 61	95 7.81 57
2	Colcium	Ca	52200	1	1	1	1		1	1	1	1.50	1.00
Specific conduct-	(micro-	mhos at 25°C)	IST	670	278	919	325		1060	1570	1750	1190	1350
	Hd		I ON D	-	1	1	1	AREA	}	1	1	8	φ •
Temp.	when	L 0	EY R I GA T	68	70	99	69	DOTA	72	63	62	67	68
State well number		Date sampled Agy.	SAN JOAQUIN VALLEY MERCED IRRIGATION DIST	75/14E-31M 1 M 8- 8-63 5525	75/15E-18K 1 M 8- 7-63 5525	7S/15E-30E 1 M 8- 7-63 5525	85/14E- 2D 1 M 8-21-63 5525	DELTA-MENDOTA	35/ 7E-33C 1 M 7-12-63 5122	45/ 7E-17K 1 M 6-27-63 5050	45/ 7E-18A 1 M 6-27-63 5050	45/ 7E-26R 1 M 7-17-63 5050	45/ 7E-34K 1 M 7-17-63 5050

_											
Total	hardness CaCO 3		241	411	444	276	602	450			273
TDS	Computed Evap 180°c		750	925	870	544			0 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1529	1500
Siii-	co SiO ₂		70	17	23	23	1	1	27	27	35
Baran	æ		0.00	0 9 • 0	0 • 30	0 + 0	⊃ 8 •	0 • 5 0	94.	2.20	3
Fluo-	r - de		7.0	0.5	0 • 1	7.0	1	t	0 • 1	0.2	0 · 0
- i.N	trote NO ₃		14.0	3.9	11.0	11.0	1	1	12.0 0.19	0	2 • 3
Chlo-	ride C I		5.70	271 7.64 48	190	128 3•61 38	181	1.18	2.17	347 9•79 41	273
Sulfate	\$04	-	152 3•16 22	235 4.89	272 5•66 39	98 2.04 21	1	1	247 5.14 50	559 11.64	548 11.41 52
Bicor-	bonate HCO3		306	195 3.20 20	3.20	2113.46	1	1	167 2•74 27	162 2.66 11	171 2.80 13
Carbon-	ate CO3		0.40	0	0	0.20	1	1	0	0	0
Potas -	E X	ED)		0.05	0.08	0.03	2 2	1	0.05	0.20	0 8 8
Sodium	Να	CONTINU	3.70	180	130	4.22	154	129	3.70	385 16•74 69	390 16.96 75
	sium Mg	52211 (100	5.76	5.43	50 4.11 42	1	1	2.63	3.21	2.22
Colcium	00	52200	2.59	2.45	3.44	28 1.40	1	1	3.69	82 4.09 17	3.24
(micro-	mhos at 25°C)		1220	1590	1340	076	1750	1370	666	2275	2280
Hd		AREA	2 .	8 2	80 27	7 . 8	1	1	8 . 1	8 . 2	° 2
when	sombleo ° F	Ϋ́	65	73	74	49	70	73	65	1	67
	Agy. Coll.	VALL A-MEN	5050	5050	3 1 M 5050	5050	5 1 M 5122	4 1 M 5122	5050	5641	5050
	Date sampled	SAN JOAQUIN DELT	7-17-63	7-17-63	55/ 7E-23E 7-17-63	55/ 7E-35A 6-27-63	55/ 8E- 80 8- 5-63	55/ 8E-27N 8- 5-63	85/ 9E- 2F 6-27-63	85/ 9E-12E 7-23-63	85/10E-29D 1 M 6-27-63 5050
	When ph once colcium Magne- Sodium Potas- Carbon- Bicor- Sultone Chio- Ni- Fluo- Baron Sili- IDS	when properties Properties Outcomples Color of a range Control of a range Branch of a range South of a range Control of a range	Sampled Agy. Sampled Agy. Sampled Agy. Sampled Agy. Sampled Coli or Mos. Sign of DELTA-MENDOTA Processing of Delta (Micros of Delta (Mic	Sampled Agy. Dollar Minos Agy	Sampled Agy below recompled Agy sampled Agy sampled colling Agy samp	Somptied Agy Sompled Agy Sompled	Sompleted Agy Somplete	Sampled Agy, Sampled Agy, Sampled Potential Potential Potential Sampled Agy, Sam	Sampled Agy Sampled Sampled Agy Sampled Sample S	Sample Automatic Automat	

* TDS by Evop ct 105°c

TABLE E-I ANALYSES OF GROUND WATER 1963

	Totol hordness CaCO 3		248	462	251	379	4 %	153		61	9 5	176	
uents in lion	TDS Total Computed hardness Evap 180°c CaCO ₃		1353	1365			1083	610			198		
onstitu er mill	Silı- ca C SiO ₂ E		2α	9 1	l i	l I	77	16		1	39	-	
Mineral constituents parts per million	Boron		2.20	1 . 80	1.30	0 9 •	2 • 80	1.40		0	00.0	0.10	
	Fluo- ride F		0 • 2	0.5	i	1	• 0	0.2		1	0	1	1
	rote NO3		1.3	0	1	1	0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.7		1	4 • 4 0 • 0 7 2	1	
million e value	Chlo- ride Cl		245	374 10.55 47	3.16	3.27	129 3• 6 4	197		18	25 0•71 24	35	
er million ts per million reactance value	Sulfate SO4		524 10.91 52	804 804 804 80	t	1	4 4 6 0 8 6	70 1 • 46 14		1	0 0 0 8 0 0 8	1	-
e be	Bicar- bonote HCO3		3.06	205	1	1	209 3 • 43 21	3.39		1	127 2.08 71	1	
ports equival percen	Corbon- ate CO3		0	0.17	1	1	0	0		-	0	1	
.c	Potas - sium K	ED)	0.08	0.05	1	1	0.05	0.05		1	0.05	1	1
Mineral constituents	Sodium	(CONTINUED)	370 16.09 76	315 13•70 60	97	80.	332 14•44 89	170		0.74	1.17	38	
linerol co	Magne- sium Mg	52211 (1.56	5.84	ì	1	4 6 9 3 3	1.56	52212	i	6 0 • 49 16	ě	-
2	Calcium	52200	3,39	3,39	1	ł	1.35	30		à è	28 1,40 45	1	-
Specific conduct-	(micro- mhos at 25°C)		1875	2050	927	1080	1730	970	WATER DISTRICT	207	285	533	
	Hd	AREA	8 . 2	8 3	1	1	8 • 2	8 • 2	R DI	1	8 • 1	1	
Temp.	sompled °F	A T	76	1	1	1	6.0	4 9		47	72	67	
Stote well number	Date sampled Agy.	SAN JOAGUIN VALLEY DELTA-MENDOTA	85/10E-29D 1 M 7-17-63 5050	95/ 9E= 2L 1 M 7=23=63 5641	95/ 9E-21F 1 M 7-23-63 5641	95/10E-36R 1 M 7-22-63 5641	95/11E- 7N 1 M 6-27-63 5050	10S/ 9E- 2D 1 M 6-27-63 5050	CHOWCHILLA	95/16E-30C 1 M 8- 7-63 5050	95/16E-35N 1 M 8- 7-63 5050	104/14E- 8B 1 M 8-15-63 5050	" TUS 6, tvop et 1050e

Temp. Specific conducts in equivolents per million of conducts conducts are consistent in equivolents per million of conducts conducts are consistent in equivolents per million of conducts and concerns are consistent in equivolents per million of concerns and concerns are concerns are concerns and concerns are concerns are concerns and concerns are concerns are concerns and concerns are concerns and concerns are concerns and concerns are concerns and concerns are concerns and concerns are concerns are concerns and concerns are concerns and concerns are concerns and concerns are concerns and concerns are concerns and concerns are concerns and concerns are concerns and concerns are concerns and concerns are concerns are concerns are concerns and concerns are concerns and concerns are concerns are concerns are concerns and concerns are concerns are concerns are concerns are concerns and concerns are concerns are concerns and concerns are conce	1 2 2
Temp. Conducti- Mineral constituents in ports per million per million per million per million per million per million pe	127
Temp. Specific conditions in ports per million p	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Temp. Specific conducts in ports per million conduct conduct constituents in percent reactions value sampled sampled conduct. When sampled conducts conducts conducts are conducted as a conduct conduct conduct conduct conducts are conducted as a conduct conduct conduct conduct conducts are conducted as a conduct conduct conduct conduct conducts are conducted as a conduct conduct conduct conduct conducts are conducted as a conduct conduct conduct conduct conducts are conducted as a conduct	2
Temp. Specific conduct. Mineral constituents in ports per million conduct. Conduct.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Temp. Specific constituents in equivolents per million conduct. when sampled million conduct. when sampled once conduct. when sampled once conduct. when sampled once conduct. when sampled once conduct. A WATER DISTRICT 52200 52212 (CONTINUED) A WATER DISTRICT 52200 331 8 28 28 2.51 0.05 153 0.05 188 RIGATION DIST 52213 0.05 1.22 0.05 1.23 0.05 0.05 1.23 0.05 0.05 1.23 0.05 0.05 0.05 1.23 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	1 0 1
Temp. Specific conduct. Conduct constituents in ports per million conduct. Sampled miles in percent coctonce sampled miles conduct. Sampled miles conduct. Salidate conduct. Sampled miles conduct. Salidate condu	0.138
Temp. Specific conduct. Sandium Polas in conduct condu	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Temp. Specific conduct. Sandium Polas in conduct condu	0 480
Temp. Specific conduct. Sandium Polas in conduct condu	1,116
Temp. Specific conduct- conduct conduc	0
Temp. Specific conduct. Samples of mines of conduct samples of 25°C) company of 25°C of 22°C o	0.104
Temp. Specific conduct- conduct- sampled minos of 25°C) EY A WATER DISTRICT 52200 A WATER DISTRICT 5	1.22 1.22 1.9 0.83 3.2 0.70 0.70
Temp. Specific conduct- conduct- sampled micro- conduct-	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Temp. when sampled of each of	1 222 1 9
Temp. when sampled of F EY A watter 68 70 8 70 8 77 77 77	250 202
well Temp. when when when sompled Coll of Coll	0 1 1
well or Agy. led Agy. JIN VALL HOWCHILL JON VALL SOSO	0 0 0 0
vel Vel Vel Vel Vel Vel Vel Vel V	5050 1 5050 1 5050 1 5050
State well number Dote sompled Agy.	125/17E-7F 1 M 8-26-63 5050 125/17E-24A 1 M 8-7-63 5050 125/18E-7L 1 M 8-7-63 5050

* TOS by Fvap ct 105°c

TABLE E-I ANALYSES OF GROUND WATER 1963

	Tata1 hardness	20000		77	76	63	226		187	222	221	144	148
tuents in	TDS Tatol	Evap IBU-c				244			351	394	384		
constituent per million	Sili.	2102		-	1	7.7	1		64	57	r.	1	-
Mineral constituents parts per million	<i>c</i>	no a		000	0	0000	0.20		0 0	0.10	000	00 • 0	0.10
	Fluo-			1	1	0 • 0	1		0.1	0	0.1	1	1
	Ni-	2002		1	1	8 • 1 0 • 13	1		27.0 0.44 8	0 • 0 5	11.0 0.18	1	:
million e volue	Chla-	5		26	26	23	1.41		1.07	142	126 3 555 58	0.62	1.13
parts per million equivalents per million percent reactance value	Sulfate	204		1	î î	444	i i		0.29	0.35	0.12	1	1
parts per equivalents percent	Bicor- banate	2001		1	1	1.51	1		3.65	110	137 2.25 37	1	1
por	Carbon- ate	500		1	1	0	ł		0	0	0	-	1
.E	Potas ~	¥	ED)	1	1	0 0 0 2	1		0.13	0.10	0.10	1	1
constituents	So	0 2	CONT INUED)	0.96	0.96	0.96	2.91		1.70	36 1.57 26	1.74	31	35
Mineral c	Magne-	6 X	52213 (1	•	0.41 18	\$ 6	52214	9 0•74 13	12 0.99	1.73	1	!
2	ပိ		00776	ł	1	0.85	ŧ 1		2.99	3.44	2.69	1	<u> </u>
Specific conduct-	(micro- mhos	ot 25°C)	ISI	273	274	237	718	ERA	490	610	655	422	460
	Hd		ION	1	ŧ	7 • 4	1	A-MAD	0	8 0	8 2	-	i
Тетр.	when sampled °F	2	RIGAT	73	72	7.1	75	CHILL	1	68	7.0	69	68
State well	Agy.	Colli	MADERA IRRIGATION DIST	125/18E-14J 1 M 8- 7-63 5050	8-28-63 5050	135/17E- 1L 1 M 9- 3-63 5000	13S/17E- 5P 1 M 8-15-63 5050	WEST CHOWCHILLA-MADERA	10S/13E- 1A 1 M 7-23-63 5641	115/14E- 5B 1 M 8-15-63 5050	115/14E-16A 1 M 9-11-63 5050	115/15E-23L 1 M 8-26-63 5050	115/15E-29H 1 M 8-15-63 5050

	Totol	C0C03		742	194	96	101	m	2		130	
tuents in	T D S	Evop 180°C COCO 3							-			
onsti er m	Siti-			ł		1	-	-	1		1	
Mineral constituents ports per million	Boron	83		0.10	0000	0000	00.0	0.20	0.10	0.20	0	
	Fluo-	L		1	1	1	1	1	-	1	1	
	rate -	NO 3		1	1	1	1	1	1	1	-	
million per million ctance value	Chlo-	10		756	2.26	25	32	12	16	15	19	
	Sulfate	804		1	1	1	1	1	1	0.02	1	
parts per equivalents percent rea	Bicor- bonate	нсо3		1	i	1	1	1	1	-	1	
par	Carbon- ate	C 0 3		!	1	1	1	1	1		1	
.E	Potas -	¥	ED)	1	1	1	1	1	1	ì	1	
Mineral constituents	Sadium	D N	CONTINUED)	308	37	32	2.55	46	1.91	1.74	31	
lineral co	Magne-	ρM	52214	ł	1	1	1	1	1	l	ì	
2	Calcium	Ca	52200	1	1	1	-	1	1	1	1	
Specific conduct-	(micro- mhos	at 25°C)	ERA	2950	585	353	381	208	201	192	395	
	Hď		A-MAD	1	1	1	1	1	1	-	1	
Temp.	when sompled	<u>.</u>	EY CHILL	67	6,8	69	71	1	1	99	7.1	
State well	Agy.	_	SAN JOAGUIN VALLEY WEST CHOWCHILLA-MADERA	125/14E-10N 1 M 8-19-63 5050	25/15E- 4K 1 M 8-15-63 5050	.2S/15E-22F 1 M 8-15-63 5050	125/15E-27G 1 M 8-15-63 5050	135/15E-22J 1 M 7-22-63 5641	.35/15E-25C 1 M 7-22-63 5050	-25C 1 M 8-19-63 5050	135/16E- 2C 2 M 8-15-63 5050	
Stat	belomos etol	200	SAN JOA	125/14E 8-19-	25/15E 8-15-	25/15E 8-15-	25/15E 8-15-	34/15E	35/15E	8-19-	35/16E 8-15-	

* TDS by Evop ct 105°c

TABLE E-I ANALYSES OF GROUND WATER 1963

	_	_										
	Total	hardness 0 s CaCO 3		80	146	209	221	111	257	147	108	123
tuents in	TDS	Computed hardness Evop 180°c CaCO 3		191		345	485	340	693	278	265	257
constituent per million	Silı-	sio ₂		61	1	1	9	09	8	70	102	73
Mineral constituents parts per million	Boron	00		0 25	0	0 50	0.16	0.12	0 0	0	900	20.0
	Fluo-	T de		0	1	1	0 • 1	0 • 5	0	0.5	0 • 5	0.2
	<u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u>	trate NO ₃		6.9 0.11	1	9.5 0.15	25 0 0 4 0 5	0.01	43.0 0.69	12.0 0.19	13.0	17.0 0.27 8
million per million actance volue	Ch10-	ride C I		0.20	5 0 • 14	16	21 0 59	1.38	225 6 35 6 9	0.28	0.37	15 0 42 12
0.1	Sulfate	804		0.06	1	43 0.90 14	42 0.87 11	35 0.73 13	10	0.23	0.12	0.19
parts per equivolents percent re	Bicar-	bonate HCO ₃		134 2•20 86	1	304	372	209	116 1.90 21	201 3.29 82	141 2•31 77	157 2.57 74
por	Carbon-	ate CO3		0	1	0	0	0	0	0	0	0
ë	Potas -	E X		0.00	ł	0.08	0.05	0.13	0.20	0.13	0.13	0.13
constituents	Sodium	0 2		0.65	0.57	2.83	3.30	3.04	3.83	0.96	0.78	21 0 • 91 26
Mineral co	Magne-	sium Mg	52215	0.66	1	1.64	1.48	0.82	2.14	1.23	0.66	1.15
2	Calcium	٥٥	52200	1.05	1	5. 2.54 39	2.94	1.40	2 99	34 1.70 42	1.50	1.30
Specific conduct-	(micro-	mhos ot 25°C)	DIST	228	344	009	747	576	066	385	311	356
	Hd		ION D	7.9	-	ω •	7.6	8	7.2	7.4	7 • 7	7.4
Temp.	when	L o	EYRIGAT	-	1	1	1	1	78	1	1	1
State well	T	Date sompled Agy.	SAN JOAQUIN VALLEY FRESNO IRRIGATION	12S/20E-32J 1 M 5- 2-63 5050	125/21E-31P 1 M 7-11-63 5631	135/17E-12J 1 M 9-26-63 5050	13S/17E-22B 1 M 6-25-63 5631	135/17E-29L 1 M 6-20-63 5631	135/19E-24G 1 M 6-12-63 5050	135/19E-27L 1 M 8-12-63 5000	135/19E-29E 1 M 7-17-63 5050	135/19E-32D 1 M 6-13-63 5050

ANALYSES OF GROUND WATER

										- 1							
State well number	Temp.		Specific conduct-		Mineral constituents	instituents	i.	por	parts per equivolents percent rea	parts per million equivolents per million percent reactonce volue	nillion		2	Mineral constituents parts per million	constit er mi	uents in Ilion	
	when	Hď	(micro-	Colcium	Moone	Sodium	Patas -	Carban-	B.cor-	Sulfate	Chio-	-1.2	Fluo-	Boron	Sili	TDS	Total
Date sampled Agy. Coll.	sompled		mhas at 25°C)			2	sium ×	ate CO3		804	ride C I					000	hardness CaCO 3
SAN JOAQUIN VALLEY FRESNO IRRIGATION	EY RIGAT	I ON D	DIST	52200	52215	CONTINUED)	ED)										
135/19E-32M 1 M 8-12-63 5000	1	7.5	832	2.50	1.73	105	0.15	0	373 6•11 71	27 0.56	1.41	31.0	o •	0 • 5 0	6.2	536	212
135/19E-36E 1 M 5-28-63 5050	72	8 • 0	281	0.80	9,00	0.61	0.13	0	108 1.77 84	0.06	0.11	10.0 0.16	0	0 0 0	73	186	73
135/20E- 6F 1 M 6-11-63 5050	71	8 • 0	212	1.05	0.41	0.000	0.08	0	104 1.70 82	0.00	0.20	7.1	•	0.28	56	169	73
- 6F 1 M 6-11-63 5050	71	1	1	1	1	1	1	-	-	ŀ	-	11.0	1	1	1		
135/20E- 9F 2 M 3-23-63 5060	1	8 0	-	16 0.80 36	0.82	0.52	0.08	0	102	0 0 4 8 4	0.20	11.1 0.18	0 • 1	1	ŧ	113	81
5-28-63 5050	71	ŧ	1	1	i i	-	l		1	1	1	12.0	1	1	1		
135/20E- 90 1 M 5-28-63 5050	71	8 1	206	0.95	0.82	13	0 0 0 0	0	118	0.08	0.14	9.6	. 0	90.0	20	191	ζ α
8- 2-63 5050	1	1	1	1	1	1	1	1		1	1	12.0	1	1	1		
135/20E-12L 1 M 6-14-63 5050	1	7.8	155	14 0•70 45	0.41	0.39	0 0 0 0 0 0	0	80 85 85	0.10	0.11	0.8	0.2	0 0 0 0 0	23	102	9
																	7

* TDS by Fvap ct 105°c

TABLE E-I ANALYSES OF GROUND WATER 1963

	Totol	hordness 05 CoCO3		8 9	136	69	82	77	45	48		76
constituents in ser million	108	Computed hordness Evop 180°c CoCO 3		122	185	170	190	198	120	190		185
onstif er mi	Sili -	si02		1	1	8 9	65	74	4 5	62	-	89
Mineral constituent ports per million	Boran			1	1	90•0	0.16	40.0	40.0	0 • 0 3	1	0 • 0
	Fluo-	r · de		0 • 1	0.1	0.1	0 • 1	0 • 2	0 • 2	0 • 2	-	0.5
	i.z	trate NO3		7.1 0.11 5	15.9	10.0	14.0 0.23 10	16.0	3.7	11.0	17.0	0 0 0 0 0 0 4
million e volue	Chio-	ride C 1		0.14	0.23	0.14	0.14	0.20	0.06	0.20	1	0 0 0 3 4
million per sactand	Sulfate	804		0.10	0.17	0.00	0.15	4 0 0 8 9 4	40.0	0.25	1	0.23
ports per equivolents percent re	Bicar-	banate HCO ₃		120 1.97 85	172 2.82 81	93 1.52 81	108	1.41	76 1.25 86	106 1•74 73	1	1111082
por	Carbon-	ote CO3		0	1 8	0	0	0	0	0	-	0
. <u>e</u>	Potos -	Siu A	JED)	0.10	0.13	0.10	0.10	0.15	0.05	0	1	0.13
instituents	Sodium	°	CONT INVED)	0.57	17 0.74 21	11 0 48 24	0.65	14 0.61	0.52	16 0•70 29	i	14 0•61 27
Mineral constituents	Magne-		52215	0.82	1.07	0.58	0.74	0.74	9 0 0 9 4 9	10.82	1	10 0.82 36
Σ	Colcium		52200	0.95	33 1.65 46	16	18 0.90 38	0.80	0.40	0.85	1	14 0.70 31
Specific conduct-	once (micro-	mhas at 25°C)	IST	l	1	194	233	239	152	254	+	230
	Hd		NOI	7.7	8 • 2	7 • 7	7 • 8	7.7	7.9	7.9	!	7.5
Temp.	when	samplea • F	EY RIGAT	i	1	70	1	70	1	71	1	;
=		Agy. Coll.	NO IR	5060 5060	5 2 M	5050	J 1 M 5050	5050	5050 5050	5050	-17F 1 M	A 1 M 5050
State well		Date sampled	SAN JOAGUIN VALLEY FRESNO IRRIGAT	35/20E-17G 1 M 9- 3-63 5060	13S/20E-17G 2 M 9- 3-63 5060	135/20E=20N 1 M 6-26-63 5050	138/20E-27J 1 6-26-63 505	13S/20E-32D 1 M 6-26-63 5050	135/21E-15N 5-16-63 5	13S/21E-17F 1 M 5-16-63 5050	-17F 5-16-63	135/21E-19A 1 M 5-29-63 5050

	Total	hardness CaCO 3				140	225		234	4 7	189	0 9
tuents in Ition	TDS	Computed hardness Evap 180°C CaCO ₃				264	404		317	120	287	187
ansti r mi	Sili-	ca Si0 ₂		1	1	57	73	1	1	44	8	9
Mineral canstituents parts per million	Baran	60		1	1	6000	0 15	1	ŧ \$	000	0.10	8 0
2	Flua-	r de F		1	1	0	м •	1	1	0 • 1	0.2	0
	- <u>-</u> Z	trate NO ₃		7.0	21.0	20.0	39.0	16.0	22.0 0.35 6	1.9	25.0	9.7
million value	Chla-	ride C.I		1	1	0.37	0.54		0.51	0 0 0	0.56	0.17
parts per million equivalents per million percent reoctonce value	Sulfate	804		1	1	0.27	38 0.79	t	0.56	0.12	0.25	0.12
ports per equivalents percent re	Bicar	banate HCO3		1	1	178 2.92 75	245 4•02 67	1	283	1.20	210	112
por equ	Carban-	ate CO3		1	-	0	0	1	0	0	0	0
i	Patas -	siu x	ED)	1	1	0.10	10 0.26	1	7 0 18	0.03	0.08	0.080
nstituents	Sadium	D Z	CONTINUED	1	1	24 1.04 26	1.35	1	1.22	0.57	20 0.87 18	1.09
Mineral constituents	Magne-	SIUM M.9	52215	ľ	ł	1.40	2.14	ł	2.22	0.49	2.63	6 0 • 49 21
Σ	Calcium	Ca	52200	1	ł	1.40 36	2.35	1	2.45	0.45	23 1.15 24	0.70
Specific conduct-	micro-			1	1	393	572	1 1	1	173	194	232
	Ha		ION D	1	1	7.4	8 . 2	1	8 1	7.8	8 .1	7.8
Тетр.	when	samplea • F	EYRIGAT	1	73	1	i	72	1	8 9	1	1
State well		Date sampled Agy.	SAN JOAGUIN VALLEY FRESNO IRRIGATION BIST	135/21E-19A 1 M 5-29-63 5050	135/21E-31E 2 M 5- 2-63 5050	-31E 2 M	13S/21E-31M 1 M 6-12-63 5050	135/21E-310 1 M 5-27-63 5050	-310 1 M 6-24-63 5060	135/21E-36R 1 M 8-20-63 5050	135/22E-28C 2 M 7-11-63 5631	135/23E-30J 1 M 7-19-63 5631

* TOS by Evap ct 105°c

TABLE E-1 ANALYSES OF GROUND WATER 1963

	Tatai hardness as CaCO 3		153	174	187	126	161	175	172	197	59
constituents in per million	TDS Total Computed hardness Evap 180°C CaCO ₃		290	368	325	259	305		335	346 318	181
constituent per million	Sill- ca SiO ₂		69	75	75	76	4	1	6.3	74	47
Mineral parts p	Baron		0 • 0 8	0.15	0.10	0000	0.20	0.10	0000	0.04	0 • 0
	Flua- ride F		0 . 2	0 • 2	0	0.2	en •	1	0.2	0.1	0.1
	Ni- trate NO3		15.0	23.0	16.0	17.0	13.0	1	15.0	12.0	16.0 0.26 11
million e volue	Chlo- ride C1		1.18 2.9	1.07	1.27	17	33	1.69	24 0.68 13	0.37	0.23
parts per million equivalents per million percent reactance value	Sulfate SO4		16 0 33 8	24	16 0.33	0.12	0.23	1	14 0 • 29 6	0.19	0.19
parts per equivalents percent re	Bicar- banate HCO3		143 2.34 57	212 3•47 64	170 2.79 60	154 2.52 74	193 3•16 70	1	240 3.93 76	276 4 • 52 86	104
por	Carbon- ote CO3		0	0	0	0	0	1	0	0	0
n i	Patas - sium K	ED)	0.13	0.15	0.18	0.18	0.15	1	0.18	0.18	0.08
constituents	Sadium	(CONTINUED)	20 0.87	1.87	20 0.87 18	18 0•78 22	1.26	1.78	37 1.61 31	30	1.22
Mineral co	Magne- sium Mg	52215 (1.15	1.97	1.64	1.07	1.32	1	18 1•48 28	1.73	0.58
2	Calcium	52200	38 1.90 47	1.50	2.10	1.45	38 1.90 41	1	1.95	2.20 41	12 0.60 24
Specific conduct-	(micra- mhas at 25°C)	151	777	560	471	339	450	653	200	503	261
	Į.	I ON D	8	0	7.3	7.7	8 • 0	!	7.5	8 0	7.4
Temp.	when sampled °F	EYRIGAT	1	69	71	71	68	1	70	1	1
State well	Agy.	SAN JOAGUIN VALLEY FRESNO IRRIGATION DI	14S/17E-13H 1 M 6-25-63 5631	145/18E-11F 1 M 8-28-63 5000	145/18E-160 1 M 8-12-63 5000	145/18E-24D 1 M 8-12-63 5000	145/18E-25A 1 M 6-12-63 5050	14S/18E-26N 1 M 8-13-63 5050	14S/18E-29J 1 M 8-12-63 5000	145/19E- 7M 1 M 6-13-63 5050	145/19E-14P 1 M 6-13-63 5050
	D	SA	14	14	14	14	14	14	14	14	14

1963

-											
	Toto! hardness	50000	350		488		105		229	376	35
luents in	T D S	001 400	692		695		246		406 388	603	20 C 4 20 C
onstill er mi	Sile	202	w o	-	70	1	74	1	4	73	67
Mineral constituents ports per million	c	n	0 • 3 4	1	0.11		0.07	1	0	0.14	0.27
	Fluo-	_	0.1	1	0.1	ţ	0	1	0 • 1	0.1	0
	trote	ρ Ο 2	27.0	32.0	0.01	0.5	15.0 0.24 8	20.0	18.0 0.29	3 • 9	0 0 0 0 0 0 1
million e volue	Chlo-	5	1.52	1	1.64	-	19 0 • 54	i i	0.82	66 1.86 1.8	1.48
parts per million equivolents per million percent reactance volue	Sulfate	400	22 0 46	l	18 0.37	1	0.17	î Î	0.31	21 0 • 44	0.29
parts per equivalents percent re		£000	585 9.59	-	648 10•62 84	1	134 2.20	1	314	474 7.077	527
par	Carbon-	800	0	1	0		0	1	0	0	0
ri	1 00 0	K YED)	0.23	1	0.33	1	0.18	1	0.18	13	0.28
instituents	Sadium	CONTINUED)	112	1	2.39		0.96	1	1.83	2.65	2.96
Mineral constituents	1	Mg 52215	2 • 30 19	1	4 8 8 8 8 8 8 8 8	1	0.90 28	-	1.89	2 32 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3.37
Σ	Calcium	52200	4.69	-	108	1	1.20	-	2.69	4 9 8 9 7 4 7	3.69
Specific conduct-	(micro- mhos	at 25°C) 0 I ST	1080	i i	1140	1	331	1	623	1040	928
	H.		8 • 2	1	7.5	.1	7.7	ì	χ) *	0.8	20
Тетр.	when sampled ° F	EY	i i	1	1	1	1	1	1	8 9	65
State well	Agy.	SAN JOAQUIN VALLEY FRESNO IRRIGATION	145/19E-20H 2 M 6-26-63 5050	-20H 2 M	145/19E-20K 2 M 6-12-63 5050	-20K 2 M	145/19E-20M 2 M 6-12-63 5050	-20M 2 M	145/19E-22R 1 M 6-26-63 5050	145/19E-28P 1 M 6-26-63 5050	145/19E-29A 1 M 6-26-63 5050

* TDS b, Fvop c1 105°c

TABLE E-I ANALYSES OF GROUND WATER 1963

	Totol	hardness 0.5 CaCO 3		363	100	92	91		276	307	192	63
Ë				536	187	187	185		437	484	300	130
uents	TDS	Computed Evap 180°c		S S		пн			7 1	7	(1 (1	
constituent per million	Siii		-	8	0 7	n n	r B	1	74	50	9	41
Mineral constituents parts per million	Boron			60.0	90.0	90.0	90 • 0	1	0 0 8	0.15	0 0 0	0 4
Σ	Fluo. E			0 • 2	0 • 1	0.1	0 • 2	1	0.5	0 • 2	0 •	0.5
	- Z	trate NO ₃		14.0	18.0 0.29 11	28.0 0.45 20	8 • 2 0 • 13	9.2	25.0	4.5	16.0	11.0
million volue	Chlo-	ride C1		2 9 4 2 2 9	0.20	0.14	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	1.35	25	1.13	0 0
r million is per million reactance value	Sulfate	504		0.19	0.12	14 0 29	10 0 21 9	1	18 0.37	0.21	0.21	4 8 0
parts per equivolents percent re	Bicar-			368	130 2.13 78	1.36	123 2.02 83	-	283	454 7•44 88	212	1.31
por	Carban-	ote CO3		Э	0	0	0	1	0	0	0	0
.c	Potos -	sium K	ED)	10	0.08	0 0 0	0.05	1	0.18	0.15	0.10	0.03
constituents	Sodium	o Z	CONTINUED)	1.78	0.74	10 0.43	14 0•61 25	1	27 1•17 17	2.39	1.17	0.43
Mineral ca	- a - c - c		52215	3.37	0.99	0.74	0.82	-	1.48	34 2 • 80 32	1.73	0 666 8
Σ	Colcium	0	52200	3.89	1.00	1.10	1 • 00 4 0	1	81 4.04 59	3.34	2.10	0.60
Specific conduct-	ouce (micro-	mhos of 25°C)	uIST	851	276	237	250	1	672	642	511	167
	Hd		NO	7.3	7.5	7.9	-T -∞ -∞	1	7.7	ω •		7.5
Temp.	when	sompled	EYRIGAT	69	1	6 9	8	1	1	1	+	67
=		Agy. Coll.	VALL NO IN	5050 5050	1 M 5050	M 1 M 5050	3K 1 M 5050	5050	5050	5050	5000	5000
Stote well		Date sampled	SAN JOAQUIN VALLEY FRESNO IMRIGATION	145/19E-31A 1 6-12-63 505	145/20E- 1J 1 10-29-63 505	145/20E- 7M 1 M 6-26-63 5050	145/20E-13K 1 5-28-63 505	-13K 1 5-28-63 505	145/20E-19A 1 7-17-63 505	145/20E-27C 1 M 6-13-63 5050	145/20E-34R 2 8-22-63 500	145/21E- 3J 1 M 8- 8-63 5000

TOS 5, Even ct 1050c

Total hardness	CoCo3			109	102		131				3.3 8
T D S	Evap 180°c			147	199		250		293		500 404 404
Siii-	Si0 ₂		-	}	n m	1	69	l	47	1	5
Boran	8		1	1	0.18	1	90.0	1	0 0 0	î	0.07
Fluo-	LL.		1	0	0	i	0	-	0	1	0
	NO3		0.0	0 • 0 • 0 • 0	7.4	26.0	16.0	18.0	21.0	20.0	18 • 0 • 2 9 3
Chlo-	10		;	0 2 8 8 8	0.17	[0.31	1	0.42	1	288
Sultate	804		1	0.12	9 0 0 1 9	ŀ	0.19	i i		g I	807 79 70 70 70 70 70 70 70 70 70 70 70 70 70
Bicar- bonate	нсоз		1	2 153 851 85	142 2•33 83	t F	169 2.77 78	1	219	;	351 5•75 68
Carbon- ate	C 0 3			0	0	1	0	1	0	1	0
Patas -	×	ED)	1	0 0 0 0 0 0	0.05	1	0.10	1	0.05	1	0.10
Sodium	o Z	CONTINU	1	0.059	18 0.78	i i	22 0•96 26	-	1.09	1	36 1.57 19
Magne- sium	5 ₹	52215 (1	1.07	0.99	1	16 1.32 36	i	21 1•73 36	1	2.06
Calcium	CO	52200	1	22 1.10 38	1.05	1	1.30	1	1.95	ł	4 4 6 6 9
(micro- mhos	at 25°C)	ST	1	1	761	1	9,49	1	745	ì	780
F.		J NOI	1	8. 1	8.1	1	7.5	1	χ •	1	ν • α
when	-	EY RIGAT	89	1	75	73	1	72	71	1	1
Agy.	_	AN JOAQUIN VALL FRESNO IR	45/21E- 4N 1 M 5-27-63 5050	6-24-63 5060	4S/21E- 6B 3 M 6-12-63 5050	4S/21E- 6E 1 M 5-16-63 5050	- 6E 1 M 10-29-63 5050	45/21E- 7M 1 M 5- 1-63 5050	45/216- 9R 1 M 5-28-63 5050	5-28-63 5050	145/21t-12P 1 M 6-27-63 5050
	When pH Chice Colcium Magne-Sodium Potas-Carbon-Bicar-Sulfate Chlo-Ni-Filuo-Boran Sili-Agy.	pH (micro- Colcium Magne- Sodium Potas- Carbon- B.car- Sultate Chlo- Ni- Fluo- Boron Sili- <u>IDS</u> mhos sium ate bonate tride trate ride co Computed at SSC Ng Ng Ng K CO3 HCO3 SO4 CI NO5 F B SiO2 Evopl80%	When PH (micro Calcium Magne Sodium Potas Carbon Brear Sultate Chlo Ni	Somple Agy Sample Most When prices PH (micro- rate ium) Calcium inhos Sodium sium of sium o	When parts PH (micro- salum and salum) Catelium sium sium sium and sium sium and	When ph (micro calcium magne Sodium sium of Expansion Solution sium of Expansion Solution S	Sumpled PH (micro Calcium Magne Sodium Potos Carbon Sium Sium Office Sultate Chio Ni Fluo Sium Office Sodium Sium Office Sodium Office Sodium Office Sodium Office Sium Office Supplied Minos Carteium Magne Sodium Forces Carbon Burger Sulfate Collice Roles Sodium Sium Office Boron Sium Roles Sodium Sium Office Boron Sium Roles Sodium Sium Office Boron Sium Sium Office Boron Sium Sium Office Boron Sium Sium Office Boron Sium Signature Sodium Roles Sodium Sium Office Boron Sium Office Boron Sium Office Boron Sium Office Boron Sium Office Boron Sium Office Boron Sium Office Boron Sium Office Boron Sium Office Boron Signature Sodium Sium Office Boron Sium Office Boron Signature Sodium Sig	Surgiciary PH (micro- colcium Magne- Sodium Potos- Carbon- Bicar- Sulfate Chilo- Micro- Carbon- Bicar- Carbon- Bicar- Sulfate Chilo- Micro- Carbon- Bicar- Carb	Second Color Col		

* TDS by Evop ct 105°c

TABLE E-I
ANALYSES OF GROUND WATER
1963

	Tatal	CO3		144		281	221		8 5		155	138	199
nts in	T D S To	Evap 180°c CaCO 3		241		667	98 83		204		294	287	369
anstituer r million	Sili-			0 7	1	10	0 20		8 9	ł ł	67	77	74
Mineral constituents parts per million	Baron	B		0.24	1	0	0.20		0 0 0	1	φ • •	0 1 3	0 • 0 7
Σ	Fluo- B	, LL,		m •	!	0 • 1	m •		0 0	1	0	0 0	0 • 2
	Ni -	NO 3		19.0 0.31 8	20.0	16.0	29.0		12.0 0.19 8	21.0	18.0	24.0 0.39 10	41.0 0.66 13
million se value	Chlo-	10		24 0.68 18	1	1.56	27 0 • 76 12		0.20	1	14 0 • 39	17	26 0 13
millio per acton	Sulfate	804		7 0 . 15	-	32	0.35		0.12	-	0.23	0.17	0.35
parts per equivalents percent re	Bicar-	нсоз	-	162	į \$	5	288		122 2•00 80	1	3.36	173 2.84 73	215
par	Carbon-	003		0	i i	0	0		0	i	0	0	0
Ξ	Potas - (×	ED)	0.08	1	13	0.08		0.13	ł	0.15	0.15	0.20
constituents	Sadium	0 2	CONTINUED)	21 0.91 24	1	2.17	1.83		18	1	26 1-13 26	24 1.04 26	1.17
Mineral co	ا ا	ω M	52215	1.32	1	1.73	1.97	52216	0.74	ä I	1.40	1.15	1,23
Σ	Calcium	Ca	52200	1.00	1	78 2 48	2.45		0.95	1	34	32 1.60	2.74
Specific conduct-	micro-	at 25°C)	TSIO	281	1	758	584		281	\$ 2	430	395	531
	Ħ		I ON E	7.9	1	9.	7.8		7 • 7	1	7.6	7.9	7.5
Temp.	when	LL 0	EYRIGAT	1	ł	10 40	29	FRESNO	71	70	1	74	02
State well	Agv	Date sampled Coll.	SAN JOAQUIN VALLEY FRESNO IRRIGATION	145/21E-30N 1 M 6-13-63 5050	6-13-63 5050	155/19E-15C 1 M 8-14-63 >000	155/20E- 6L 1 M 8-14-63 5000	CITY OF F	13S/20E-34M 1 M 5- 1-63 5050	145/20E- 1J 1 M 5- 1-63 5050	14S/20E- 2J 1 M 5-15-63 5050	14S/20E- 3M 1 M 6-13-63 5050	145/20E- 8A 1 M 7-16-63 5050

	less 0 3	Γ	123	154	134			16	2 8 8	267	137	23
i	Total hardness											
	TDS Total Computed hardness Evap IBO°C CaCO 3		254	287	260			152	787	461	370	
sonsti er m	Sili- co Si0 ₂		71	9	73	1		13	e B	50	79	1
Mineral constituents parts per millian	Baran		0 • 0	90.0	0 0 0	1		İ	0	•	0.04	1
	Flua- ride F		0 • 2	0 . 2	0.1	ł		1	0.2	0 • 2	0.5	1
	Ni- trate NO ₃		15.0	19.0	11.0 0.18	17.0		1	0.00	0 • 8	0	1
million per million ctance volue	Chla- ride Cl		0 • 3 7	0.37	0 1 4 0 0 0 1 0 0	1		18	121 3•41 43	3.10	2.23	96
0	Sulfate SO4		0.15	0.23	0.17	1		0 • 19	43 0.90 11	1.02	0.23	34
parts per equivolents percent re	Bicar- banate HCO3		162 2.66 78	199 3•26 78	169 2•77 78	1		1.05	220 3.61 46	212	2.90	89
bar bar	Carban- ate CO3		0	0	0	1		0.50	0	0	0	-
ï	Potas .	JED)	0.13	0.15	0.15	1		1	0.15	0.13	0.13	1
onstituents	Sadium	CONTINUED)	1.00	24 1.04 24	0.83	1		44 1.91	2.04	2.00	2.57	1
Mineral constituents	Magne- sium Mg	52216	1,15	18 1.48 35	1.23	1	52217	0.16	1.32	1.40	0.58	1
M	Calcium	52200	1.30	1.60	1.45	1		0.15	8 • 4 • 4 4 • 5 6	3.94	2.15	0.45
Specific conduct-	(micro- mhos at 25°C)		354	418	367	1		1	802	756	571	1
	Hd		7.5	1.6	8.1	1	AREA	0.6	7.6	7.6	8 0	20.0
Temp.	sompled ° F	RESNO	42	72	73	-	FRESNO SLOUGH AREA	1	70	69	71	1
_	Agy. Coll.	VALL OF F	2 M 5050	F 1 M 5050	1 M 5050	1 M 5050	NO SL	1 M 5702	5000	5000	2 M 5000	1 M 5702
State well	Date sampled	SAN JOAGUIN VALLEY CITY OF FRESNO	145/20E-10M 2 M 5-15-63 5050	14S/20E-11F 1 M 5-14-63 5050	14S/20E-15M 1 M 5-16-63 5050	-15M 1 M 5-16-63 5050	FRESI	135/15E-34K 1 M 4- 4-63 5702	13S/16E-36R 1 M 8-14-63 5000	135/16E-36R 3 M 8-14-63 5000	135/17E-30A 2 M 8-28-63 5000	145/15E- 3B 1 M 1-10-63 5702

* TOS by Evap ct 105°c

TABLE E-I ANALYSES OF GROUND WATER 1963

	to l dness	CO 3		ις.	16	r.	90	28	52	137	8 9	764
ë	Total Pordne	2°c Co		148	4 4 8	441	359	687	596	1 1 1 1 1 1 1 1 1	769	
uents Iian	TDS Total	vap 18(Ţ	4	4 4	m	9 9	Ŋ	ه ه	•	
onstit er mil	S111 -	SiO ₂ E		14	53	000	1	l	47	52	1	1
Mineral constituents parts per millian	Baran	80		0.20	0.20	0 1 8	1	0.20	0.10	0 4 • 0	1	0 . 2 8
=	Fluo-	L		1	1	0 4	1	1		0 • 2	1	i
	rote	NO3		1	i	0 • 0	0	0	4.9 0.08	0.0	0	1
millian e value	Chlo-	- 0		0.59	174	142	3.72 3.72	310	156	211 5.95 57	297	1000
parts per million equivolents per millian percent reactance value	Sulfore	804		0	0.25	0.02	0.12	42	1.19	34	0.19	1
parts per equivolents percent r	Bicar- bonote	нсо3		1.10	107	184 3.02 43	166 2•72 41	136 2.23 19	214 3.51 37	228 3.74 36	240 3.93 31	1
par				18	0.000	0	0	0	0.23	0	0	1
. <u>c</u>	Potas -	¥	ED)	1	1	0.03	0.05	0.05	0.08	0.13	0.18	1
Mineral constituents	Sadium	2	CONTINUED)	1.91	158	154 6.70	134 5.83	256 11.13 95	195 8 • 48 88	178	230	334
ineral co	Magne	вМ	52217	1	0.16	0	0	0.16	0.08	0 4 0 0 0	0.33	å I
Σ	Calcium	CO	52200	0.10	0.15	0.10	0.15	0.40	0.95	2.25	1.45	t e
Specific conduct-	(micro-	at 25°C)		1	1	(65	069	1280	973	1100	1334	3410
	Hd		AREA	0.6	4.	T •	ω •	7.5	8	7.6	8.1	1
Temp.	when	LL.	E H	}	1	χ 9	70	1	1	70	74	73
State well	Agy.	Dare sampled Coll.	SAN JOAQUIN VALLEY FRESNO SLOUGH	145/15E- 3B 1 M 2-27-63 5702	145/15E- 3K 2 M 5- 3-63 5702	145/16E- 6A 1 M 8-27-63 5000	145/16E- 6C 1 M 8-12-63 5001	145/16E- 7G 1 M 9-26-63 5000	145/16E-10J 1 M 8-12-63 5000	145/16E-23M 1 M 8-12-63 5000	155/17E-10J 3 M 8-10-63 5000	155/17E-10R 1 M 8-12-63 5050

≥	
2	
220	m
9	1963
5	_
)	
0	

_		_									
	Totol hardness os	2	99	141	m m	22	τυ 80	43	15	113	92
constituents in per million	Computed hardness		470	543	751	496	698	518			251
canstit er mil	Sill-	7	41	1	65	62	S	1	1	1	69
Mineral constituent parts per million	Boran		0.16	ł	1.60	0 . 75	1.50	1	0.46	0.07	0
	Fluo- ride		0 4	1	0	0	0	1	1	1	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
	Ni- trate NO-	2	0 • 3	2.5	1.3	1 - 8	1.3	0.6	1	1	13.0 0.21 6
million per million ictance value	Chlo- ride Cl		186 5 • 25 6 9	183 5.16 52	224 6 • 32	152	215	153	1.49	0.76	18 0•51 15
0	Sulfate	-	0.06	0.58	1.06	0.10	0 58	1.52	1	0.17	0.23
ports per equivalents percent re	Bicar- banate		138 2.26 30	251 4•11 42	264	195 3•20 42	279 4•57 41	199 3•26 36	1	1	153 2•51 73
por	Carbon- ate	,	0	0	0	0	0	0	1	1	0
, <u>s</u>	Potas - sium K	ED)	0.13	0.18	0.15	0.10	0.10	0.15	1	1	0.18
nstituents	Sodium	CONTINUED)	141 6•13 81	148 6.44 6.8	260	166	235 10•22 89	1727.48	96	1.17	36 1.57 44
Mineral constituents	Magne: sium Mo	_	0.16	0.66	0.16	0.08	0 2 2 3	0.16	1	1	0.58
×	Calcium	52200	1.15	2.15	0.50	0.35	18 • 0 8	14 0.70 8	1	1	1.25 3.5 3.5
Specific conduct-	(micro- mhos		3000	1033	1240	820	1210	931	481	377	340
	Hd	AREA	8	1.9	7 . 8	7.9	η • 20	8 • 1	1	1	8
Temp.	when sampled °F	ΕΥ OUGH	;	71	73	72	71	71	75	-	71
State well	Date sampled Agy.	SAN JOAQUIN VALLEY FRESNO SLOUGH AREA	155/17E-14G 1 M 8-22-63 5000	155/17E-15E 1 M 8-10-63 5000	155/17E-16H 1 M 8-10-63 5000	155/17E-17A 1 M 9- 9-63 5000	15S/17E-17R 1 M 9- 9-63 5000	155/17E-21K 1 M 8-10-63 5000	155/17E-34A 1 M 8-12-63 5050	155/18E-16G 1 M 6-11-63 5631	155/18E-36A 1 M 8-14-63 5000

TDS by Evap ct 105"

TABLE E-1 ANALYSES OF GROUND WATER 1963

	Total hardness		184	9	203	63	89	8	13	29	37
constituents in per million	T D S Computed		336	228	538 563	420	240	178	161	133	91
constituent per million	Sili-	3	47	99	32	9	1	9	6 8	39	1
Mineral c	Boron		0.07	0	0 • 1 0	0	- [0000	0 • 0 2	0 0 0 3	1
	Fluo- ride		0.2	0	0 1	0	1	0 • 0	0	0 •	1
	Ni- trote	0	5.7	13.0	49.0	0	0 • 0	5.1	0 • 1	1 • 4 0 • 0 2 1	0
millian e value	Chlo- ride		1.44	0.48	2 9 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	19	24	0.17	0.11	0.11	0.17
parts per million equivalents per millian percent reactance value	Sulfote	1	0.54	0.19	59 1.23 14	1.33 19	26 0.54 12	0.02	0.06	0.04	0.10
parts per equivalents percent re	Bicor- bonote	0	198 3•25 61	120 1•97 69	246 4 • 03 47	308	199 3.26 73	109 1•79 87	1.51	95 1 - 56 90	1 • 4 4 8 8 8 4
par	Carbon- ate	9	0	0	0	0	0	0	0	0	0
i.E	Potos -	JED.)	0.18	0.18	0.15	0.05	0.03	0.13	0	0.10	0.03
constituents	Sodium	CONTINUED	3.6 1.57 2.9	34 1.48 50	103	110 4•78 72	2.52	1.30	32 1•39 81	1.09	0 • 9 9 6 9 9 6
Mineral co	Mogne- sium	52217	12 0 • 99 18	0.33	0 0 0	0.23	0 250	0.16	0	0.08	0 • 0 8
2	Colcium	52200	2.69	19	20 E	32 1.60 24	1.50	0.60	0.018	0.50	0.65 38
Specific conduct-	mhos	(2.67.0)	547	286	916	670	459	206	172	177	169
	Ĭ.	AREA	Ο χ	7.6	7.5	0	α•1	7.9	7.5	7.6	8 • 1
Тетр.	when sompled °F		-	74	76	99	3 0	72	77	78	71
eli	Agy.	N VALL SNO SL	M 1 M 5000	E 1 M 5000	L 1 M 5050	G 1 M 5050	J 1 M 5000	C 1 M 5000	N 1 M 5000	A 1 M 5050	5000
State well	Date sampled	SAN JOAGUIN VALLEY FRESNO SLOUGH	155/19E-22M 1 M 8-29-63 5000	155/19E-28E 1 M 8-14-63 5000	155/19E-35L 1 M 8-12-63 5050	16S/17E-10G 1 M 8-26-63 5050	165/17E~12J 1 M 8-10-63 5000	165/18E- 2C 1 8-14-63 50C	165/18E- 4N 1 M 8-27-63 5000	165/18E-10A 1 8-12-63 505	16S/18E-15L 1 8-10-63 500
		03									

	V2		0				-				
	Total hardness as CaCO ₃		69	41	4 1	200	134	49	3 6	59	107
tuents in Ilion	TDS Total Camputed hardness Evap 180°c CaCO ₃		213	92	95	663	277	166	141	194	405
constit er mi	Sili- ca Si0 ₂		36	-	i	31	31	39	50	4 1	22
Mineral canstituents ports per million	Boran		0.02	1	1	0	9	0000	0	0.05	0
	Flua- ride F		0.1	1	1	0	e O	• 0	. 0	0 .	0
	Ni- trate NO ₃		φ •	0	0	0.6	24.0 0.39	0 • 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.9	1 • 3
million e volue	Chla- ride Cl		0 42	0.20	0.25	5 H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 1 • 41 33	16 0•45 20	0 0	0 0 0 0	113 3 • 19 4 9
reactance volue	Sulfate SO 4		0.33	0.15	0.19	130 2•71 26	24 0.50 12	0.23	2 0 • 0 4	0.35	1.42
equivalents percent re	Bicar- banate HCO3		153 2.51 77	85 1 • 39 80	1.29	143 2•34 22	117	98 1•61 70	1 • 3 8 8 9 8 9	84 1 • 38 51	111 1•82 28
equ	Carban- ate CO3		0	0	0	0	0	0	0	0	0
ë	Patas - sium K	ED)	0.03	0 0 0	0 0 0 0 0 0	0.05	0.10	0 0 3	0.10	0.03	0.03
constituents	Sadium	CONTINUED)	1.83	18 0.78	18 0.78	154 6.70	35	1.00	0.74	36	103
Mineral co	Magne- sium Mg	52217	0 • 08	0.16	0.16	0.16	4 6 8 8	0.08	0.16	1 0 • 0 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Σ	Calcium	52200	26 1•30 40	13	13	3.84	2.35	24 1.20 51	0.55	1.10	2.05 31
Specific conduct-	(micro- mhos at 25°C)		334	161	164	1150	797	246	148	303	709
	pH	AKEA	8 • 0	0	7.9	7.6	7.9	0 .	0	7.5	7.7
Temp.	wnen sampled ° F	Ŧ	29	73	74	70	73	1	72	7.1	6,9
	Agy. Coll.	QUIN VALLEY FRESNO SLOUGH	1 M 5000	1 M 5 0 0 0	1 M	2 M 5000	1 M 5000	1 M	1 M 5000	1 M	1 M
State well	Date sampled	SAN JOAQUIN VALLEY FRESNO SLOUG	165/18E-18A 1 M 8-27-63 5000	165/18E-24A 1 M 8-10-63 5000	165/18E-24J1 M 8-10-63 5000	165/18E-26A 2 M 8-29-63 5000	165/19E- 30 1 M 8-29-63 5000	165/19E- 8R 1 M 8-14-63 5000	165/19E-16C 1 M 8-14-63 5000	175/19E= 1G 1 M 8-14-63 5000	175/19E- 5J 1 M 6-14-63 5000

TABLE E-I ANALYSES OF GROUND WATER 1963

		SS 2S		80	31	98		37	4		00	α	70
	Total	hordne CaCO 2							144	237		108	7
canstituents in per million	TDS	Computed hordness Evop 180°C CaCO 3		375	277	309		78	335	473	06	174	
canstituent per million	Sili-	si02		23	1	-		1	8	54	17	1	}
Mineral (Boran	Ф		000		1		0.10	0.07	0.10	0 • 0 3	0000	0000
	Fluo-	r i de		0.2	1	1		1	0 . 2	0.2	e •	ŧ	1
	- Z	trate NO ₃		1.0	0.01	0.6		2.4	19.0 0.31 6	26.0 0.42 6	0.5	19•0 0•31 10	1
million per million ctance volue	Chia-	ride C I		32 0.90	1.69	1.75		0.11 8	33 0.93	1.95	0.06	0.28	0.08
1 0	Sulfate	804		0.28	0.15	0.10		0.25	0.60	41 0.85 11	0.00	21 0 44	1
ports per equivalents percent rea	Bicar-	banate HCO ₃		297	206 3 • 38 6 5	228 3•74 64		1.02	219	24¢ 4.03 54	1.16	127 2.08 67	l l
bod	Carban-	ate CO3		0	0	0.23		0	0	0.27	0	0	1
Ē	Potas -	sium K	IED)	0.03	0.05	0.08		0.05	0.10	0.10	0.03	0.00%	1
constituents	Sodium	o N	CONTINUED	109	4.13	105		0.065	5.30	2.78	1.22	21 0•91 29	0.30
Minerol co	Мадпе-	sium Mg	52217	0	0.16	0.16	52218	0 . 3 4 k	0.82	1.15	0	0.66	1
Σ	Calcium	Ca	52200	1.75	0.45	0.60		0 40 28	2.05	3.59	0.15	1.50	1
Specific conduct-	once (micro-	mhos at 25°C)		909	495	554	DIST	145	050	731	134	327	117
	Hd		AREA	8 0	8 • 2	7.	IRRIG	7.4	30	8 • 4	7.4	7.8	+
Тетр.	when	o F	I.S	67	69	69		99	73	1	75	67	70
State well		Date sampled Agy.	SAN JOAGUIN VALLEY FRESNO SLOUGH	175/19E- 6F 1 M 8-14-63 5000	175/19E- 7A 1 M 8-14-63 5000	175/19E- 7D 1 M 8-14-63 5000	CONSOLIDATED	145/21E-25R 1 M 9-26-63 5000	155/21k-24L 1 M 8-12-63 5050	155/22E-33G 1 M 8-21-63 5000	165/20E-18G 1 M 8-16-63 5000	165/23E- BP 1 M 9-13-63 5000	175/22E- 2H 1 M 7-10-63 5126

ANALYSES OF GROUND WATER

State well	Temp.		Specific canduct-	Σ	Mineral constituents	nstituents	iΞ	por	ports per equivalents percent re	ports per million equivalents per million percent reactance value	nillian value		2	Mineral constituents parts per million	consti	tuents in Ilian	
Date sampled Agy.	· ·	F	· 0	Calcium	Magne- sium Mg	Sadium	Potos - sium K	Carbon- ote CO ₃	Bicor- bonote HCO3	Sulfore SO4	Chlo- ride Cl	hrote NO3	Fluo- ride F	Boron	Silt- ca SiO ₂	TDS Computed Evop 180°c	Total hardness as CoCO 3
SAN JOAGUIN VALLEY ALTA IRRIGATION VISTRICT	LEY	N UIS		52200	52219												
155/24E- 70 1 M 8-13-63 5000	9	7.5	385	37	1.15	0.87	0.05	Э	168 2•75 70	16 0.33 8	14 0 • 3 9 10	27.0 0.44 11	0 . 2	0	62	275	150
155/24E-31H 2 M 8-21-63 5000	1	7 • 8	341	1.50	0.82	1.13	0.05	0	158 2.59 75	20 0 42 12	0.14	20.0	0 4	0.50	5	247	116
165/23E- 3F 2 M 8- 9-63 5000	1	7 • 4	572	2.59	1.64	1.45 1.996 3.1	0.10	0	298 4.88	40 0.83 13	0.31	13 • 0 0 • 21 3	0	0	51	383	212
165/24E- 3J 1 M 6-17-63 5123	7.5	α • 1	550	43 2.15 37	22 1•81 31	1.83	0.05	0	202 3•31 57	23	1.61	24.0 0.39	0.1	0	6 4	361	198
165/25E-32N 2 M 5-28-63 5123	62	8.1	620	2.84	2.38	38	0.10	0	319	19	35	11.0	0 • 1	0.10	4	398	261
175/23E- 8H 1 M 5-28-63 5123	89	1	1020	1	1	116	i		-	1	139	i	1	0 1 0	1		241
175/23E- 8J 1 M 5-28-63 5123	9	1	1020	1	1	116	1	1	1	1	139	1	-	0 10	1		241
175/24E-15A 2 M 6-24-63 5123	70	8 . 2	405	1 • 0 • 0 • 0 • 0	1.48	1 9 8 9 9 0	0 0 8 8	0	179 2.93 66	19	35	7.8 0.13	0 • 2	0.10	52	288	157
× ×												1					7

* TDS by Evap ct 105°c

	ness 0 3		168	83	18	133	Ω.	S.	45	ζ.	0 1]
Ē	Total hardne			0.0	2 1		2	5	6 7	0 9	40	
	TDS Total Computed hardness Evop iBO°c CaCO ₃		306	650	651	756	242	285	181	103	174	
constr er m	Sili- ca SiO ₂		37	22	19	17	1		24	20	18	
Mineral constituents ports per million	Boron		000	1.20	0 • 98	1.40	1	8	90.0	90 • 0	0.0	
	Fluo- ride F		0 • 2	1.3	1.3	9	1	ŀ	0.2	0 • 2	0	
	Ni- trote NO ₃		22.0	0 • 0	0.01	0	0 • 0	0	4.4	2.6	0	
million e volue	Chio- ride Ci		36 1.02 21	1.97	174	1.92 16	35	1.35	1.04	5 0•14 9	0.11	
nts per million reoctonce volue	Sulfate SO 4		19	93 1.94 18	1.04	235	0.46	0.31	20 0 42 16	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.27	
ports per equivolents percent re	Bicor- bonote HCO3		3.11 64	435 7•13 65	307	304	159 2.61 58	184 3.02 56	1.16	78 1.28 85	149 2•44 87	
por	Carbon- ate CO3		0	0	0	13	14 0.47 10	20 0.67	0	0	0	
. <u>e</u>	Potas - sium K		0.08	0.03	0.03	0.03	0	0.03	0.03	0	0.03	
constituents	Sodium		34 1 • 48 30	216 9.39 85	246 10•70	225 9•78 78	3.96	109	1.78	1.443	2.65	
Mineral co	Mogne- sium Mg	52220	0.82	0.16	0	0.90	0	0	0	0	0	
2	Calcium	52200	2.54	1.50	0.35	1.75	0.10	0.10	18 0.90 33	0.10	0.20	
Specific conduct-	(micro- mhos at 25°C)	AREA	482	1070	1170	1090	435	493	307	150	275	
	H _d	IVER A	7.9	8.1	8 . 2	8 • 5	π • •	9.1	7.5	7.4	7.8	
Temp.	sampled	~	69	99	1	71	7.0	67	1	71	9 9	
State well number	Date sompled Agy. S	SAN JOAQUIN VALLEY	16S/21E-35P 1 M 8- 9-63 5000	175/18E-12N 1 M 8-28-63 5000	175/18E-24J 1 M 8-28-63 5000	175/18E-350 1 M 8-26-63 5050	175/19E-27A 1 M 8-19-63 5000	175/19E-34Q 1 M 8-19-63 5000	175/20E- 2M 1 M 8-28-63 5000	175/20E-13G 1 M 8-28-63 5000	175/20E-22P 1 M 8-27-63 5000	* TDS by Funn c1 1050r

ANALYSES OF GROUND WATER

ANALYSES OF GROUND WATER

The colline magne - Sadium paras - Carbon mhos sium sium sium sium ore sium sium ore sium sium ore sium sium ore sium sium ore sium sium ore sium sium ore sium sium ore sium	equivalents per million mineral constituents in percent reactionce value	Bicar- Sulfate Chla- Ni- Fluo- Boron Sili- bonote ride trate ride co	HCO3 SO4 C1 NO3 F B SIO2		2 2 2 5 0 0 4 0 4 8 0 0 0 8 0 0 5 0 2 0 173 3 3 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 38 38 0.06 0.05 0.05 0.05 0.00 18 101 5 17 0.2 0.00 18 101 5 17 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	1.29 0.71 0.03 0.03 0.02 0.00 26 144 88	0 420 26 15 158 6.88 0.54 0.42	228 27 68 2.8 1.0 0.30 23 379 43 3.74 0.56 1.92 0.05 60 9 31	2 224 75 68 0.0 0.5 0.50 19 472 13 3 3.67 1.56 1.92 25	1.41 1.02 0.76 0.18 0.6 0.22 24 222 64 228 44 30 23 23 5	3.52 0.10 1.07 0.01 1.2 0.58 27 285 5 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
4.55 0.03 3.52 0.10 1.07 1.07 1.07 1.07 1.07 1.07 1.07	Fluor Baron Sin. 1	Sign 1	0.0000000000000000000000000000000000000	0.00 0.	0.00 0.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0 0 0 2 2 2 2 4 4 2 2 2 4 4 2 2 2 2 4 4 2 2 2 2 4 4 2 2 2 2 2 4 4 2 2 2 2 2 4 4 2	2,0		0.3 0.90 282
1.60	Cho.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 • 4 8 17	6 4	17	0.03		68 1•92 31		0.76	1.007	-,
0.10 1.32 1.60 3.29 0.60 0.60 0.60 0.25 0.25 0.25 0.05 0.45 0.45 0.45 0.45 0.173 0.05	Bicar- Sul bonote HCO3 137 2 2 25	HC03 137 2.25 81	137 2 • 2 5 8 1	137 2•25 81		38	1.29	420 6 • 88	228 3•74 60	224 3.67 47	86 1•41 42	215 3 • 52 75	241 3.95 78
52220 0.02 0.05 1.60 0.10 1.60 0.10 0.10 0.60 0.25 0.66 0.25 0.66 0.25 0.66 0.25 0.25 0.66 0.25 0.66 0.25 0.66 0.25 0.66 0.25 0.66 0.25 0.66 0.25 0.66 0.75	Potas -			SUED.	0,03	0	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 5	0 • 0 3	0.02	0 0 3	0.03
52200 0.052 0.12 0.12 0.60 0.12 0.25 0.25 0.25 0.60 0.25 0.25 0.05			-				2 2 8						
		Calcium	Ca		0.05	0.10	1.60	3.29	0.60	0.25	0.45	0.10	0.159
	_	H.					7 • 7			20 e TO			
1VER AREA OF 2	900	T	\dashv	LLEY INGS R			ξ0						
Sumpled PH Sumpl	Jaconon	Date sompled Agy.	_	SAN JOAQUIN VALLEY LOWER KINGS	175/20E-23D 1 M 8-27-63 5000	175/21E- 7J 1 M 8-14-63 5000	175/21E-17P 1 M 8-13-63 5000	175/21E-23J 1 M 9-23-63 5000	185/19E- 18 1 M 8-14-63 5000	185/19E- 18 3 M 8-14-63 5000	185/19E- 2F 2 M 8-23-63 5000	185/19E- 2F 3 M 8-23-63 5126	185/19E- 6G 1 M 7-30-63 5126

* TDS by Fvop ct 105°c

TABLE E-I ANALYSES OF GROUND WATER 1963

	Total	hardness CoCO 3		10	m	m	83	15	0	18	26	371	
ituents in	TDS	(1) 144			194	233		598					
er m	S-11-S	sio ₂		1	24	19	1	27	-	1	1	1	
Mineral constituents parts per million	Baron			0.70	0 4 • 0	0.30	00 • 0	1 • 90	1.00	0 • 30	1.30	0.20	
	Fluo.	rı de F		1	1.2	ω •	1	7. 0	1	-	ł	i	
	- i Z	trate NO ₃		1	0	0	1	0.01	1	1	1	-	
million per million actance value	Chio-	ride C1		0.73	0.28	0.59	10	38 1.07 10	0 8 9	0.14	32	238	
parts per million equivalents per million percent reactonce value	Sulfote	S04		1	0.12	0.27	1	0	l	1	1	1	
ports per equivolents percent rec	B.cor-	bonate HCO ₃		1	133	179 2.93 77	1	579	1	1	1	1	
por	Carbon-	ote CO3	÷	-	0.50	0	1	0	1	1	1	1	
i	Potos -	siu R K	ED)	1	0	0	1	0.05	1	1	1	1	
Mineral constituents	Sadium		52220 (CONTINUED)	106	3.09	3.91	15	238	125	2.65	198	142	
ineral c	Маапе-	si u m M g	52220 (ŧ	0	0	1	0	ŧ	1	1	1	
Σ	Calcium	Co	52200	i i	0.05	0.05	}	0.30	1	l l	1	l	
Specific conduct-	(micro-	mhos at 25°C)		470	278	380	735	973	ν 2 2	286	862	1400	
	Hd		VER A	-	0.6	8 . 2	1	8 • 2	1	-	-	1	
Temp.	when	sampieo • F	EY GS RI	8 9	8 9	67	63	74	75	69	7.1	72	
State well		Date sampled Agy.	SAN JOAQUIN VALLEY LOWER KINGS RIVER AREA	185/19E-26H 1 M 7-30-63 5126	185/20E- 6A 1 M 8-19-63 5000	185/20E- 6E 1 M 6-28-63 5000	185/21E-14F 1 M 7-10-63 5126	195/19E-25L M 8-30-63 5126	195/20E-33A 1 M 7-11-63 5126	195/21E- 3B 1 M 7-12-63 5126	20S/20E-10L 1 M 7-30-63 5126	20S/21E-12A 1 M 7-11-63 5126	
			1. "										

		_										_	
	Total hardness	C0C03		23	77		207	101		136	47	19	33
tuents in	Sili- TDS Total	E vop 180°c					362	220					116
sansti er m	Sili-	SiO2		1	1		υ ©	5		ł	1	1	1
Mineral canstituents parts per millian	_	8		0 • 4 0	1.20		00 • 0	90•0		0000	0	0	00
	Fluo-	L		}	1		0 • 2	0.2		1		1	1
	Ni- trote	E ON		1	-		32 0 0 52 9	20.0		1	1	1	2.9
millian e value	Chlo-	-0		36	3.24		0.65	0 45		35.	0.20	0.17	0•23 11
parts per million equivalents per millian percent reactance value	Sultate	504		1	1		29 0 • 60 11	0 • 0 8 8 9		;	1	1	0.15
parts per equivalents percent r	Bicor- bonate	нсоз		1	1		23. 3.85 69	128 2•10 71		1	1	-	104
pod	Carbon- ate	CO3		i	-		0	0		1	1	i i	0
i.	1 50 -	¥	ED)	1	1		0.08	0.05		1	1	i	0
Mineral canstituents	S	0 2	52220 (CONTINUED)	4.04	296		1.35	21 0•91 31		38	34	1.22	34
lineral co	Mognersium	φ W	52220	1	1	52221	1.64	0.66	52224	1	1	1	0
2	Ü		52200	}	1		2.50	1.35		-	}	}	13 0•65 31
Specific canduct-	(micra- mhos	at 25°C)	REA	797	1420	IST	556	513		044	227	160	218
	F.		VER A	1	1	RIG DI	7 • 6	7.9	ATER	1	1		7.7
Temp.	wnen sampled °F		EY GS R1	75	89	VE IR	69	72	LTA W	79	70	70	70
State well number	Date sampled		SAN JOAGUIN VALLEY LOWER KINGS RIVER AREA	205/21E-16D M 7-19-63 5126	215/21E- 1A 2 M 7-11-63 5126	ORANGE COVE IRRIG	155/24E-10L 1 M 8-20-63 5000	155/24E-23K 1 M 8-23-63 5050	KAWEAH DELTA WATER	175/25E-34P 1 M 6-17-63 5123	185/24E-19M 1 M 5-28-63 5123	195/23E- 8H 1 M 7-26-63 5126	20s/22E- 1A 1 M 7-11-63 5126

* TDS by Evop ct 105°c

TABLE E-I ANALYSES OF GROUND WATER 1963

	Totol	os coco 3		723	181	120		93	24	5.9		353	174	
uents in Iron	TDS	Computed hardness Evap 180°C CoCO 3		1042	375	261				-		690	345	
onstit er mil	Siii-			80	1 6	32		1	1	1		36	29	
Mineral constituents parts per million	Boron			0 8 8	0 1 0	0 1 0		0	0	00		0.20	0	-
2	Fluo-	r de F		0 • 2	• 0	0		1	1	1		0	0	
	- i N	trate NO ₃		22 0 35	14.0	22 0 • 35 9		ł	1	1		39.0	42.0 0.68 12	
million e value	Chlo-	ride C.I		541 15•26 81	3 • 30	1.04		0.17	0.14	0.03		236	1.10	
er million nts per million reactonce volue	Sulfote	504		0 4 4 6	0.46	0.40		1	1	1		1.04	23	
parts per equivolents percent re	Bicor-	bonate HCO3		2.79	142 2•33 36	140 2•29 56		1	1	1		164 2.69 24	3.34	
port	Carbon-			0	0.23	0		1	1	1		0	0	
.⊆	Potas -	sium K	ED)	0.13	0.08	0.08		-	1	1		0.13	0.10	
Mineral constituents	Sodium	0	CONTINUED	101	0 8 4 0 8 0 0	39 1•70 41		150.65	1.000	0.26		3.87	2.13	
ineral co	Magne-	Sium Mg	52224	1018.31	1.81	0.99	52225	1	1	1	52228	3.87	18 1.48 26	
Σ	Calcrum	C o	52200	123 6•14 32	36 1.80 28	28 1.40 34		1	1	1		3.19	2 00 0	
Specific conduct-	ance (micra-	mhos at 25°C)		2040	0 4 9	405	IST	236	186	141	UIST	1050	591	
	Ha		ATER	8	8 • 4	8 • 1	ION	1	1	-	IRRIGATION	 	7.9	
Тепр.	when	sampled	EY LTA	72	73	75	RIGAT	70	20	69		1	74	
State well		Date sampled Agy.	SAN JOAQUIN VALLEY KAWEAH DELTA	205/26E- 3F 1 M 8-28-63 5050	20S/26E- 5R 1 M 6-12-63 5126	20S/26E-19F M 6-12-63 5123	TULARE IRRIGATION DIST	195/23E-24G 1 M 5-28-63 5123	195/24E-22C 1 M 6-12-63 5123	195/25E-31J 1 M 5-28-63 5123	LINDMORE	20S/26E-13A 1 M 6-12-63 5123	20S/27E-31J 1 M 9- 5-63 5123	

	ness 03		7.1	63		12	56		139	6		158	19
, <u>e</u>	Totol Totol hardne					5 6			1				
	TDS Totol Computed hardness Evop 180°c CoCO3					176						360	189
onsti	Sili.		1	1		30	1		1	-		18	15
Mineral constituents ports per million	Boran		0.10	00		0.10	0.20	-	0	0		0 • 1 0	0
_	Fluo- ride F		-	-		1.4	1		1	1		0	0 4
	Ni- trate NO ₃		1			0	1		1	1		39.0 0.63 11	11.0
million per million ctance value	Chlo- ride Cl		10	21		0.28	1.89		19	22		1.47	27 0 . 76
0	Sulfote SO4		1	1		0.35	1		ł	1		1.77	44
parts per equivalents percent re	Bicor- bonote HCO3		1	1		116	1			i i		103	0.000
por equ per	Carbon- ate CO3		1	-		0	1		1	1	-	0	0
in	Potas :		1	1		0	1		1	1		0 0 0 0 5	0.03
nstituents	Sodius		3.43	35		2.43 91	3.91		1.43	52 2 2 6		2 4 9 6 4 9 8	2.48
Mineral constituents	Mogne- sium Mg	52233	•	ł	52234	0.08	1	52235	1	•	52236	0.66	0.08
Σ	Calcium	52200	1	1		3 0 15	1		}	-		2.50	0.30
Specific conduct-	(micro- mhos at 25°C)		270	273	AREA	235	533	•	439	688	N MUD	555	283
	H _a	O NOI	1	-	VORTH	20	1	AT I.D.	1	1	OAUDIN	20	8 • 1
Тетр.	when sampled °F	EY RIGAT	73	1	LEN	78		RLIMA	2.2	42	SAN	75	77
State well number	Agy. Coll.	SAN JOAQUIN VALLEY PIRIGATION DIST	22S/25E-22A M 9-24-63 5123	235/25E- 9F 1 M 9- 5-63 5123	ALPAUGH-ALLENSWORTH AREA	23S/24E-32P M 9- 6-63 5123	245/23E- 5R 2 M 9-24-63 5123	DELANO-EARLIMART	24S/25E-23H 1 M 9-24-63	255/26E-16J 1 M 8-15-63 5124	SOUTHERN SAN	265/25E- 3R 1 M 8-15-63 5124	265/26E-160 1 M 8-15-63 5124
	Date	SAN	225/	235/		235/	245/		245/	255/		265/	265/

* TDS by Fvop ct 105°c

		0		01		m		0	m	0		m	m
	Totol	C0C03		22	107	28		10	28	289		143	38
tuents in	105	Evap 180°c CoCO 3		118		114							142
er m		SiO ₂		15	1	14		1	1	1		1	17
Mineral constituents parts per million	Boron	8		0 • 1 0	00 • 0	0.10		0.10	0.10	0.20		0.10	0•10
	Fluo-	r:de F		0 • 2	1	0 • 1		1	1	1		1	0
	- i.v.	note NO ₃		0.10	1	1.4		1	1	1		1	3.1
million e value	Ch10-	C I		10 0•28 16	0.25	200.56		0.17	0.28	2.59		1.95	0.39
parts per million equivolents per million percent reactance value	Sulfate	504		0.25	1	0.10		1	1	1		å t	0.35
parts per equivalents percent re	Bicar-	bonate HCO ₃		1.13 64 64	-	1.11 68 1.11 62		1	ę t	1		1	1.39
par	Carbon-	co ₃		0	i t	0		1	1	-		1	0
.c	Potos -	sium K		0.03	1	0.03		1	1	1		1	0.03
onstituent	Sodium	Να		1.39	30	1.26		1.17	1.22	2.61		1.43	1.48
Mineral constituents	Magne-	S I U	52237	0.08	1	0.16	52238	1	1	1	52240	1	0.16
2	Calcium	Co	52200	0.35	1	0.40		1	1	1		1	0.60
Specific conduct-	(micro-	at 25°C)	ORAGE	173	353	177	DIST	146	206	877	ΕA	481	218
	Hd		ER ST	0 • 0	1	7.9	IRKIG	-	-	1	TA AREA	-	8 • 2
Temp.	when sampled	LL.	EY N WAT	76	78	1	ASCO	78	1	77	R DELTA	75	73
State well number	-	Date sampled Call.	SAN JOAGUIN VALLEY NORTH KERN WATER STORAGE	265/24E-26R 1 M 6-26-63 5124	275/25k- 5R 1 M 6-26-63 5124	275/25E-34A 2 M 6-20-63 5124	SHAFTER-WASCO IRRIG DIST	275/24E- 5R 1 M 6-26-63 5124	285/25E-17L 1 M 7-15-63 5124	285/26E-30A 1 M 6-20-63 5124	KERN RIVER	295/25E-10N 1 M 6-26-63 5124	295/25E-32F 1 M 6-13-63 5124

* TDS by Evop ct 105°c

ANALYSES OF GROUND WATER 1963

	Totol hordness CaCO 3		206	87	224	89	111	94	6	21	271
tuents in Ilion	T D S Computed Evop 180°c		431	_		211	205	206	197	144	
ansti er m	Sui-		14	1	1	23	20	19	22	13	1
Mineral constituents parts per million	Baron		0.50	04.0	0.50	0.20	0 - 20	0.20	0.30	0 • 5 0	0
	Fluo- ride F		0.1	1	å I	0.2	0 • 1	0.5	1 • 4	0 • 2	1
	Ni- trote NO ₃		9+0 0+15	1	i	8 • 1 • 1 4	4 • 8 0 • 0 8 2	0	0	0	1
million per million actance volue	Chlo- ride Cl		1.69	26	0.62	14 0•39 12	0.37	16 0.45	36 1.02 34	0.28	0.65
parts per million equivalents per million percent reactance volue	Sulfate SO4		3.21	1	1	29	32 0 67	34 0 - 71	20 0 • 42	0.27	1
ports per equivalents percent rec	Brcor- bonote HCO3		107	1	-	130 2.13 66	135 2•21 66	135 2 21 66	1.54	114	1
bod	Corbon- afe CO3		0	1	ł	0	0	0	0	0	-
ï	Potos - sium X	Jeb)	0.05	1	ł	0.03	0.05	0.05	0.03	0	1
Mineral constituents	Sodium	52240 (CONTINUED)	2.57	1.30	2.61	39 1•70 50	1,22	1.443	2.91	1.96	3.70
ineral co	Mogne- sium Mg	52240	0.34	1	ğ E	0.16	0.066	0.33	0.08	0.16	1
2	Calcium	52200	3.79	-	1	300.000	1.55	1.55	0.10	0.25	!
Specific conduct-	(micro- mhos at 25°C)	E A	099	327	762	325	332	320	305	220	874
	H.	TA AR	0 .	1	ł	8 . 1	8 1	8 • 2	8.1	8 .	1
Temp.	when sampled	ÉY R DEL	76	99	71	72	71	71	73	73	1
State well number	Date sampled Agy	SAN JOAQUIN VALLEY KERN RIVER DELTA AREA	295/26E- 9R 1 M 6-20-63 5124	295/26E-35K 1 M 9-13-63 5124	30S/24E-14H 1 M 6-13-63 5124	30S/25E-10C 1 M 6-13-63 5124	30S/27E-19L 1 M 6- 8-63 5124	30S/28E-29B 1 M 6-25-63 5124	31S/25E-13B 1 M 7- 2-63 5124	315/26E- 2J 1 M 7- 2-63 5124	325/27E-16R 1 M 3-13-63 5124
L	Da	SAI	29.	29.	90	30	300	300	31.	310	22

* TDS by Evap of 105°c

ANALYSES OF SHOUND WALLER

Γ		_	55 5		9	173	125	210	315	348	• •	162	7
	_	Totol	hardness CaCO 3		41	F	12			76	1840		1695
	tuents in	TDS						24 S				313	3462
	er m	S-11.	sio ₂		ŀ	1	i B	15	1	-	1	2	m œ
	Mineral constituents parts per million	Baron			0.20	0 • 2 0	0 • 30	0.20	0 - 20	0	4 • 10	0 0	٠ 9
		F100-	r de		1	1	1	0	1	1	1	7.0	0 . 2
		i.Z	trote NO ₃		1	1	1	0	i i	1	1	61.0 0.98 20	0
	million e value	Chlor	ride C I		1.33	37	27	1.21 1.9	7.3	1.61	850	35	1.47
11,11	equivalents per million percent reactance value	Sulfate	504		1	1	1	58 1•21 19	1	1	1	26 0•24 11	47.30 47.30
	ivalent cent	Bicar-	bonote HCO ₃		1	1	1	234 3.84 61	1	1	1	150	146 2 • 39 5
	ede	Carbon-	01e CO3		ŀ	1	1	0	1	1	1	0	0
	uj :	Potas -	e x		1	1	1	0.10	1	1	ŧ	0.10	0.28
	Mineral constituents	Sodium	o Z		460.4	2.17	2.04	2.04	2.26	2.57	33.87	1.95 1.95 3.1	382 16•61 33
	lineral c	Mogne-	Siu B Mg	52241	1	1	1	1.40	i	1	1	0.74	6.17
	2	Colcium	°	52200	1	1	1	56 2.79 44	1	1	1	2.50	557 27 • 79 55
	Specific conduct-	(micra-	mhas at 25°C)	A	601	574	469	570	862	970	6080	495	3600
		Hd		A AREA	1	1.	1	8.1	1	1	į.	Ο •	7.8
	Temp.	when	H o	EY RICOH	81	1	75	74	72	69	73	7.1	79
	State well		Date sampled Agy.	SAN JOAQUIN VALLEY EDISON-MARICOHA	295/29E-34N 1 M 8- 7-63 5124	55/28L-11R 1 M 6-11-63 5124	30S/28E-25A 1 M 6-11-63 5124	30S/29E-15H 2 M 6- 0-63 5124	30S/29E-20A 1 M 6-11-63 5124	30S/29E-27J I M 8- 7-63 5124	315/24E-28B 1 M 7- 2-63 5124	31s/30E-30C 1 M 6-25-63 5124	325/25E=34G 1 M 7- 2-63 5124
-		_											

	_												
	Total	hardness CaCO 3		76	324	247	567	946	1391	90		658	283
tuents in	TDS	pa Doc			9 9 9 9 9 9				2592			1912	1055
constituent per million	-ilis			ł	17	;	1	1	17	1		7	24
Mineral constituents parts per million	Boron			0 %	0 5 0	0 • 0	0 9 • 0	0.30	1 • 40	0.20		1.50	0.64
_	Fluo-	rıde F		1	7 0	ŀ	1	1	1.0	1		0	0 • 4
	- <u>-</u> z	trate NO ₃		1	149.0	-	{	1	25.0 0.40	1		1.3	1.2
million per million ictance value	Chlo-	ride C 1		14	2000	0.39	1.52	58	179 5•05 13	0.20		553 15•54 52	173
0	Sulfate	804		1	120	i	l	1	1542 32•10 81	-		592 12•33 41	420 8•74 54
parts per equivalents percent re	Bicor-	bonote HCO ₃		-	184 3 • 0 2 2 9	-	1	1	135 2•21 6			136 2.23	2.57
par equ per	Carbon-	ate CO3		i	0	i	1	1	0	1		0	0
in	Potos -		ED)	1	0.15	1	1	1	0.28	1		0 0 0	0.03
constituents	Sodium	0 2	CONTINUED)	46	4.30	24	131	235	277 12•04 30	34		412 17•91 58	250 10•87 66
Mineral co	, a c c W		52241	1	2.63	1	1	1	131 10.77	1	52242	1.97	8 9 9 9
Σ	E i c l c l	Ca	52200	1	3.84	1	1	1	341 17.02 42	1		224 11•18 36	100
Specific conduct-	ance (micro-	mhas at 25°C)	a	368	066	564	1580	2530	2900	352	STORAGE	2990	1660
	Hd		A AREA	-	7.9	1	1	1	0 •	1	WATER S	7.8	8.1
Temp.	when	sampled ° F	EY RICOPA	72	73	77	78	78	77	74	ΤA	67	9
well	,	ed Agy.	JOAQUIN VALL	2F 1 M 5124	5M 2 M 5124	4M 1 S 5124	8R 1 S 5124	5K 1 S 5124	5124	3R 1 S	BUENA VIS	11P 1 M 5640	8G 2 M
State well		Date sampled	SAN JOAQU	325/28E-12F 1 M 7- 2-63 5124	325/29E-35M 2 7- 2-63 512	11N/18W-14M 1 S 8-22-63 5124	11N/20W- 8R 1 S 7- 2-63 5124	11N/20W-25K 1 S 7- 2-63 5124	11N/22W- 8G 1 S 7- 2-63 5124	12N/19W-33R 1 7- 2-63 51	n B	275/22E-21P 1 M 2- 7-63 5640	275/22E-28G 2 M 2- 8-63 5640
		á	S	20	8	=			7	-		7	. 2

TDS by Evop ct 105°

TABLE E-I ANALYSES OF GROUND WATER 1963

	1	· ·			-	.0	~	m	.+			21	~
	Total	hardness CoCO 3		309	244	316	357	28	4 4	31		12	127
lion	TDS	Ош				788						176	
sanstil er mi	Sili			-	-	2	-	ļ	1	1		CC CC	1
Mineral canstituents parts per millian	Baron			0.74	0.56	0 • 4 9	0.71	0.41	0.47	0 .32		0.20	0000
	-0114	r i de		1 .	1	0	1	8	1	1		0	i
	Z	trate NO3		1	1	1.1	1	1	-	1		0	1
million e value	Chio+	ride C1		443	101	58 1•64 14	105	150	0.50	10		15	310.87
parts per million equivalents per million percent reactance value	Sulfate	804		!	1	334	1	1	1	İ		33 0 . 69 26	8
parts per equivalents percent re	Bicor	bonote HCO ₃		1	1	215	i i	1	1	8		1.57	1
por	Corbon-	ote CO3		2	1	0	1	1	1	1		0	1
.5	Potos :	siu x	ED)	0.03	0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.05	0.03	0.03	0.03		0	1
constituents	Sadina	0 2	52242 (CONTINUED)	397	188	141 6•13 49	198 8•61	114	3.26	3.04		2.52	1.57
Mineral co	1 0		52242	!	1	1.32	i	1	1	1	52243	0.08	î I
Σ	Coloina	0 0	52200	1	i	100	1	1	i t	1		0.100	å 1
Specific conduct-	ance (micro-	mhas at 25°C)	TORAGE	2400	1270	1170	1520	602	434	393	WATER STORAGE	270	445
	Ho		TER S	1	1	89	1	1	1	1	ER ST	8 • 2	1
Temp.	when	sampled ° F	EY TA WA	67	67	1	19	69	73	74		74	73
State well		Date sampled Agy. S	SAN JOAQUIN VALLEY BUENA VISTA WATER STORAGE	28S/22E- 4A 1 M 2-18-63 5640	285/22E-10R 1 M 2- 7-63 5640	285/22E-26J 1 M 2- 7-63 5640	28S/22E-36N 1 M 2- 7-63 5640	30S/23E- 1C 3 M 2- 7-63 5640	31S/25E-25H 1 M 3- 4-63 5640	325/27E- 6D 1 M 3-13-63 5640	SEMITROPIC	255/22E- 2P 2 M 5-15-63 5124	255/25E- 40 1 M 8-15-63 5124

in	Total			148 9 148	1786 400	0	50 50 60	00	φ 4)		836 127 906	649 55	2493 651 2480
Mineral constituents ports per million	TDS	Computed Evap 180°c		24	19 17	2 5		! !			28	1	42 24 24
con	S.II.	sio ₂											
Mineral	Baron	Θ.		0 • 1 0	1.20	0 1 0	1 • 40	0.10	0.10		0.70	1.10	2 • 80
	Fluo-	ride		9	1.0	1	1	!			0 • 2	!	4 • 0
	1 - Z	trote NO ₃		0	0.0	1	1	1	-		1.3	0	4.5
million e volue	Ch10-	ride C1		16 0•45 21	677 19•09 66	0.20	1140	1.33	71 2.00		411 11.59 84	169	3.50
parts per million equivolents per million percent reactance volue	Sulfate	804		17 0 35	403 8•39 29	1	1	-	1		450.94	43 0.90 8	1458 30•36 82
parts per equivolents percent re	Bicar	bonote HCO3		1.26	1.48	1	1	1	1		1.20	361	182 2.98 8
pa ed pe	Carbon-	ote CO3		0.07	0	1	1	1	†		0	0	0
s in	Potas ~	e in	ED)	0	0 0 0 5	1	0.05	1	1		0.05	0.05	0.23
onstituent	Sodium	0 Z	CONT I NU	2.04	490 21•31 73	1.39	722	2.39	3.52		265 11.52 82	238 10.35 90	560 24 • 35 65
Mineral constituents	Magne	Sium Mg	52243 (CONTINUED)	0.08	1.40	1	1	l	1	52244	0 44 6	0 0 4 0 4	7.32
Σ	Coleinm	0 0	52200	0.10	132 6.59	l	ŧ 1	1	i 1		41 2.05 15	0.60	114 5.69
Specific canduct-	(micro-	mhos at 25°C)	STDRAGE	217	2700	170	4080	281	537	REA	1340	1180	2875
	Hd			ω 	7.6	l l	1	1	1	ICK A	7.8	8 .2	8 . 2
Temp.	when	sampled ° F	GUIN VALLEY SEMITROPIC WATER	73	75	77	74	80	72	AVENAL-MCKITTRICK AREA	80	78	92
el I		Agy. Call.	N VALL	5 1 M 5124	5124	5124	2 M 5640	J 1 M 5124	P 1 M 5124	NAL-MC	M 2 M 5126	N 3 M 5126	E 1 M 5126
State well		Dote sampled	JOA	265/22E-10G 1 M 8-15-63 5124	265/22E=270 1 M 8=15=63 5124	26s/24E- 3R 1 M 8-15-63 5124	275/22E- 20 2 M 2- 8-63 5640	275/23E-27J I M 6-26-63 5124	285/23E-25P 1 M 6-26-63 5124	AVER	22S/17E-15M 2 7=11-63 512	225/19E-20N 3 M 7-11-63 5126	235/18E-29E 1 M 7-11-63 5126
		٥٥	SAN	26	26.	26.8	27	27.	28		22	22	23

* TDS by Fvop ct 105°c

TABLE E-I ANALYSES OF GROUND WATER 1963

	Total	CaCO 3		964	476	1710	1470	980	761	736	1782	161
uents in Iion	T D S	Computed Evap 180°c		1107	1745 1950			2764	3190	1851	585 830	
anstit er mil	Sil.	SiO ₂ E		26	-	i i	1	m m	-	.U	17	1
Mineral constituents parts per million	Boran	<u>a</u>		1.60	1 • 80	2 • 2 0	7 • 70	2 • 80	7.60	1 • 80	7.20	13.00
~	Fluo-	r de F		0	1	1	ŧ I	4 • 0	1	0 • 4	0	1
	- <u>i</u> N	trate NO ₃		17.0	29.0	1	1	4.5	0 • 0 0 0	20.00	0	1
million e value	Chla-	ride C 1		2.54	262 7.39	719	404	355 10.01 23	1180	223	1035 29.19	689
parts per million equivolents per million percent reoctonce value	Sulfate	804		513 10.68 60	810 16.86	1	1	1389 28.92 67	612 12•74 24	894 18•61 64	2620	
parts per equivolents percent re	Bicor-	banate HCO3		252 4•13 23	262 4.29	1	i	259 4.25 10	379	229 3•75 13	501 8•21 9	1
par	Carbon-	ate CO3		0.13	0	1	į	0	0	0	0	1
. <u>⊆</u>	Potas -	sium K	ED)	0.10	0.18	1	1	0.03	0.10	0.08	10	8
constituents	Sodium	0 Z	CONTINUED)	175 7•61 43	231 10•04 35	295	674	550 23.91 55	37.48 71	335	1325 57.61 62	818 35•44
Mineral co	Mogne-	sium Mg	52244	5.92	12.09 42	1	å	141 11.60	120 9.87 19	106	180 14.80 16	!
2	Catcium	C O	52200	8 % % % % % % % % % % % % % % % % % % %	128 6•39 22	1		160 7.98 18	107	120	417 20.81 22	1
Specific conduct-	ance (micro-	mhos at 25°C)	AREA	1470	2560	4220	5310	3425	5120	2475	6700	0707
	Hd			9 • 4	8.1	1	1	7.6	7.9	8 • 2	7.2	1
Temp.	when	LL.	EY	7.1	76	73	78	0 8	99	76	1	8
State well		Date sompled Agy.	SAN JOAQUIN VALLEY AVENAL-MCKITTRICK	245/18E-190 1 M 7-25-63 5126	245/19E-30N 1 M 7-11-63 5126	255/18E- 3N 2 M 8- 8-63 5124	255/19E- 7P 1 M 8- 8-63 5124	255/19E-238 1 M 8- 8-63 5124	265/18E- 1A 1 M 8- 8-63 5124	265/18E-23M 2 M 8- 8-63 5124	275/19E-28H 1 M 8-15-63 5124	275/20E-34G 1 M 6- 8-63 5124

Mineral constituents in parts per million	Totol	hardness CoCO 3		1010	3		51	108	31		108	1320	165
	TDS	ОШ			273								
	Sill.	ca SiO ₂		1	1		-	1	1		1	l	ì
	Boron			7.60	0 • 2 0		0.10	0 4 • 0	0 5 0		1.10	2.20	1.30
	Fluo-	r - de		1	ľ		1	i P	1	-	1	1	-
parts per millian equivalents per millian percent reactance value	!- Z	trote NO ₃		1	0		1	å 1	1		1	1	1
	Chlo-	ride C I		3450	15		15	152	14		300	699	586 16.53
	Sulfate	504		1	1.23		1	ł	1		1	1	1
ts per ivalents cent r	B.cor-			1	188 3 • 08 6 5		1		1		i	1	1
por	Carbon-	ote CO3		1	0		1	1	1		1	1	1
Ē	Potos -			1	0.09		1	1	1		1	+	1
Mineral constituents	Sodium	0 2		2340	3.65		2.00	212	2.35		488	578	556
	Magner		52245	1	0 0 0	52246	1	t	1	52247	1	1	1
2	Calcium	D O	52200	1	18 0•90 19		i T	}	-		1	1	1
Specific canduct-	(micro-	mhas at 25°C)	577	11700	483	DIST	292	1120	294		2450	4670	2930
	Ьd		ST HI	1	7.7	ATION	1	ł		AREA	1	1	1
Temp.	when	sampled ° F	EY KE-LO	71	68	IRRIG	67	71	77	URON	16	73	87
State well		Date sampled Agy.	SAN JOAQUIN VALUEY TULARE LAKE-LOST HILLS	235/21E-18D 1 M 7-11-63 5126	245/22E-35N 1 M 7-11-63 5126	CORCORAN IRRIGATION	215/22E-13G 1 M 7-11-63 5126	21s/22E-22M 2 M 7-11-63 5126	225/22E-10A 1 M 7-11-63 5126	MENDOTA-HURON AREA	135/14E-15B 1 M 8-26-63 5050	135/14E-34M 1 M 8-26-63 5050	145/13E-12N 1 M 8-13-63 5050
		۵	S	7	27		2	2]	22		7	Ξ.	17

* TDS by Evop ct 105°c

TABLE E-I ANALYSES OF GROUND WATER 1963

	o l iness	2003		533	1390	159	103	133	711	1329	328	466
Mineral constituents in parts per million	Totol d hardnes	O C C C			=======================================					3050		,
	T D S Totol	Evop 180				1398						
	5111-	Si02		1	-	37	1	1	-	30	1	1
	Baron			2.20	1.80	1 • 90	1.40	7 • 00	0.70	1.30	1.80	1.00
	Fluo-	L		1	1	0	1	1	-	0 • 2	1	!
ports per milion Mineral constituents in equivolents per milion percent reactonce volue	Ni- trate	NO 3		1	1	0.0	1	1	1	0	1	1
	Chlo-	-0		218	631	2.40	2.17	2.37	2.23	209 5•89 14	36	
	Sulfore	804		1	ł	16.03	1	1	1	1664 34.64 80	1	1
	Bicor- bonate	нсоз		ŧ	1	3.39	1	1	4	176	1	1
	Carbon- ate	C 0 3		-	1	0	1	ł	i	0	1	1
	١ ٢	×	LED)	1	1	0.15	1	g g	1	0.18	i i	1
	Sodium	0 2	CONTINUED	390	439	193	273	301	143	395 17.17	195	148
	Magner	δ W	52247	1	1	7.73	1	4	İ	161 13•24 30		
	Calcium	Co	52200	1	1	108	1	1		13.32	1	-
Specific conduct-	(micra- mhos	ot 25°C)		2600	4190	1675	1500	1650	1820	3100	1510	1490
H			AREA	1	1	8 • 2	1	1	1	8 . 2	1	1
Temp.	when	-	NO.	8 6	80	78	80	87	73	72	87	1
State well	Agy. Coll		SAN JOAQUIN VALLEY MENDOTA-HURON	145/13E-25N 1 M 8-13-63 5050	145/14E- 9E 1 M 8-13-63 5050	14S/14E-33N 1 M 8-26-63 5050	145/15E-28L 1 M 8- 1-63 5050	155/14E-36Q 2 M 8-13-63 5050	155/15E-20N 2 M 8-13-63 5050	155/15E-25N 1 M 8-13-63 5050	165/14E-100 1 M 8-13-63 5050	165/15E- 8N 1 M 8-13-63 5050

* TDS by Even ct 105°c

	- 5											
	Total hardness CaCO =		614	350	127	265	301	1280	403	61	168	
ituents in	TDS Total Camputed hardness Evap 180°C CaCO 2		1450	1094								
ansti er m	Sili.	u :	32	36	1	1		1	1	1	-	
Mineral canstituents parts per million	Boron		1.20	1.10	1.70	0	0.70	2.20	2.70	1.40	1.60	
	Fluo- ride F		0.2	0.2	l I	1	1	1	1	ł	1	
	Ni-		0	0.01	1	8	1	1	1	-	1	
million e value	Chlo- ride Cl		2.17	1 • 80 1 1 1	3.16	1.41	51	166	202	143	768	
er million its per million reactance value	Sulfote		738 15.37 76	584 12.16 74	1	1	1	1	!	1	1	
parts per equivalents percent re	Bicor- bonate HCO3		168 2•75 14	150 2.46 15	1	1	i	{		i	1	
bole	Corbon- ote		0	0	{	1	1	l	Į.	- 1	1	
i.e.	Potos:	JED)	0.10	0.13	1	1	ł	đ t	1	1		
instituent	Sodium	CONTINUED)	175 7•61 38	210	267	176	172	393	384	216	568	
Mineral constituents	Mogne- sium Mg	-	7.48	2.71	1	ŧ	1	į į	1	1	1	
Σ	Colcium	52200	96	4.29	1	1	1	ŀ	1	1	1	
Specific conduct-	(micro- mhos		1570	1375	1530	1340	1370	3670	2470	1180	3020	
	E.	AREA	8 . 2	8.1	1	-	-	1	1		1	
Temp.	wnen sampled °F	EY	78	76	σ ₃	76	75	72	92	ω ω	i i	
State well number	Date sampled Agy.	AN JOADUIN VALLEY MENDOTA-HURON AREA	65/15E-250 1 M 8-26-63 5050	65/16E- 9N 2 M 8-13-63 5050	75/16E-18E 1 M 8-22-63 5050	75/17E-23Q 1 M 8-22-63 5050	75/17E-27R 1 M 8-22-63 5050	75/17E-28R 1 M 8-22-63 5050	85/15E-24N 1 M 8-22-63 5050	85/17E-13N 1 M 8-22-63 5050	85/17E-30P 1 M 8-22-63 5050	

* TDS by Fvop ct 105°c

TABLE E-I ANALYSES OF GROUND WATER 1963

	Tatal	hardness CaCO 3		М	406	365	129	215	677	200	341	391
fuents in	T D S	ОШ		194				1091				
cansti er m	Sil.			24	[1	1	ĺ	1	1	-	1
Mineral constituents parts per million	Boran			0 + • 0	0 • 70	1 • 00	1.30	1.50	1.50	1.00	0 9 • 0	0 40
	Flua-	r de		1 • 2	Ì	1	İ	1	-	1	1	1
	- Z	trate NO ₃		0	1	ł	1	2.0	1	1	1	-
million per million ctonce volue	Chla-	ride C.I		0.28	1.56	100	328	178 5•02 29	3.75	1.58	38	1.86
parts per million equivolents per million percent reactonce volue	Sulfate	\$04		0.12	!	1	i ī	437 9.10 52	1	1	1	1
parts per equivolents percent rea	Bicor-	bonate HCO3		133 2.18 71	1	1	1	3.28	1	ł	1	ł
por	Curbon-	ate CO3		0.50	-	1	<u> </u>	0	1	1	1	1
. <u>e</u>	Potas -	Si. X	ED)	0	1	1	t I	0.05	1	1	1	-
onstituents	Sadium	o Z	(CONTINUED)	3.09	144	220	351	289 12.57 74	224	154	134	136
Mineral constituents	Mogner	m u m	52247 (0	-	ì	1	0.41	1	1	1	1
2	Calcium	٥٥	52200	0.05	1	1	1	3.89	1	1	1	1
Specific conduct-	ance (micro-	mhos at 25°C)		298	1400	1680	1870	1750	2170	1570	1330	1540
	Н		AREA	0 • 6	1	1	ţ	8 • 1	-	1	1	1
Temp.	when	sombled ° F	Z	30	1	79	91	77	72	78	78	75
State well		Date sampled Agy.	SAN JOAQUIN VALLEY MENDOTA-HURON	185/19E- 6A 1 M 8-19-63 5000	195/17E-13N 1 M 8-22-63 5050	195/18E-23D 2 M 8-22-63 5050	195/18E-28E 1 M 8-22-63 5050	195/19E-15N 1 M 7-11-63 5050	205/15E-25D 2 M 8-23-63 5050	205/17E-11N 1 M 8-23-63 5050	20s/17E-36D 1 M 8-23-63 5050	215/18E- 1D 1 M 7-11-63 5126

ANALYSES OF GROUND WATER

	,		_											
	Total	hardness CaCO 3		362		118	149		76	121	26	1010	9	
tuents in	0 C F	C) Li		814		0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 0 0 0 0								
ansti		sio ₂		1		18	1		1	+	ı	1	1	
Mineral canstituents ports per million	Boros			0 7 • 0		0 4 •	0 30		0.20	0 5 0	0000	0 * 4 0	0.10	
		a de		1		0.1	1		Î	1	1	1	1	
	1.2	trate NO ₃		6.6		0	1		1	1	1	1	1	
parts per million equivolents per million percent reactonce value	1014	ride		28		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.78		15	10	0.63	1320	10	
million s per r	Sulfate	\$04		487 10•14 79		1.73	1		1	1	1	1	1	
parts per equivalents percent rec	Biror-	bonote HCO3		106 1.74 14		188 3 • 08 33	1		1	1	1	1	1	
bar	Corbon-	ate CO3		0		0	1		1	1	ł	1	1	
.i.	Potos	E ×	JED)	0.08	***	0.05	1		1	1	1	1	1	
onstituent	Soding	0 2	CONTINU	116 5.04		157 6.83	118		17 0 • 74	18	21	418	20	
Mineral constituents	1 0 C C W	sium Mg	52247 (CONTINUED)	3.04	52249	0.90	!	52253	1	ľ	-	1	1	
Σ	Colcium	Co	52200	84 4.19 34		1.45	1		1	1	!	1	1	
Specific conduct-	(micro-	mhos at 25°C)		1200	ANY	880	859		268	336	307	4300	216	
	Hd		AREA	7 • 8	COMPANY	89 2	1	PLAINS	1	1	1	1	-	
Temp.	when	sompled	EY	76	CANAL	65	1		69	10	71	9	7.1	
State well		Date sompled Agy.	SAN JOAQUIN VALLEY MENDOTA-HURON AREA	215/18C-17M 1 M 7-11-63 5126	SAN LUIS CANAL	95/11E-26N 1 M 6-27-63 5050	10S/12E- 6K 1 M 7-18-63 5641	STANISLAUS	1N/10E-17G 1 W 8-14-63 5122	15/11E-25N 1 M 6-28-63 5122	35/11E- 4N 1 M 8-14-63 5122	35/12E-35C 1 M 6-28-63 5122	55/12E- 6D 1 M 6-28-63 5122	

* TDS by Evap ct 105°c

TABLE E-I ANALYSES OF GROUND WATER 1963

	Total hardness as Coco z		115	228	170	73	205		79	20	99	
tuents in	T D S Camputed		604	394		510	471		199		7 8 8	
onsti er m	Sift.	1	29	5 2	1	56	37		57	1	13	
Mineral constituents parts per million	Baron		0.20	90.0	0.0 • 0.0	0 1 0	0 • 10		0.10	0 1 0	0 • 1 0	
	Flua- ride F		0 .	0 . 2	1	0.2	0.5			1	0.2	
	Ni -		0	2.6 0.04		0	0		20.0	1	•	
n million ce value	Chla- ride Cl		2.43	24 0.68 10	® 0 • 0	148	147		0.65	0.25	0.14	
millio per sacton	Sulfate SO ₄		1.05 13 13	0.31	1	1.44	0.21		0.06	1	0.17	1
parts per equivalents percent re	Bicar- banate HCO2		374 6.13	327 5•36 82		160	132 2•16 27		90 1 • 48 59	1	1.13	
par	Carban- ate		0.33	0.17	1	0	0		0	1	0	
ui in	Patas sium X		0.08	0.03	1	0.03	0.03		0.03	1	0.03	
Mineral constituents	Sodium		185	2.04	1.04	160	3.91		1.00	0.65	0.17	
ineral co	Magne- sıum Ma	52254	0 4 0 0 m	2.06	1	0 - 25 3	1.40	52255	0.58	1	99.0	
Σ	Calcium	52200	36 1.80 17	2 2 2 2 2 2 3 8 2 2 3 8 3 8 3 8 3 8 3 8	1	1.20	2.69		1.00	1	0.65 43	
Specific conduct-	(micra- mhos		046	612	437	810	785		239	156	143	
	Hď		8 • 4	8 . 4	-	8 . 2	80	LAINS	7.9	1	7.1	
Temp.	when sampled	EY	1	6	67	6 9	74	CED P	73	74	7.8	
State well	Date sampled Agy. S	SAN JOAQUIN VALLEY MERCED BOTTOMS	75/10E- 7M 1 M 8-26-63 5641	85/13E=16H 1 M 7-18-63 5050	85/14E-24A 1 M 8-19-63 5525	95/12E-17B 1 M 8-28-63 5050	95/13E-29L 1 M 7-17-63 5050	NORTH MERCED PLAINS	45/14E- 8J 1 M 8-28-63 5050	55/12E-32P 1 M 7-18-63 5050	55/14E- 3P 1 M 7-18-63 5050	

TABLE E-I ANALYSES OF GROUND WATER 1963

	Tatol	hordness CaCO 3		75	71		79	261	219	134		165	183
tuents in Ilion	TDS	Computed Evap 180°c				_	183	376	312	237		302	8 9 3
constituent per million	Sill.	si02		1	-		71	2,4	4 5	3.2		20	54
Mineral constituents ports per million	Boran	8		00.0	0000		0.10	0	0000	0 • 1 1		09.0	0
_	Fiuo-	r-de F		1	1		0	0	0 • 2	4.0		0 • 2	4 •
	- Z	trote NO ₃		ł	1		2.7	0.10	14.0	10.0		30.0	52.0 0.84 16
million per million ctance value	Ch10-	ride C i		19	16		0.31	0.65	18 0.51	0.31		14 0 • 39 8	0.56
_ 0	Sulfate	504		i I	1		0.10	0.35	0.21	0.35		0.23	39 0.81 15
parts per equivalents percent re	Bicar-	bonote HCO3		1 1	1		91 1•49 77	334 5 • 4 7 8 3	270 4.43 82	180 2.95 78		218	3 0 8 8 5 5 8 8
par equ per	Carbon-	ate CO3		1	i		0	0	0	0		0	0
ei .	Potas -			1	ŀ		0 0 0 0 0	0.08	0.05	0.05		0.08	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
constituents	Sadium	o N		18	19		0.78	1.30	1.09	1.17		1.35	1.78
Mineral co	Magne-	sium Mg	52257	1	1	52259	0.58	2.63	2,88	0.58	52261	1.40	1.15
2	Calcium		52200	1	ă B		20 1.00 41	2,59	30 1.50 27	42 2•10 54		38 1.90	2 50 4 6
Specific canduct-	(micro-	mhos at 25°C)		240	238		262	602	553	382		447	544
	됩		LAINS	1	1	AINS	7.2	7 • 7	7.6	8 • 0	AINS	7.5	7.2
Temp.	when	o F	EY ERA P	73	75	SNO PLAINS	1	70	7.1	99	ARE P	70	67
State well		Date sampled Agy. Call.	SAN JOAQUIN VALL	95/15E-24F 1 M 8- 7-63 5050	10S/17E-25N 1 M 8- 7-63 5050	NORTH FRE	12S/21E- 6K 1 M 8-20-63 5000	12S/22E-20R 1 M 8- 8-63 5000	135/22E-14D 1 M 8- 8-63 5000	135/23E- 7N 2 M 8-13-63 5000	NORTH TUL	145/24E-36L 1 M 8- 8-63 5000	155/25E- 8C 1 M 8-13-63 5000
		Do	SAN	0 &	10.5		12.0	12.9	13.0	136		14.9	150

* TDS by Fvop ct 105°c

TABLE E-I ANALYSES OF GROUND WATER 1963

	Total hardness os CaCO ₃		226	242	253		242	101	230		4.0	45
uents in Lion	TOS Total Computed hardness Evap 180°c CaCO ₃	· · · ·	880	401	452							308
onstit er mil	Sili- ca SiO ₂ E		8 7	7 7	31		1	1	ŀ		į.	<i>w</i>
Mineral constituents parts per million	Boran B		0 0	0 • 10	0.10		0.10	1.00	0.10		0.20	0 5 0
	Fluo- ride F		0 • 2	0 •	0 • 1		1	-	-		1	• •
	Ni- trote NO ₃		4.7	29.0	78.0 1.26 17		1	1	1		1	0 • 0 3
million e value	Chlo- ride Cl		1.64	1.00	0.62		0.71	34	0.34		25	1 • 4 1
parts per million equivolents per million percent reactonce value	Sulfate SO4		0.31	26 0 54 8	1.000 1.000		1	1	ł		{	1.29
parts per equivolents percent re	Bicar- bonate HCD3		256 4 • 20 66	204 3.34 51	268 4 • 39 60		1	;	1	_	1	1.97
par	Carbon- ate		0.13	16 0 53 8	0		1	1			1	0
. <u>c</u>	Patas . Sium	ED)	0.05	0.05	0.05		1	1	1		-	0 0 8 8
Mineral canstituents	Sadium	CONT INVED)	1.87	1.83	2.26		1.22	2.48	1.22		2.17	3.91
linerol co	Magne- slum Mg	52261	1.48	23 1.89 28	1.81	52262	1	i (1	52263	1	0 • 0 8
Σ	Colcium	52200	3.04	2.94	3.24		1	1	1		1	0 15
Specific conduct-	once (micro- mhas at 25°C)		909	625	680		572	492	540		360	455
	Hd	AINS	8 • 4	8 . 4	8.1	LAINS	1	1	1		1	8 • 1
Тетр.	when sampled ° F	EY ARE PI	7.1	6 8	67	ARE P	74	80	80	NS	76	8 6
State well	Agy.	SAN JOAGUIN VALLEY NORTH TULARE PLAINS	155/25E-16R 1 M 8- 9-63 5000	155/25E-19H 1 M 8- 9-63 5000	185/26E-10M 1 M 7-29-63 5123	SOUTH TULARE PLAINS	21s/27E-15P 2 M 8-28-63 5123	215/27E-27F 1 M	225/27E-11C 1 M 9- 5-63 5123	KERN PLAINS	255/26E- 1R 1 M 6-11-63 5124	255/27E- 4C 1 M 6-20-63 5124

ANALYSES OF GROUND WATER

	Total hardness CaCO z		697	131	283	81	S	0		112	81	
uents in	Camputed hardness Evap 180°C CaCO x							164		206	129	
anstit er mi	Sili- ca SiO ₂	1	1	-	1	1	-	15		20	26	
Mineral canstituents ports per million	Baran		0.10	0 5 0	0 • 0	0.10	00.0	00000		0.18	00.0	
2	Fluo- ride F		1	1	-	1	1	0 • 0		0.1	0	
	Ni- trate No z		-	1	1	1	1	0		0.1	9.6	
million per million ctance value	Chla- ride Cl		222	78	199	103	39	19 0•54 22		17	0.14	
0	Sulfate		;	1	1	1	1	35 0 73 29		0.29	0.15	
parts per equivolents percent re	Bicar- banate HCO3		}	1	1	-	-	1.23		172 2.82 79	1.56 1.56	
par	Carban- ate	2	1	-	1	1	1	0		0	0	
Ë	Patas - sium K	ED)	1	-	1	ł	ł	0		0.05	0.05	
Minerol constituents	Sadium	CONTINUED	110	2.17	96	3.22	2.57	2 639		1.26	0.30	
linerol co	Magners	52263	!	1	;	1	1	0.08	52264	0.74	10 0 82 42	
2	Calcium	52200	1	1	1	1	1	0.10		30	16 0.80 41	
Specific conduct-	mhos	0.6318	1790	545	1050	610	276	238		360	215	
	I. a		1	1	1	1	1	7 • 8	BOTTOMS	8 • 0	7.3	
Temp.	when sampled ° F	RY	74	76	73	78	78	80		77	80	
State well	Dote sampled Agy.	SAN JOAQUIN VALLEY	265/27E- 9G 1 M 6-11-63 5124	27S/26E-27R 1 M 6-20-63 5124	275/27E-29J 1 M 8-14-63 5124	285/26E-11A 1 M 7-15-63 5124	285/27E- 7C 1 M 6-11-63 5124	28S/27E-28L 1 M 7-15-63 5124	CENTERVILLE	145/22E-25P 1 M 8-12-63 5050	145/23E- 8D 1 M 8-13-63 5000	
	Dote	SAN	265/	275/	275/	285/	285/	285/		145,	145/	

* TDS by Evap ct 105°c

TABLE E-I ANALYSES OF GROUND WATER 1963

		3 5		182		250	8 8 8	330	402	336	933	2	-
	Total	hardne CoCO		18		22	8		0 4	w w	60	292	161
uents in	TDS	co Computed hardness SiO ₂ Evop IBO°C CoCO ₃						0 4 6 8 8					
onstit er mi	Sili	co SiO ₂		į.		-	-	21	1	-	1	1	1
Mineral constituents parts per millian	Boron			000	_	0.30	0 • 4 0	0	0 • 20	0 • 5 0	0 9 0	0 8 0	00
	Fluo-	r de F		1		1	ŧ,	0	ì	i	1	1	1
	i.Z	trate NO3		1		1	1	14.0	1	1	;	1	!
million per million ctonce volue	Ch10-	ride C 1		1.16		18	2.37	106 2.99 26	277	1.92	2.09	2.51	142
	Sulfate	\$04		ł		1	1	115 2.39 21	-	1	1	1	1
parts per equivalents percent rea	Bicor-	bonate HC03		1		1	1	349	1	1	1	-	1
par	Carbon-	ate CO3		1		1	1	0	1	ì	1		1
. <u>=</u>	Potas -	sic m		1		1	1	0.08	ł	-	1	1	-
nstituents	Sodium			1.91		1.83	3.17	110 4•78 42	147	92	9 8 8 8 8	100	98
Mineral constituents	Magne-	E n is	52266	1	52267	1	i	3.21	1	1	•	1	1
Σ	Calcium		52200	1		1	1	3.39	1	1	1	-	-
Specific conduct-	ance (micra-	mhas at 25°C)	DIST	552		637	970	1000	1480	1030	986	986	802
	H		ATER	-	I D	1	1	8.1	1	1	1	1	-
Temp.	when	sombled o F	EY NTY v	73	ALIF	1	1	}	}	1	1	1	1
State well		Date sampled Agy.	SAN JOAQUIN VALLEY KINGS COUNTY WATER DIST	194/26E- 3K 1 M 6-12-63 5123	CENTRAL CALIF	65/ 9E-18F 1 M 8-17-63 5641	75/ 8E-12P 1 M 8- 6-63 5641	75/ 8E-13F M 8- 6-63 5641	7S/ 8E=23R 1 M 8= 6-63 5641	75/ 9E-32H 1 M 8- 6-63 5641	85/ 9E-16E 1 M 7-23-63 5641	95/ 9E- 5B 1 M 7-23-63 5641	95/13E-31D 1 M 7-18-63 5641

	80 80		١٥.		σ,	2	0		<u>ال</u>	4	0
	Tatal hardnes CaCO		285	157	328	345	1460	417	205	134	200
tuents in	Sili- TDS Tatal ca Computed hardness SiO ₂ Evop 180°c CaCO ₃			485							
er m	Sili- ca SiO ₂		1	15	1	-	1	1	1		
Mineral constituents ports per million	Boran		0 4 • 0	0 • 2 0	0 4 • 0	0.70	1.80	0 90	0	0 • 40	0 4 • 0
_	Flua- ride F		1	7.0	1	B E	-	1	-	1	-
	Ni- trate NO ₃		-	0	1	1	1	1	1	1	1
million per million ctonce value	Chlo- ride Cl		1.78	165	374	514	840	407	275	241	208
0	Sulfate SO ₄		1	1.21 1.51	1	1	1	-	1	1	1
ports per equivolents percent re	Bucar- banate HCO ₃		1	143 2•34 29	1	{	1	1	1	-	1
pod	Carban- ate		}	0	1	1	ł	1	1		1
ë	Patas - sium K	JED)	1	0.05	1	1	1	1	1	1	1
nstituent	Sadium	CONTINU	38	119 5.17 62	195	284 12•35	500	192	195	195	160
Mineral constituents	Mogne- sium Mg	52267 (CONTINUED)	ì	12 0 • 99 12	1	1	ì	•	1	1	ł
Σ	Calcium	52200	ŀ	2.15 2.15	1	ł	1	1	1	1	1
Specific conduct-	mhos		705	810	1640	2070	0094	1770	1360	1240	1190
	Ha.	0 1	ŀ	8 2	1	1	-	1	1	1	1
Temp.	when sompled ° F	EY ALIF	1	-	1		1	1	1	1	1
State well	Agy.	SAN JOAQUIN VALLEY CENTRAL GALIF.	10S/10E-28D 1 M 7-23-63 5641	10S/12E-25L 1 M 7-18-63 5641	10s/12E-27K 1 M 7-23-63 5641	10S/12E-35K 1 M 7-23-63 5641	115/10E-23K 1 M 8-16-63 5641	115/12E-13J 1 M 7-23-63 5641	115/13E-17F 1 M 7-23-63 5641	115/13E-36B 1 M 7-23-63 5641	125/14E-29B 1 M 7-23-63 5641

* TDS by Evap ct 105°c

TABLE E-I ANALYSES OF GROUND WATER 1963

		Total	COCO 3		7		465	539	651	415	1018		153	205
tuents in	llion		Computed as Evap 180°c CoCO 3				937	1228		882	2540		293	372
constil	er mi	Sili	si0 ₂		1		22	52	+	64	000		64	τ υ
Mineral constituents	parts per million	Boron	В		0 * 0		1.70	9	2 • 00	1.20	8 • 60		0.07	0 • 10
		FIno-	r - de		{		• •	0 • 3	1	0	0		4 •	4.0
		<u>.</u>	trote NO ₃		1		6 • 1 0 • 10 1	1.6	1	9 • 1 0 • 15	0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °		6.5	10.0
million	e value	Ch10-	ride C I		1.44		1.41	1.78	1.49	1.24	231		18 0•51 12	0.54
Ι.	0	Sulfate	804		1		380 7.91 53	606 12.62 66	1	457 9.51 71	1430 29•77 76		1.15	2.39
parts per	cent r	Bicar-	bonate HCD3				342 5.61 37	280 4.59 24	i i	150 2•46 18	188 3 • 08		158 2.59 60	145 2•38 44
par	ber	Corbon-	co3		-		0	0	1	0	0		0	0
.5		Potas -	E X	ED)	i i		0.10	0.13	0.15	0.08	0.15		0.10	0.10
0	constituents	Sodium	0 2	(CONTINUED)	98		120	186 8.09 43	154	109	403 17•52 46		1.22	1.32
	Mineral	Mogne-	M g	52267 (1		3.95	5 4 6 2 9 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1	9 4 4 9 9 5 9 0 5	143		0.90	0.90
2	Σ	Calcium	Ca	52200	1	52300	107	107	1	4 0 9 4 0 9 4 4 0 9 9 9	172 8.58 23	52700	2.15	3.19
Specific	conduct-	(micra-	at 25°C)		480		1350	1710	1780	1280	3310		441	557
		H.		I.D.	t 1		7.8	0	1	7.9	0		8	0
	Temp.	sampled	4	EY ALIF.	1		78	98	1	74	74		i	1
o to to	number	200	Date sampled Coll.	SAN JOAQUIN VALLEY CENTRAL CALIF.	135/15E-18L 1 M 7-23-63 5641	PANOCHE VALLEY	155/10E-20D 1 M 4- 3-63 5050	155/10E-21C 1 M 4- 3-63 5050	155/10E-21L 1 M 4- 3-63 5050	155/10E-22D 1 M 4- 3-63 5050	155/11E-30C 1 M 4- 3-63 5050	CUMMINGS VALLEY	32S/31E-35N 1 M 6-10-63 5050	32S/32E-190 1 M 6-10-63 5124
1015	חת		Date sar	SAN JOA	135/15E	PANOCHE	155/10E	155/10E	155/106	155/108	4- 3-	CUMMING	325/31E 6-10-	325/328

ANALYSES OF GROUND WATER

Stote well		Тетр.		Specific conduct-	Σ	ineral co	Mineral constituents	. <u>e</u>	por	ports per equivolents percent re	er million ts per million reactonce value	nillion s value		٤	Mineral canstituents parts per million	canstituent per million	uents in Ilion	
		when	Hd	once (micro-	Colcium	Magner	Sadium	Potos =	Carbon-	Bicor- S	Sulfote	Ch10-	-i.Z	F100-	Boron	Siii-	TDS	Totol
Date sampled	Agy. S	sampled ° F		mhos at 25°C)	٥٥	E n is	Z	síum X	ate CO3		504	ride	trote NO ₃				p _o	os os CaCO 3
CUMMINGS VALLEY	LEY.				52700 (CONTINU	ED)											
325/32E-27P M 6-14-63 5050	M 0 5 0 5	62	7.7	477	2.84	1.15	18 0.78 16	0.03	0	215	43 0.90 18	0.23	14.0 0.23	0 • 1	0 • 0	32	293	200
325/32E-28H M 6-11-63 5050	0 5 0 5 M	1	7.7	545	3.49	20 1•64 28	18 0•78 13	0.03	0	263 4•31 75	43 0.90 16	0.25	16.0	0 • 2	0 • 0	53	360	257
TEHACHAPI VALLEY	ALLEY				52800													
325/32E-13P 6-11-63	3P M 5050	-	9 4	459	2.40	0.66	30	0.05	0.10	187 3.06 70	36 0 75	13	5.9	. 0	0.14	28	766	153
325/32E-260 M 6-12-63 5050	M 0 5 0 5	Į Į	8 • 4	1060	167 8 . 33 69	1.97	38	0.05	0.40	299 4•90 41	258	0 8 8 8 8	16.0	0.2	600	36	735	515
32S/33E-27D M 6-13-63 5050	M 5050	1	80 60	672	4.84 71	0.90	1.09	0.03	0	182 2•98 49	1.17	35 0 99	0.90	0	0	22	343	287
32S/33E-29P 1 M 6-12-63 5050	1 M 5050	1	7.9	243	1.35	0.41	0.52	0.03	0	86 1•41 61	0.15	0.23	32.0	0 0	0 • 0	36	171	8 8
32S/33E-30C M 6-12-63 5050	0 5 0 5 M	1	ω •	498	3.34	0.90	1.13	0.05	0.17	241 3•95 74	42 0.87 16	0.31	4 • 3 0 • 0 7 1	0 . 2	0.07	25	306	212
325/34E-34B M 6-13-63 5050	0405 0405	1	ω ιυ	645	2.30	1.07	3.26	0.05	0.30	237	1.27	14 0•39 6	0.000	9 • 0	0 0 0	32	410	169
k																		

* TDS by Evop ct 105°c

TABLE E-2
HEAVY METAL ANALYSES OF GROUND WATER

																					-		
Zinc (Zn)		0		0	0	0	0		9		0	0	20		0		0		0	0			
Vanadium (V)																							
Titonium (Tr.)																							
(Pb)		0		0	0	0	0		0		0	0	0		10		0		0	0			
Nickel (Ni)																							
Malyb- denum (Ma)																							
Manga- nese (Mn)		0		0	0	0	0		0		0	0	0		0		0		0	0			
Germa- nium (Ge)																							
Gallium (Ga)																							
Iron (Fe)		0		0	10	0	0		10		07	0	1,50		30		30		0	8			
(Cu)	ų	0	φ.	0	0	0	0		0		0	8	0		10	dstrict	0		of Of	0			
Chra- mium (Cr)	Distric		Distric					dstrict		rea				Area		ation I		Area					
Cabalf (Ca)	rigation		rigation					[gation [Mendota 4				ngs Rive		r Conserv		Kittrick					
(Cd)	desto Ir		rlock Ir					Mido Irr		Delta				Lower Ka		lta Wate		venal-Mc					
Bismuth (Bi)	2							E								(вмеві Де		4					
Beryt- lium (Be)																							
Arsenic (As)		10		0	0	0	0		0	_	0	0	10		0		8		0	0			
Alumi- num (AI)		90		20	8	110	0		100		8	8	30		8.		120		8	110			
Oate		5-26-63		9-19-63	9-19-63		9-13-63		6-27-63		7-17-63	7-23-63	7-22-63		7-30-63		7-11-63		7-11-63	7-11-63			
Use		rrigation							rrigation		rrigation	rrigation	rrigation		rrigation		Jon. & Irr.		Irrigation	Irrigation			
		н		Д	Ω	А	A		Н			н	H		Н		п		-	Н			
Well Location Number		35/ TE - 13A2 - M		4s/ 9E - 30R1 - M	45/11E - 21D1 - M	55/10E - 28H1 - M	65/11E - 9C1 - M		95/14E - 20B - M		45/ 7E - 34J1 - M	98/ 9E - 21F1 - M	95/10E - 36R1 - M		18s/19E - 6G1 - M		20S/22E - 1A1 - M		225/19E - 20N - M	245/19E - 30Nl - M			
	Use Code Alarm- Accepted the Code (Alarm- Accepted the Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code (Code	Use Oole Alumname Alumname (Alumname Alumname Alumname (Alumname Alumname Alumname Alumname (Alumname Alumname Alumname Alumname (Alumname Alumname Alumname Alumname Alumname (Alumname Alumname Oose Alumi List Beryl Beryl Codmun Cobal (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper (Co) Coper	Use Alumi Listerion 6-26-63 10 10 10 10 10 10 10 10 10 10 10 10 10	Use Code Alamin Last Early Beryl Code Manual Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Co	Use Code Albard Code Albard Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code	Parameter Use Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Cooke Co	Use Code Albard Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code	Use	Use	Use Column Company Lay Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column	Use	Use Other Atherical Cape Use Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape Cape	Use Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other	Use Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other		- M Iltigation Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One Alticol Good One	- M	March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March Marc	Trightion Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario Cario	March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March March Marc	1	- N	

> More than the amount indicated.
< Less than the amount indicated.
Blank space indicates constituent not analyzed,

			6494		I	I		I		11	I	I	I	I	14	-	
	t ne grow															7	
	11.0															-	
	100		E			ī				I	I	-				-	
	1841															4	
	Mentyle Merrollo (FAM)																
	HE HANNIE		Į.		r	I		Harry.				π	:	÷		1	
Hari-	E INTE															¥ ±	
He too Re	III H															-	
s neitherde in father in Billion	==		HHH +		#	π		+		=	H	Ŧ	-	_	Ξ	÷	
iiiai (E = 0		He see		Ξ	I		Ξ	Figure 1 to the training of training of training of training of training of the training of tr	~	I	x	14	Ξ	I	-	
	E E	11.8		N H H			- H		11 1 11							-	
	77.	# + H		Heart In this is Albin			HHH (18) I DHHH C M F 881		He for t							20 -	
	H # 4	THE PERSON IN THE PERSON		f feet f			HHH (B		41144							± -	
	11 (14)	=							Maria M							H	
	Hery to the state of the state															· =	
	2 T		HA!		×	Z.		X	-	I	2	I	z	i	2		
	1174		2114		100	H		X		111	平	-	H-4	~			
	#Hotel		1 11 51		1 11 13	1 11 11		1 10 11		1111	1 4 1 1		- (() -	1 !		-	
	Hab		2 4 11		4117 14 10 4 11 4 5	41 1 41 41 41		to takes		treated better	FIFTHERIT OF FEE	4 1 4 1 4	t their a thick t	t trait o	1 10 11	0 7 -	
	I Her		111		H1 H	1111		7		11 14 14	11 11	111	HH HH	, ,	-	2	
	MATE II II THE		+ 40-101		1111/1111	11. With/wt		11.14		10 11/4	1 +1 /-1	11 /11	11 +1/-4	- 11 -	41/44	4 / 4 > 4	

Table E-3
QUALITY OF GROUND WATERS IN CALIFORNIA
RADIOASSAY OF GROUND WATER

1963

WELL NUMBER	DATE SAMPLED	GROSS ACTIVITY	DATE ANALYZED					
Central Ca	Central California Irrigation District							
6S-9E-18F1-M	8-17-63	9.5 <u>+</u> 4.8	11-07-63					
7S-8E-12P1-M	8- 6-63	10.3 + 4.8	11-12-63					
7S-8E-13F1-M	8- 6-63	13.0 + 4.8	11-12-63					
7S-8E-23R1-M	8- 6-63	4.0 + 4.6	11-07-63					
7S-9E-32H1-M	8- 6-63	1.7 + 4.6	11-07-63					
8s-9e-16el-m	7-23-63	5.8 <u>+</u> 4.6	11-07-63					
9S-9E-5B1-M	7-23-63	0 + 4.6	11-07-63					
9S-13E-31D1-M	7-18-63	0.6 + 4.6	11-07-63					
10S-10E-28D1-M	7-23-63	3.1 + 4.7	11-07-63					
10S-12E-25L-M	7-18-63	4.0 + 4.6	11-07-63					
10S-12E-27Kl-M	7-23-63	0 + 4.5	11-07-63					
10S-12E-35K1-M	7-23-63	3.2 + 4.6	11-07-63					
lls-10E-23K1-M	8-16-63	9.0 + 4.7	11-07-63					
lls-12E-13Jl-M	7-23-63	0.3 + 4.6	11-07-63					
11S-13E-17F1-M	7-23-63	2.2 + 4.6	11-07-63					
11S-13E-36B1-M	7-23-63	9.5 + 4.7	11-07-63					
12S-14E-29B1-M	7-23-63	7.0 + 4.7	11-07-63					
13S-15E-18L1-M	7-23-63	7.1 + 4.6	11-07-63					

Table E-3

WELL NUMBER	DATE SAMPLED	GROSS ACTIVITY®	DATE ANALYZED						
Oakdale Irrigation District									
1S-10E-33R1-M	8-19-63	9.3 <u>+</u> 4.8	11-15-63						
2S-10E-10D1-M	8-14-63	0 + 4.6	11-26-63						
2S-10E-27G1-M	8-14-63	0 + 4.7	11-26-63						
3S-10E-13A1-M	6-28-63	7.6 <u>+</u> 4.8	11-15-63						
Mode	Modesto Irrigation District								
4S-10E-1D1-M	7-30-63	7.3 + 4.8	11-26-63						
		_							
Turl	ock Irrigati	on District							
4S-11E-5M1-M	9- 5-63	0 + 4.7	11-26-63						
Merc	ed Irrigatio	on District							
6s-11E-27K1-M	7- 1-63	1.3 <u>+</u> 4.6	11-15-63						
6S-11E-36P1-M	7- 9-63	0.9 + 4.7	11-15-63						
6s-12E-21N1-M	7- 9-63	4.2 + 4.7	11-15-63						
7S-llE-1:Ml-M	7- 2-63	45.9 <u>+</u> 5.3	11-15-63						
7S-12h-1Q1-M	9-10-63	0 + 4.7	11-15-63						
7S-12E-19A1-M	6-20-63	3.3 <u>+</u> 4.7	11-15-63						
7S-13E-4P1-M	7- 9-63	3.4 ± 4.7	11-15-63						
7S-13E-22C1-M	7-23-63	6.1 <u>+</u> 4.8	11-15-63						
7S-14E-9R1-M	8- 8-63	1.6 + 4.7	11-15-63						
7S-11/E-31M1-M	8- 8-63	6.6 <u>+</u> 4.8	11-15-63						
7S-15E-18K1-M	8- 7-63	7.9 + 4.8	11-15-63						
7S-15E-30E1-M	8- 7-63	6.4 + 4.8	11-15-63						
8S-14E-2D1-M	8-21-63	0 + 4.6	11-15-63						

⁹ PICOCURIES PER LITER

Table E-3

WELL NUMBER	DATE SAMPLED	GROSS ACTIVITY ⁰	DATE ANALYZED				
Delta-Mondota Area							
3S-7E-33Cl-M	7-12-63	0 + 4.7	11-26-63				
5S-8E-8G1 - M	8- 5-63	0 + 4.6	11-26-63				
5S-8E-27ML-M	8- 5-63	0 + 4.7	11-26-63				
8s-9e-12el-M	7-23-63	6.7 + 4.7	11-07-63				
9S-9E-2L1-M	7-23-63	4.9 + 4.6	11-07-63				
9S-9E-21F1-M	7-23-63	0 + 4.6	11-07-63				
95-10E-36R1-M	7-22-63	1.3 + 4.6	11-07-63				
Made	era Irrigatio	on District					
13S-17E-5P1-M	8-15-63	61.6 + 5.6	9-18-63				
West	Chowchilla	- Madera Area					
10S-13E-1A1-M	7-23-63	14.3 + 4.7	11-07-63				
13S-15E-22J1-M	8-19-63	10.2 + 4.9	9-20-63				
Fres	sno Irrigatio	n District					
12S-20E-32J1-M	11-12-63	12.0 + 4.7	11-12-63				
12S-21E-31P1-M	7-11-63	3.7 <u>+</u> 5.1	9-17-63				
13S-17E-22B1-M	6-25-63	42.9 + 5.6	9-17-63				
13S-17E-29L1-M	6-20 - 63	25.3 ± 5.4	9-17-63				
13S-19E-29E1-M	7-17-63	6.6 <u>+</u> 4.8	9-18-63				
13S-20E-27J1-M	6-26-63	10.6 + 3.6	8-07-63				
13S-21E-15N2-M	6-12-63	10.5 + 4.7	11-12-63				
13S-22E-28C2-M	7-11-63	2.4 + 5.1	9-17-63				
13S-23E-30J1-M	7-19-63	16.4 + 4.8	11-12-63				

a-PICOCURIES PER LITER

DATE GROSS ACTIVITY WELL NUMBER DATE ANALYZED SAMPLED Fresno Irrigation District (Continued) 14S-17E-13H1-M 6-25-63 5.8 + 5.1 9-17-63 145-18E-26N1-M 6-25-63 20.0 + 5.39-17-63 14S-19E-7ML-M 6-12-63 26.7 + 4.9 11-12-63 9.3 + 4.7 14S-19E-14P1-M 6-12-63 11-12-63 14S-19E-22R1-M 6-26-63 15.0 + 3.7 8-07-63 14S-20E-27C1-M 6-12-63 12.8 + 4.8 11-12-63 14S-21E-12P1-M 6-29-63 11.8 + 3.78-07-63 Fresno Slough Area 15S-17E-10R1-M 8-12-63 18.4 + 5.2 9-18-63 15S-17E-34A1-M C-12-63 5.2 + 4.9 9-18-63 17.8 + 4.8 15S-18E-16G1-M 6-12-63 11-12-63 15S-19E-35L1-M 8-12-63 13.5 + 5.1 9-18-63 8-26-63 16S-17E-10G-M 68.5 + 5.89-20-63 16S-18E-10Al-M 8-12-63 15.4 + 5.0 9-19-63 Consolidated Irrigation District 15S-21E-24L1-M 8-12-63 21.4 + 5.2 9-18-63 Lower Kings River Area 17S-18E-35Q1-M 8-26-63 0 + 4.8 9-20-63 Orange Cove Irrigation District 15S-24E-23K1-M 0 + 4.8 8-23-63 9-18-63

Table E-3

WELL NUMBER	DATE SAMPLED	GROSS ACTIVITY ⁰	DATE ANALYZED				
Mendota-Huron Area							
13S-14E-15B1-M	8-26-63	8.7 + 4.9	9-20-63				
13S-14E-34M1-M	8-26-63	5 .6 <u>+</u> 4 . 9	9-20-63				
14S-13E-12N1-M	8-13-63	3.0 <u>+</u> 4.9	9-18-63				
14S-13E-25N1-M	8-13-63	6.6 + 4.9	9-18-63				
14S-14E-9M-M	8-13-63	21.2 + 5.2	9-18-63				
14S-14E-33N1-M	8-26-63	9.0 + 4.7	11-12-63				
14S-15E-28L1-M	8-13-63	7.5 <u>+</u> 5.0	9-18-63				
15S-14E-36Q2-M	8-13-63	0 + 4.8	9-18-63				
15S-15E-20N2-M	8-13-63	5.0 <u>+</u> 5.0	9-18-63				
15S-15E-25N1-M	8-13-63	9.0 <u>+</u> 5.1	9-18-63				
16s-14e-10Q1-M	8-13-63	3.3 <u>+</u> 4.6	11-12-63				
16s-15E-8N1-M	8-13-63	7.1 + 4.8	9-19-63				
16s-15E-25Q1-M	8-26-63	13.8 <u>+</u> 5.0	9-20-63				
16S-16E-9N2-M	8-13-63	3.6 + 4.8	9-19-63				
17S-16E-18E1-M	8-22-63	0 + 4.7	9-20-63				
17S-17E-23Q1-M	8-22-63	3.9 <u>+</u> 4.6	11-12-63				
17S-17E-27R1-M	8-22-63	2.1 <u>+</u> 4.9	9-20-63				
17S-17E-28R1-M	8-22-63	7.1 + 4.8	9-20-63				
18S-15E-24N1-M	8-22-63	4.5 + 4.9	9-20-63				
18S-17E-13N1-M	8-22-63	0 + 4.9	9-20-63				
18S-17E-30P1-M	8-22-63	4.8 + 4.9	9-20-63				
19 S-17 E-13N1-M	8-22-63	6.8 + 4.8	9-20-63				
19S-18E-23D2-M	8-22-63	3.1 ± 4.9	9-20-63				

o PICOCURIES PER LITER

Table E-3

1963

WELL NUMBER	DATE SAMPLED	GROSS ACTIVITY ⁰	DATE ANALYZED					
Mendot	Mendota-Huron Area (Continued)							
19S-18E-28 E1-M	8-22-63	0.5 + 4.9	9-20-63					
20S-15E-25D2-M	8-23-63	3.3 <u>+</u> 4.6	11-12-63					
20S-17E-11N1-M	8-23-63	3.5 <u>+</u> 4.9	9-20-63					
20S-17E-36D1-M	8-23-63	5.1 <u>+</u> 4.8	9-20-63					
San Luis Canal Company								
10S-12E-6K1-M	7-18-63	0 <u>+</u> 4.6	11-07-63					
	Stanislaus	Plains						
lN-10E-17G-M	8-14-63	o <u>+</u> 4.8	11 -2 6-63					
1S-11E-36E1-M	6-28-63	0 + 4.7	11-26-63					
3S-11E-9D1-M	8-14-63	0 + 4.7	11-26-63					
3S-12E-26P1-M	6-28-63	15.7 <u>+</u> 5.0	11-26-63					
5S-12E-6D1-M	6-28-63	0 + 4.6	11-26-63					
	Merced Bot	toms						
7S-10E-7M1-M		20.0 + 4.9	11- 7-63					
8s-14E-24A1-M	8-19-63	_	11-15-63					
	27. 41 16 7	7.7						
	North Madera	Plains						
9S-15E-24F1-M	8- 7-63	0 + 5.0	9-17-63					
	Centerville	Bottoms						
14S-22E-25P1-M	8-12-63	2.6 <u>+</u> 5.0	9-18-63					

$\begin{tabular}{ll} \begin{tabular}{ll} \be$

		CONSTITUENTS IN PARTS PER MILLION (ppm)					
WELL LOCATION NUMBER	DATE	ABS*	LITHIUM (Li)				
Turlock Irrigation District							
45/8E - 24Al-M	9/18/63	0.00					
	Delta 1	Mendota Area					
8s/9E - 2P-M	6/27/63	0.00					
	Lower Ki	ngs River Ar	ea				
19S/19E - 25L-M	8/30/63	0.00					
	Orange Cove	Irrigation D	istrict				
15S/24E - 23Kl-M	8/23/63	0.00					
Kawea	h Delta Wate	r Conservati	on District				
20S/26E - 3Fl-M	8/28/63	0.00					
	Lindmore Ir	rigation Dis	trict				
20S/27E - 3LJ1-M	9/ 5/63	0.00					
	Shafter-Wasc	o Irrigation	District				
28s/26E - 30Al-M	6/20/63		0.0				
	Kern Ri	ver Delta Ar	rea				
30S/24E - 14H1-M	6/13/63		0.0				
32S/27E - 16R1-M	3/13/63		0.0				

^{*} Alkyl-Benzene-Sulfonate (Detergents)

TABLE E-4
ANALYSES OF MISCELLANEOUS CONSTITUENTS

		CONSTITUENTS IN PARTS PER MILLION (ppm)				
WELL LOCATION NUMBER	DATE	ABS*	LITHIUM (Li)			
	Edison-	Maricopa Are	ea			
30S/29E - 20Al-M	6/11/63		0.0			
11N/20W - 8R1-S	7/ 2/63		0.0			
11N/20W - 25K1-S	7/ 2/63		0.0			
12N/21W - 33N1-S	6/12/63		0.0			
	Avenal-N	McKittrick Az	rea			
26S/18E - 1A-M	8/ 8/63		<3.8 ¹			
27S/20E - 34Gl-M	6/ 8/63		0.0			
	Merc	ed Bottoms				
8s/13E - 16H-M	7/18/63	0.00				
	South	Tulare Plair	ıs			
21S/27E - 27F1-M	9/ 5/63	0.44				
	Ke	rn Plains				
26S/27E - 9Gl-M			0.2			
	. , ,					
	Center	ville Bottom	ıs			
14S/22E - 25P1-M	8/12/63	0.00				

^{*} Alkyl-Benzene-Sulfonate (Detergents)

[≺]Less than amount indicated.

¹ Approximation due to interference in determination.

LEGEND

- WELLS MEASURED MONTHLY
- WELLS MEASURED ANNUALLY AND SEMI-ANNUALLY
- A GROUND WATER QUALITY MONITERING WELLS

STATE OF CALIFORNIA

THE RESOURCES AGENCY

DEPARTMENT OF WATER RESOURCES

SAN JOAQUIN VALLEY BRANCH

HYDROLOGIC DATA

LOCATION OF SELECTED OBSERVATION WELLS

1962-1963

SCALE OF MILES

12

STATE OF CALIFORNIA
THE RESOURCES AGENCY
DEPARTMENT OF WATER RESOURCES
SAN JOAQUIN VALLEY BRANCH

POSO SOIL CONSERVATION DISTRICT COOPERATIVE PROGRAM AREA

SCALE OF MILES

STATE OF CALIFORNIA
THE RESOURCES AGENCY
DEPARTMENT OF WATER RESOURCES
SAN JOAQUIN VALLEY BRANCH

KERN COUNTY COOPERATIVE PROGRAM AREA

SCALE OF MILES

SCALE OF MILES

U.S.G.S. DA

Z

Z 0

ELEVA

MILL CREEK GROUND WATER AREA

AREA 12825 SOUARE MILES AVERAGE GROUND SURFACE ELEVATION 305

TULARE GROUND WATER AREA

AREA 12107 SQUARE MILES AVERAGE GROUND SURFACE ELEVATION 363'

ELK BAYOU GROUND WATER AREA

AREA 676 SQUARE MILES
AVERAGE GROUND SURFACE ELEVATION 295

OUND

STATE OF CALIFORNIA
THE RESOURCES AGENCY
DEPARTMENT OF WATER RESOURCES

SAN JOAQUIN VALLEY BRANCH

HYDROLOGIC DATA 1962-1963

FLUCTUATION OF AVERAGE WATER LEVEL,
1921 TO 1963 IN 19 HISTORIC GROUND WATER AREAS
IN SAN JOAQUIN VALLEY

1965

N FEET - USGS DATC

Z 0

< > <

LEGEND

CONNECTS MEASUREMENTS MADE AT INTERVALS
OF ONE YEAR OR MORE
GROUND LEVEL

STATE OF CALIFORNIA
THE RESOURCES AGENCY
DEPARTMENT OF WATER RESOURCES
SAN JOAQUIN VALLEY BRANCH

HYDROLOGIC DATA 1962-1963

FLUCTUATION OF WATER LEVEL
IN SELECTED WELLS IN SAN JOAQUIN VALLEY

N JOAQUIN VALLEY (5-22.00)
TER IRRIGATION DISTRICT (5-22.26)
WELL 185/27E-29DI.M.D.B.GM.
GROUND SURFACE ELEVATION 446

LEGEND

— CONNECTS MEASUREMENTS MADE AT INTERVALS
OF ONE YEAR OR MORE

____ GROUND LEVEL

Z - Z O - F 4 > H - J

S. DATUI

O

FEET - U.S.

STATE OF CALIFORNIA
THE RESOURCES AGENCY
DEPARTMENT OF WATER RESOURCES
SAN JOAQUIN VALLEY BRANCH

HYDROLOGIC DATA 1962-1963

FLUCTUATION OF WATER LEVEL
BELECTED WELLS IN SAN JOAQUIN VALLEY

FLUCTUATION OF WATER LEVEL
IN SELECTED WELLS IN SAN JOAQUIN VALLEY

22.36)

SAN JOAQUIN VALLEY (5-22.00)

NORTH KERN WATER STORAGE DISTRICT (5-22.37)

WELL 275/25E-22AI, M.D.B.A.M.

GROUND SURFACE ELEVATION 382'

VATOR TEET I CO

40

S 0

STATE OF CALIFORNIA
THE RESOURCES AGENCY
DEPARTMENT OF WATER RESOURCES
SAN JOAQUIN VALLEY BRANCH

HYDROLOGIC DATA 1962-1963

FLUCTUATION OF WATER LEVEL IN SELECTED WELLS IN SAN JOAQUIN VALLEY

U.S.G.S. DATU

M M L Z

Z

0

1

Ш

SAN JOAQUIN VALLEY (5-22.00) MENDOTA-HURON AREA (5-22.47) WELL 17S/16E-24RI, M.D.B 8.M GROUND SURFACE ELEVATION 236'

LEGEND

— — CONNECTS MEASUREMENTS MADE AT INTERVALS OF ONE YEAR OR MORE

___ GROUND LEVEL

STATE OF CALIFORNIA
THE RESOURCES AGENCY
DEPARTMENT OF WATER RESOURCES
SAN JOAQUIN VALLEY BRANCH

HYDROLOGIC DATA 1962-1963

FLUCTUATION OF WATER LEVEL

SELECTED WELLS IN SAN JOAQUIN VALLEY

Plate D-1

Surface Water Sampling and Recorder Stations

Station name	Station number
Big Creek above Pine Flat Dam	33d
Chowchilla River near Raymond	114
Delta-Mendota Canal near Mendota	92
Delta-Mendota Canal near Tracya	93
Fresno River near Daulton	113
Kaweah River below Terminus Dam	35
Kern River near Bakersfield	36
Kern River below Isabella Dam	36a
Kern River at Kernville	36b
Kings River below North Fork	33c
Kings River below Peoples Weir	34
Kings River below Pine Flat Dam	33b
Merced River below Exchequer Dam	32a
Merced River near Stevinsonb	32
Salt Slough at San Luis Ranch	24c
San Joaquin River at Crows Landing Bridge	26b
San Joaquin River at Fremont Ford Bridgeb	25 c
San Joaquin River at Friant Dam	24
San Joaquin River near Grayson	26
San Joaquin River at Hills Ferry Bridge ^C	25b
San Joaquin River at Maze Road Bridge	26a
San Joaquin River near Mendota	25
San Joaquin River at Patterson Bridgeb	27a
San Joaquin River near Vernalisb	27
Stanislaus River near Mouth ^D	29
Stanislaus River below Tulloch Dam	29a
Tule River below Success Dam	91
Tuolumne River below Don Pedro Dam	31a
Tuolumne River at Hickman-Waterford Bridge	30
Tuolumne River at Tuolumne Cityb	31
a Not shown on plate as station is outside	
boundary. Driginally monitored by Delta	Branch,

- a Not shown on plate as station is outside of bran boundary. Driginally monitored by Delta Branch, transferred to San Joaquin Valley Branch as of July 1, 1963.
- b Conductivity recorder installed at this surface water station.
- c Discontinued as of July 1, 1963.

STATE OF CALIFORNIA
THE RESOURCES AGENCY
DEPARTMENT OF WATER RESOURCES
SAN JOAQUIN VALLEY BRANCH
HYDROLOGIC DATA

WEEKLY MEAN SPECIFIC CONDUCTANCE AT SELECTED STATIONS SAN JOAQUIN VALLEY 1963

STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN VALLEY BRANCH

HYDROLOGIC DATA

GROUND WATER QUALITY BASINS AND AREAS SAN JOAQUIN VALLEY OCT.1,1962-SEPT.30,1963

SCALE OF MILES

STATE OF CALIFORNIA
THE RESOURCES AGENCY
DEPARTMENT OF WATER RESOURCES
SAN JOAQUIN VALLEY BRANCH
HYDROLOGIC DATA

MINERAL TYPES OF GROUND WATER OCT.1,1962 - SEPT.30,1963

SCALE OF MILES

O 6 16

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

RENEWED BOOKS ARE SUBJECT TO IMMEDIATE RECALL

1 30 1

JUN 4 REC'D

TOV 17 1573

NOV 11 REC'D

LIBRARY, UNIVERSITY OF CALIFORNIA, DAVIS

Book Slip-50m-12,'64(F772s4)458

399686

California. Dept. of Water Resources.
Bulletin.

PHYSICAL SCIENCES

LIBRARY

C2

A2 no.130:63

v.l.

LIBRARY UNIVERSITY OF CALIFORNIA DAVIS

Call Number:

399686 California. Dept.

of Water Resources.
Bulletin.

TC824

A2

no.130:63

